
l!soMEr~ME!l IS so&fETIMEs IINOT NEv~Rll

On the Temporal Logic of Programs

Leslie Lamport
Computer Science Laboratory

SRI International

1. INTRODUCTION

Pnueli [15] has recently introduced the idea of
using temporal logic [18] as the logical basis for
proving correctness properties of’ concurrent
programs. This has permitted an elegant unifying
formulation of previous proof methods. In this
paper, we attempt to clarify the logical
foundations of the application of temporal logic to
concurrent programs. In doing so, we will also
clarify the relation between concurrency and
nondeterminism, and identify some problems for
further research.

In this paper, we consider logics containing
the temporal operators ‘!henceforthti (or IIalwaysll)
and “eventually” (or “sometime”). We define the
semantics of such a temporal logic in terms of an
underlying model that abstracts the fundamental
concepts common to almost all the models of

computation which have been used. We are concerned

mainly with the semantics of temporal logic, and

will not discuss in any detail the actual rules for

deducing theorems.

We will describe two different temporal logics
for reasoning about a computational model. The
same formulas appear in both logics, but they are
interpreted differently. The two interpretations
correspond to two different ways or viewing time:

as a continually branching set of possibilities, or

as a single linear sequence of actual events. The
temporal concepts of IIsometimel! and Jvnot never!!
(I!not always not”) are equivalent in the theory of

linear time, but not in the theory of branching

time -- hence, our title. We will argue that the

logic of linear time is better for reasoning about

concurrent programs, and the logic of branching
time is better for reasoning about nondeterministic

programs.

The work reported herein was funded by

National Science Foundation under Grant
MCS-7816783.

Permission to copY without fee all or part of

this material is qranted provided that the coP

the

No.

es

are not made or distributed for direct commercal
advantage, the ACM copyright notice and the ti le

of the publication and its date appear, and no-

tice is’ given that copying is by permission of

the Association for Comput~ng Machinery. To copY
otherwise, or to republish, requires a fee and/

or specific permission.

01980 ACM 09791-011-7/80/0100-0174 $00.75

The logic of linear time was used by Pnueli in

[151, while the logic of branching time seems to be
the one used by most computer scientists for

reasoning about temporal concepts. We nave found

this to cause some confusion among our colleagues,

so one of our goals ha:. been to clarify the formal

foundations of Pnueli’s work.

The following se>tion gives an intuitive

discussion of tempor;l lo,~ic, and Section 3

formally define: the semantibs of the two temporal

logics. in Section 4, we prove that the two

temporal logics are not equivalent, and discuss
their differences. Section 5 discusses the
problems of validity and completeness for the

temporid logics. in Section 6, we show that there
are some important properties of the computational
model that cannot be expressed with the temporal

operators !Ihenceforth!! and ‘Ieventuallyi!, and define

more general operators.

2. AN INTRODUCTION TO TEMPORAL LOGIC

2.1. Assertions

The well-formed formulas of temporal logic are

called assertions. The set of assertions is
obtained in the obvious way from a set of atomic

symbols -- called atomic Dedicates -- together
with the usual logical operators A, V, ~ and -

(negation), