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Abstract

We show how machine perception techniques can allow people to use
their own bodies to control complex virtual representations in computer
graphic worlds. In contrast to existing solutions for motion capture, track-
ing people for virtual avatars or intelligent interfaces requires processing
at multiple levels of resolution. We apply active perception techniques and
use visual attention to track a user’s pose or gesture at several scales si-
multaneously. We also develop an active speech interface that leverages
this visual tracking ability; by electronically focusing a microphone array
towards a particular user, speech recognition in acoustically cluttered en-
vironments is possible. Together, these methods allow virtual representa-
tions of people to be based on their actual expression, tracking their body
and face gestures and speech utterances as they freely move about a room
without attached wires, microphones, or other sensors.

1 Introduction

A major attraction of the internet and virtual environments is their interac-
tive nature, allowing users to gather information without time or channel con-
straints and easily integrate their own content into the medium. Interactive me-
dia offer a balance between the traditional roles of information producer and
consumer, allowing individual users to perform both tasks with standard com-
puter equipment. To a large degree these goals have been achieved through
the remarkable proliferation of the HTML and VRML protocols and their asso-
ciated server and browser systems.



But viewed from other perspectives there is still nearly complete asym-
metry in the interface between a user and digital information sources. While
rich multimedia and computer graphic content from around the globe present
themselves on contemporary PC screens, the relative bandwidth of informa-
tion a user can generate in real-time is but a trickle: a few keystrokes per sec-
ond, the occasional mouse movement or button click. When virtual environ-
ments were largely text-based chat systems, individual users had the ability to
generate roughly as much bandwidth in the interface as they received. Today,
this balance is not preserved.

With graphical and multimedia worlds, being a participant in a virtual
sense will require much more information than a keyboard and mouse can
generate, since an effective real-time presence will have many degrees of free-
dom which need simultaneous control. Body pose, gesture, facial expression
and speech are important aspects of interpersonal communication in the real
world, and are becoming equally prevalent in virtual worlds as video and hu-
man form rendering become common.

To overcome the one-way nature of image and sound use in current com-
puter interfaces, we have been investigating the use of machine perception
techniques to allow a user to directly control aspects of a computer interface
with his or her body, face, and speech output, in real-time. These inputs can
either drive a literal representation of the user in a virtual environment, a more
comical or fantastic avatar representation, or be used for an abstract interface
to a database or other digital media. Our goal is to create interfaces that are no
longer deaf and blind to their users, interfaces that balance the flow of images
and sound between the user and the virtual world.

2 Perception-driven user models

The idea of using machine vision to track people has been previously devel-
oped in the computer graphics literature for interactive games and experiences
[20, 35, 12] and for the problem of motion or expression capture [1, 4, 15, 36, 34].
These techniques can capture a single, specific motion performed by a human
user for later use in creating a special effect or animating a virtual character.
However, they have several major limitations which prevent their use as a di-
rect interface tool: they often require markers or special paint, they are often
not real-time, and they are designed to capture information at only a single
spatial resolution. The latter is the most fundamental problem: people express
themselves at spatial scales from coarse body pose to the blink of an eye, and
to capture this expression multi-resolution analysis is needed.

With conventional cameras, a single fixed viewpoint will not suffice to both
track a users body as they walk about a room and to track their eye or de-
tailed facial expression. For off-line animation or effects, this is not a problem
since different captured motions (at different resolutions) can be hand-edited
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Figure 1: Overview of system for visual face/body tracking and pose estima-
tion. Objects are rendered on a Video Wall and react to the facial pose of the
user. A static, wide-field-of-view, camera tracks the user’s head, and drives
gaze control for an active, narrow-field-of-view camera. Eigenspace-based
pose estimation is run on face images from the active camera, provides pose
estimates for objects/agents to react to, and also provides closed-loop tracking
feedback.

together. As an interface or avatar, however, we need to simultaneously cap-
ture in real-time these multiple scales of resolution at which people perform
expressions.

This paper thus proposes active, multi-resolution tracking methods for in-
telligent interfaces or avatars. This is an extension of the notion of motion
capture but with explicit emphasis on noninvasive and real-time processing,
which leads to the requirement that multiple scales of motion be potentially
tracked at the same time. Our approach is based on methods from the active
perception literature; we construct an interface which has explicit modes of
attention and can simultaneously attend to both coarse and fine-scale gesture
performance. Further, we generalize to include audio processing and show
how an active multimodal perception method can remove much of the ambi-
guity present in acoustic-only tracking.

The visual component of our interface implements overt attention via dual
cameras, combining a fixed-view, wide-angle camera that observes an entire
room with a motorized narrow field-of-view camera that can selectively ob-
tain images of parts of a users body at high-resolution. Figure 1 presents a
diagram of our visual tracking system; on the imagery from the wide-angle
camera we run a tracking method that uses multi-class color segmentation to
follow a users body pose, 3-D position, and the location of head and hand fea-
tures, as described in the following section. This is sufficient for many appli-
cations which just need the rough 3-D position and outline of the user, but not



for applications which need gestural expression from the user (e.g., detailed
face or hand poses); for this we need high-resolution observations, and use the
active camera.

On the active camera imagery we apply methods that are able to resolve
finer details; we use parametric probability models of the appearance of im-
ages in particular expression classes, and interpolation methods to map ob-
served class similarities to control tasks. Increased accuracy in expression mod-
eling and direct task control comes at the expense of having to train the high-
resolution portion of the system for particular users and tasks. Our systems for
pose and gaze tracking assume prior training, in which examples of face and
eye appearance under varying pose are initially provided.

We present these methods in detail in the following sections. Section 3 will
present methods for coarse-scale tracking of users, and Section 4 will introduce
active visual tracking and analysis with examples of simultaneously tracking
facial and body pose with the dual camera system. Section 5 will discuss active
acoustic sensing in tandem with visual person tracking, and introduce a beam-
forming algorithm that focuses acoustic attention to the location of a particular
users head, allowing speech recognition in an open environment that can have
multiple sound sources. Finally Section 6 will present particular applications
we have explored with our system, and Section 7 will offer conclusions and
directions for future work.

3 Person Tracking

A multi-class color segmentation method drives the basic coarse-view person
tracking routine used in our system. From a single static view, it provides
estimates of the 3-D position and body pose of the user. This routine runs
continuously, and provides the cues needed by the active visual and acoustic
processing methods described in the following sections.

Color segmentation is but one method that can be used to track people;
range estimation, motion-based segmentation, and thermal imaging are other
methods that have been explored in the computer vision literature [28, 29, 25,
17, 18]. We choose to use color segmentation because accurate estimates can
be obtained in real-time using an implementation with no special hardware
other than a video camera and pentium-class PC processor. Color-space meth-
ods also make it relatively easy to locate head and hand features, as described
below. The major restriction of our color segmentation method is the require-
ment of a static scene view, i.e., no moving background. We apply our method
in room environments, where this is a reasonable assumption.!

Lintegration of real-time motion or stereo processing into our method would allow operation in
open-background environments; as computational resources become economical for these meth-
ods this will become a practical option.
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Figure 2: Coarse-scale person tracking in a system for vision-based interaction
with a virtual environment. (a) A user sees himself in a “magic mirror”, com-
posited in a virtual environment. Computer vision routines analyze the image
of the person to allow him to effect the virtual world through direct manipula-
tion and/or gestural commands. (b) Image presented on video wall. With this
system, user can interact with virtual agents, such as the dog character in our
ALIVE system [12, 6] (c) Results of feature tracking routine; head, hands, and
feet are marked with color-coded balls.

Our experimental interaction domain is a “smart” room or office with an
interactive graphics display. The user faces a wall-size screen which contains
cameras and other sensors that observe the user. Computer-generated graph-
ics and video images are presented on the display, along with a graphical rep-
resentation of the user. The cameras are connected to a vision system which
analyze in real time the state and location of the user, and update the virtual
representation accordingly. This representation may consist of the user’s digi-
tized image, a 3-D model of a person, a model of a graphical cartoon character,
or a combination of all of these. Objects (or agents) in the virtual world can use
the vision system to “see” the user, who can in turn see the graphical represen-
tation of the objects on the display.

We have developed a set of vision routines for perceiving body pose and
coarse gestures performed by a human participant in this interactive system.
Vision routines acquire the image of the user, compute a figure/ground seg-
mentation, and find the location of head, hands, and other salient body fea-
tures (Figure 2). Additionally, the extracted contour can then used to perform
video compositing and depth clipping to combine the user’s video image with
computer graphics imagery. The integration of the person and and localization
of his/her head or hand features in the world are performed using the follow-
ing modules: figure-ground processing, scene projection, hand tracking, and
gesture interpretation.



3.1 Figure-ground processing

Figure-ground processing is accomplished by use of spatially-local pattern recog-
nition techniques to characterize changes in the scene, followed by connected-
components and morphological analysis to extract objects. We assume the
background to be an arbitrary, but static, pattern. Mean and variance infor-
mation about the background pattern are computed from an initial sequence
of images with no person present, and these statistics are used to determine
space-variant criteria for pixel class membership. We use a multi-class color
classification test to compute figure/ground segmentation, using a single Gaus-
sian model of background pixel color and an adaptive mixture model of fore-
ground (person) colors. The color classification takes care to identify possi-
ble shadow regions, and to normalize these region’s brightness before the fig-
ure/ground classification [37].

Once the set of pixels most likely belonging to the user has been found, we
use connected components and morphological analysis to delineate the fore-
ground region. This analysis begins with a seed point at the centroid location
of the person in the previous frame; if this fails to grow a sufficiently large re-
gion, random seed points are selected until a stable region is found. Finally,
we compute the contour of the extracted region by chain-coding the connected
foreground region.

3.2 Scene projection and calibration

When the figure of the user has been isolated from the background, we com-
pute an estimate of its 3-D location in the world. If we assume the user is
indeed sitting or standing on the ground plane, and we know the calibration
of the camera, then we can compute the location of the bounding box in 3-D.
Establishing the calibration of a camera is a well-studied problem, and several
classical techniques are available to solve it in certain broad cases [2, 16]. Typ-
ically these methods model the camera optics as a pinhole perspective optical
system, and establish its parameters by matching known 3-D points with their
2-D projection.

Knowledge of the camera geometry allows us to project a ray from the cam-
era through the 2-D projection of the bottom of the bounding box of the user.
Since the user is on the ground plane, the intersection of the projected ray and
the ground plane will establish the 3-D location of the user’s feet. The 2-D
dimensions of the user’s bounding box and its base location in 3-D constitute
the low-level information about the user that is continuously computed and
made available to all agents in the computer graphics world. The contour is
projected from 2-D screen coordinates into 3-D world coordinates, based on
the computed depth location of the person. This can then used to perform
video compositing and depth clipping to combine the user’s video image with
computer graphics imagery.



3.3 Feature and Gesture detection

Hand and head locations are found via contour analysis and by tracking flesh
colored regions in the person. To initialize mixture model elements, Pfinder
uses a 2D contour shape analysis that attempts to identify the head, hands,
and feet locations when they are extended from the body. When this con-
tour analysis does identify one of these locations, then a new mixture com-
ponent is created and placed at that location. Likely hand and face locations
are set to strong flesh-colored color priors; others are initialized to cover cloth-
ing regions. A competitive method reallocates support in the foreground im-
age among the mixture model elements, creating or deleting new elements as
needed [37]. With this framework hands can be tracked in front of the body;
when one reappears after being occluded or shadowed only a few frames of
video are needed to regain tracking.

Both the absolute position of hands, and whether they are performing char-
acteristic gesture patterns, are relevant to the agents in the virtual world. The
detection of coarse static gestures, such as pointing, are computed directly
from the hand feature location. To recognize dynamic gestures, we use a high-
resolution, active camera to provide a foveated image of the hands (or face) of
the user. The camera is guided by the computed coarse feature location as well
as closed-loop tracking feedback, and provides images which can be used suc-
cessfully in a spatio-temporal gesture recognition method. This framework for
real-time gesture processing and active camera control is described in detail in
the following chapters.

4 Active Gesture Analysis

An effective gesture interface needs to track regions of a person’s body at a
finer resolution than is possible in a single fixed camera view of the person?
Detailed aspects of a person’s hand or face are difficult if not impossible to track
at low resolution, yet these play an important role in how people communi-
cate — expressions, hand gestures, direction of gaze, etc. To construct a system
which can recover both the body pose and position information revealed by
the method in the previous section, and detailed expression and gesture in-
formation present only in high-resolution views of parts of a user, we need a
system for visual attention and foveated observation (i.e., observation with a
fovea: non-uniform and active sampling).
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Figure 3: Images acquired from wide (a) and narrow (b) field of view cameras
as user moved across room and narrow camera tracks head.

4.1 Active camera system

Many possible architectures exist for implementing active visual attention. It
is theoretically possible to implement attention without actuators, by shifting
awindow of interest in an extremely high-resolution image sensor. While such
sensors are not currently commercially available, this architecture may be vi-
able in the future as the cost of the imaging surface is typically small compared
with the cost of /0 and processing. An architecture which models the human
eye, with logarithmically increasing sampling density towards a central locus
on the imaging surface, is aesthetically desirable and has many benefits from
an image coding standpoint. Unfortunately the construction of such a sensor
is still a topic of active research, and the image processing algorithms designed
for uniformly sampled grids are not directly transferable to images obtained
from this type of sensor.? Our approach is to use a dual camera system, with
two uniformly sampled imaging sensors; one static with fixed wide field-of-
view, and one with active pan/tilt gaze control and narrow field-of-view:

As described above, wide field-of-view tracking can locate the head of a
user in the scene, and return both the 2-D image coordinates of the head, and
the inferred 3-D world coordinates based on the camera geometry and the as-
sumption that the user stands erect on the ground plane. We use the estimated
head location to obtain a high resolution image of the selected feature, using

2 Assuming of course that the camera needs to observe the entire body, as it does in our appli-
cations, and that the resolution is that of conventional cameras, e.g., roughly one megapixel or less
distributed uniformly over the imaging surface.

3But we should note that the log-polar representation does have several desirable processing
properties that Cartesian representations do not have, such as scale invariance.

4The most recent version of our system utilized a camera which also has active zoom control,
but this camera was not used in the examples shown in this paper.



the second, active camera. Since our active camera is mounted some distance
from the wide angle camera, (approx 6 ft.) we derive the active camera gaze
angle with simple trigonometry using the known active camera base location?
Reliable head tracking results were obtained using this method; figure 3 shows
pairs of output from the wide and narrow cameras in our active-vision sys-
tem as the user walks across the room and has his head tracked by the narrow
field-of-view camera. The narrow field-of-view camera is able to provide a
high-resolution image of the users face suitable for pose estimation using an
eigenspace method, as described below.

4.2 Appearance-based gesture analysis

Hand and face gesture analysis has been a topic of increasing interest in the
computer vision literature.® For tracking hand and face gesture from high-
resolution data, we have adopted an appearance based representation, in which
the appearance of a target object is described by its similarity to a set of iconic
views that span the set of poses and configurations of the target object.

This approach is related to the idea of view-based representation, as advo-
cated by Ullman [38] and Poggio [27], for representing 3-D objects by interpo-
lating between a small set of 2-D views. Appearance or view-based represen-
tation achieves robust real-time performance in gesture analysis by exploiting
the principle of using only as much “representation” as needed. Hands and
faces are complex 3D articulated structures, whose kinematics and dynamics
are difficult to model with full realism. Consequently, instead of performing
model-based reconstruction and attempting to extract explicit 3D model pa-
rameters, ours is a direct approach which represents the object performing the
gesture with a vector of similarity scores to a set of 2-D views. With this ap-
proach we can perform recognition and tracking on objects that are either too
difficult to model explicitly or for which a model recovery method is not feasi-
ble in real time.

In general we form the set of iconic views from examples of different ex-
pressions or gestures. In the former case, we take the set of example images for
a particular expression or pose class and form an model of the class probabil-
ity density function (e.g., a function which returns the probability that a new
image is a member of the class) using an eigenspace technique (see [11] and
[23]). Our similarity function is the likelihood that a new image is the mem-
ber of the given class. When provided with a sequences or unlabeled gesture
examples, we first run an unsupervised clustering method to group the im-

51f the optical center of the active camera can be mounted close to the optical center of the
fixed camera, then one could simply scale the 2-D image location of the head in the fixed view to
compute a pan and tilt angle for the active camera.

6There are too many references to explicitly list; see the proceedings of the 1994 and 1996 work-
shops on Automatic Face and Gesture Recognition for a cross-section of the field. A good survey
paper of work in the field remains to be written.



e

@) (b)

(©

Figure 4: Example of appearance-based pose analysis and interpolation when
tracking a eyeball tracking from approximately —30 to +30 degrees of gaze
angle with two reported saccades. (a) Three spatial views of an eyeball at +30,
0, and —30 of gaze angle. (b) Similarity scores of these three view models (c)
Interpolated gaze angle showing these saccades, using RBF method described
in text.

ages into classes [9], and then construct the class density function. For reasons
of computational efficiency, when searching for the spatial location which has
maximal similarity across all models, we instead use the normalized correla-
tion of the new image with the mean (zero-th order eigenvector) of the class as
our similarity measure. Other similarity measures are certainly possible; a met-
ric which included geometric distortion as well as intensity distortion would
likely offer increased robustness (for example see [24] or [5], we are currently
investigating the integration of these methods into our system.)

With a smooth similarity function the similarity score of a particular view
model as the object undergoes non-linear transformations will be a roughly
convex function. The peak of the function will be centered at the parameter
values corresponding to the pose of the object used to create the view model.
For example, Figure 4(a) shows three images of an eyeball that were used to
create view models for gaze tracking; one looking 30 degrees left, one look-
ing center-on, and one looking 30 degrees to the right. Figure 4(b) shows the
similarity score for each view model when tracking a eyeball rotating from left
to right, with two saccades. Each view model shows a roughly convex curve
centered about the gaze angle used to create the view model.

We use a task-dependent interpolation method to map from the set of view
model scores to a result vector used for recognition or control. Interpolation is
done using a supervised learning paradigm, based on a set of training exam-
ples which define the desired result for a particular set of view model outputs.

10
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Figure 5: Interactive facial expression tracking using appearance-based anal-
ysis/interpolation with 3-D facial model as output. A set of view models are
used to characterize facial state, and then used to interpolate a set of motor
control parameters for a physically-based face model. View models are ac-
quired using unsupervised clustering while the interpolation is trained using
supervised learning.

Using the Radial Basis Function (RBF) method presented in [26], we compute
a result vector y to be a weighted sum of radial functions centered at an exem-
plar value:

=Y arF(lg—g") , (1)
i=1
where
c=Fly, );=F(lg”-g?), y=",...y™T, )

g are the computed spatio-temporal view-model scores, and {(y",g)} are
a set of exemplar result and view-model score pairs (which may be scalar or
vector valued). F is the RBF, which in our implementation was F(§) = §.

We use the interpolation stage to map the observed view model scores into
a quantity which is directly useful for a particular task. For example, if we
wanted to estimate the eye gaze angle for the example in Figure 4, we could

1



Figure 6: View-based expression tracking using foveated face images. (a)
Wide-angle view of scene with person standing in corner. (b) Foveated im-
ages of face while user performs “surprise” expression; this is subsequence of
entire run, in which user repeated this expression three times. (c) Exemplars
of neutral and surprise expression classes. (d) Similarity score of expression
classes evaluated on full sequence. (e) Plot of surprise measure interpolated
from view template scores. Three peaks are present corresponding to the three
surprise expressions.

use an RBF interpolator with a one dimensional output space corresponding to
gaze angle and three exemplars, containing the view model scores correspond-
ing to each view model angle:

{(y'”,8)} = {(—30,[1.0,0.3,0.3]"), (0,[0.3,1.0,0.3]"), (30,[0.3,0.3,1.0]") }

Using this RBF configuration, it is straightforward to recover an estimate of
the underlying eye gaze angle from the three spatial view model outputs. The
interpolated gaze angle is shown in Figure 4(c).

4.3 Face gesture tracking

The interpolation paradigm is quite powerful as it allows us to map to arbi-
trarily complex control dimensions. For example, when tracking facial expres-
sions, we can directly control the motor parameters of a face. Figure 5 shows
an example where the user presented the system with a rigid face in known
position and varied his facial expression. The top row of this figure shows a
sequence of faces performing a surprise expression; the second row shows the
similarity score for smile, surprise and neutral expression classes. In this sys-
tem the users face was restricted to a small workspace in front of the camera;

12
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Figure 7: Multiple-pose eigenspaces used to compute pose class probability
density function, shown for three different poses at two different world loca-
tions. The truncated eigenvector sequence allows rapid computation of the
likelihood a new image is in a particular pose class, and thus efficient compu-
tation of our similarity score vector.

see [10] for details. The similarity scores were mapped to a computer graphics
face model (described in [14]) with physiologically-valid muscle parameters
corresponding to different facial muscle groups; the large number of parame-
ters makes this a difficult model to animate in real time via conventional con-
trol. The interpolation method was trained with examples of the appearance
of the users face and the synthetic muscle parameters for each expression. The
bottom two rows of the figure show the interpolated motor control parameters
during a real-time run of the system, and the generated synthetic faces.

With an active vision approach, we relax the restriction that the users face be
rigid and in a known position to track gestures. We have used similarity-based
gesture analysis on the active camera output, and can track a users expression
or pose as they freely walk about a room, unencumbered, physically far (10°)
from the actual sensors. Figure 6 shows the results of tracking expressions
using the narrow angle camera input when the user is in two different locations
in the scene, using a single set of view models. In this case a scalar surprise
measure was chosen as the output dimension in the interpolator; we could
equivalently driven the synthetic facial model parameters as in the previous
example. For interface applications a scalar output is more appropriate; for
re-animation or avatar applications the full motor state is more appropriate.

In this paper we focus on face pose estimation for updating a virtual user
representation, and track the direction of head gaze as a user walks about the
interactive room. We then allow agents and objects in the virtual world react
directly to the users direction of head gaze in addition to overall body pose.
With this facility a virtual agent can know when the user is looking at them, or
know where the user is looking when referencing an object.

To accomplish this task, we trained appearance classes for three different

13
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Figure 8: Location of the camera and microphone array in the virtual environ-
ment. Virtual agents such as animated dog character on video wall react to
gesture and speech of user.

facial pose conditions: looking at the left, center, or right of the screen. Further,
we trained pose classes separately at different physical locations in the scene.
Figure 7 shows the eigenvectors used to represent the probability density func-
tion for these pose classes at three example locations. Location-dependent
training is possible since we know the 3-D position of the user from the coarse
tracking system, and simply gather separately the statistics for each pose class
at each location. Multiple location training allows us to model variation in the
observed faces due to changing scale and global illumination, which are not
well modeled by a single eigenspace technique. There is considerable addi-
tional training time, but no additional run-time cost, and the system becomes
much more robust to global illumination and other effects. In [11] we evaluated
the recognition performance of our system using just the similarity scores, and
found recognition rates in excess of 84% for the task of discriminating amonst
the three head gaze poses were possible. (See video for demonstration.)

5 Active Speech Recognition

Speech is an essential element of a complete perception-based interface. Our
goal is to provide a mechanism for speech recognition in unconstrained envi-
ronments, so that a user need not be encumbered by a microphone or wires.
Conventional speech recognition methods have great difficultly in acoustic en-
vironments with multiple speakers or other sources of noise. Even without
other speakers in the room, effective speech recognition typically requires the
high signal to noise ratio of a near-field (i.e., clip-on or noise-cancelling) micro-
phone. However, we are unwilling to encumber the user with such devices,

14
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Figure 9: Target and Ambient Sound in our Virtual Environment

and thus face the problem of getting high quality audio input from a distance.
Our approach is to provide a method to isolate the acoustic signal being pro-
duced by the user in an otherwise cluttered environment, by focusing acoustic
attention in the same way we focus visual attention to obtain high-resolution
imagery of parts of the user. This goal can be achieved with the well-known
technique of beamforming with an array of microphone elements” The ba-
sic principle is to combine the signals from omnidirectional or partially direc-
tional (i.e., cardioid) microphones to form a more directional response pattern.
Though several microphones need to be used for this method, they need not
be very directional and they can be permanently mounted in the environment.
In addition, the signals from the microphones in the array can be combined in
as many ways as the available computational power is capable of, allowing for
the tracking of multiple moving sound sources by a single microphone array.
The setup of the array used in our implementation is shown in Figure 8 and
Figure 9.

Beamforming is formulated in two flavors: fixed and adaptive. In fixed
beamforming, itis assumed that the position of the sound source is both known
and static. An algorithm is then constructed to combine the signals from the
different microphones to maximize the response to signals coming from that
position. This works quite well, assuming the sound source is actually in the
assumed position. Because the goal is to have a directional response, this
method is not robust to the sound source moving significantly from its as-
sumed position. In adaptive beamforming, on the other hand, the position of
the source is neither known nor static. The position of the source must contin-
uously be estimated by analyzing correlations between adjacent microphones,
and the corresponding fixed beamforming algorithm must be applied for the

7 Another potential solution is to have a highly directional microphone that can be panned using
a motorized control unit such as drives the high-resolution camera. In our implementation we
found the drive motors generated undesirable acoustic interference, which would prevent tracking
a moving acoustic source. With a directional response that can be steered electronically this is not
a problem. In addition, with a directional microphone, only one sound source can be tracked at a
time. With an electronically-steered array we can overcome both of these problems.

15
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Figure 10: (a) Broadside Microphone Array Geometry and Notation (b) Di-
rectivity Pattern of Broadside Array with Cardioid Elements steered at 15, 45,
and 75 degrees. Note that the reference point of the broadside array geometry
should be aligned with the center of each polar plot

estimated position. This works well when the signal is known as with radar or
sonar, but quite poorly when it is unknown and wideband, as is the case with
speech. This also does not tend to work well when there are multiple sources
of sound, since there are high correlations for multiple possible sound source
positions. It is difficult and often impossible to tell which of these directions
corresponds to the sound of interest, e.g., the voice of the user.

Our solution to this problem is a hybrid of these two flavors which lever-
ages the information available in the visual domain. Instead of using the audio
information to determine the location of the sound source(s) of interest, we use
the vision system, which exports the 3-D position of the user’s head. Using
this information, we formulate the fixed beamforming algorithm for this po-
sition to combine the outputs of the microphone array. This algorithm is then
updated periodically (5 Hz) with the vision information. As a result, we have
the advantages of a static beamforming solution that is adaptive through the
use of vision information.

Beamforming is a relatively old technique; it was developed in the 1950’s
for radar applications [22]. In addition, its use in microphone arrays has been
widely studied [8, 19, 31, 33]. In our implementation, four cardioid micro-
phones were placed 0.5 meters apart from one another in a broadside config-
uration due to space constraints 10(a). The geometry of our microphone array
is represented by the set of vectors r,, which describe the position of each mi-
crophone n relative to some reference point (e.g., the center of the array), see
Figure 10(a). The array is steered to maximize the response to plane waves
coming from the direction r, of frequency f,. The polar response patterns for
this arrangement are shown in Figure 10(b). A detailed examination of the
response patterns with different array geometries and element responses is de-
veloped in [7].

With this beamforming implementation, we were able to sufficiently in-
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crease the signal to noise ratio to successfully feed the output into a commercial
speech recognition system. This is particularly impressive in that these sys-
tems are typically designed to work only with noise-cancelling headset mics.
In other words, while the systems usually require the microphones to be within
inches of the user’s mouth to maximize the signal to noise ratio, we were able to
achieve good recognition results with the microphones at several meters away.
An application of this result was built into the ALIVE system in 1995. We

combined this active acoustic sensor with the HARK recognition system from
BBN [3], constructed a restricted grammar for the recognizer, and then trained
avirtual dog character [6] to respond to the recognition results. At ICCV95, we
demonstrated unencumbered speech recognition in an open environment us-
ing this technique. The system filtered out noise from other observers/sound
sources in the room, and users were able to successfully command the dog
character using both speech and gesture. In the presence of crowd noise, the
recognition rate with a single microphone was approximately 30%; with the
vision-steered beamforming, we obtained results in excess of 80% correct. While
this is insufficient for complex sentence recognition, it is sufficient for single
word interfaces.

6 Perceptive Interfaces and Avatars

Many applications are possible with a perception-based user interface. To-
gether with other colleagues at the MIT Media Lab, we have developed sys-
tems for interacting with autonomous virtual agents [12], browsing a multime-
dia database using arm pointing gestures [32], playing interactive 3-D game
environments using a full body interface for navigation [30], and a system for
multi-user interaction in a shared virtual world [13] (Figure 11).

As firstimplemented these systems used only the fixed camera person track-
ing system and could thus only detect coarse body gestures. With active visual
tracking, information about detailed hand or face expression of a user can now
be used in the interface. All of these systems can benefit from hand and face
gesture input; for example, in the ALIVE system virtual agents or characters
can be designed to respond to different facial expression, or to respond based
on whether the user is looking at the creature. We are designing characters
which respond to gaze; currently we show this ability in our virtual environ-
ment with a moving block demonstration, where the block follows the direc-
tion of the users facial gaze on the screen. (See video tape for demonstration.)

These systems generally used live video as the representation of the user
in the virtual environment (i.e., by compositing). However this is impracti-
cal when one wants to implement a distributed environment, where a single
virtual world is shared by participants at several remote physical sites. To al-
low this type of interaction, we have developed a method for animating an
image-based representation of the user, constructed using a real-time inter-
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Figure 11: Applications of perceptual interface: (a) environment for inter-
acting with virtual agents or animated characters, (b) browsing information
databases, (c) interactive 3-D game environments.



(@)

(b) (c)

Figure 12: Avatar constructed from interpolated video keyframes. Approxi-
mately 10 annotated example images of user in fronto-parallel poses were used
to render avatar. (a) Keyframe with head/hand configuration nearest to goal
state indicated by crosses. (b) Result after warping arm to goal state. (c) Avatar
rendered with user (slightly smaller) to show real-time tracking ability.
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Figure 13: Avatar driven by multiple scales of visual tracking; subwindows
show silhouette from coarse-scale figure/ground segmentation and fine scale
face pose analysis on active camera imagery.
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polated keyframe technique (see [21] for a related system). We collect a set
of keyframes (typically ten or fewer) of the user in different poses, annotate
the head, hand, and arm joint positions &, and at run-time select the keyframe
which has the closest head and hand configuration to the user’s current body
pose. We scale and translate this image to have the correct 3-D position and
pose to mirror the user’s position in the real world. Further, we warp the users
arm in the nearest keyframe image to be as close as possible to the desired con-
figuration. We model the arms with a planar two joint kinematic chain and per-
form the warping via texture-mapping in Open Inventor using linearly inter-
polated coordinates along the arm contour.” Figure 12 shows a keyframe used
in the construction of the video avatar, the arm annotation used to construct
the kinematic chain, and a warped version of the keyframe. Using this warp-
ing technique dramatically reduces the number of example keyframes needed
to render the set of body poses the user performs.

We note that the planar arm model is quite restrictive, and is only designed
to render arm configurations when the user is largely in a fronto-parallel plane
with respect to the video wall. This is the normal configuration in our system,
and is also the assumption used by the coarse person tracker when identifying
head and hand locations. While our avatar rendering system can present arbi-
trary poses by simply adding keyframes (without interpolated arms), it is not
really designed for the task. We are currently researching methods for more
general image-based rendering of articulated human forms that can capture
and generate general 3-D configurations.

But there is another major limitation in this representation; while it tracks
the hand and body pose of the user, it lacks any facial expression or hand ges-
ture. These are critical flaws for a system of virtual communication; coarse
body pose alone is hardly an expressive interface.

To solve this, we use the information from our active camera and view-
based analysis of facial pose and hand gesture. We train our system to learn
the face and hand appearance for certain pose and gesture classes as performed
by particular users of the system. We estimate pose and gesture class likelihood
scores, and interpolate a gaze angle or expression class value function as de-
scribed in the previous sections. We then re-render our avatar to express the
appropriate facial expression or hand gesture being performed by the user.!?
Figure 13 shows a still of the video demo of our foveated avatar. The avatar
is shown, together with windows that show the coarse and fine scale visual
tracking. The overall body pose is driven by the coarse tracking process, and

8Head and hand positions are automatically found using the tracking method in Section 2,
while arm joint positions are currently hand annotated.
9Since this implementation only uses warping and does not do a full morph from multiple
examples, some artifacts are visible at keyframe transitions.
10As we are limited by the keyframe rendering implementation, we cannot smoothly render
transitions between expressions and gestures without an excessive number of keyframes; the im-
plementation currently in progress will remove this restriction.
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the hand and gestures are updated based on the fine-scale gesture analysis.
(See video tape for demonstration.)

7 Conclusion

This paper argues direct perception is possible for user interface and avatar
creation tasks, and exploits active methods in perceptual processing. No single
spatial scale or perceptual routine will likely suffice for perception of users in
general interface tasks, but through the use of an active architecture we can
begin to capture the range of user expression needed to implement a remote
user presence. The use of machine perception techniques offers the potential
for users to accomplish control tasks in real time that would otherwise require
bulky, invasive body instrumentation.

We demonstrated multi-scale user representations in virtual spaces driven
by active noninvasive estimates of the actual position and pose of a user. Sys-
tems such as ours could be used for a variety of telepresence tasks and in-
terfaces for which a keyboard and mouse are either inappropriate or do not
generate enough output bandwidth to drive the desired representation.
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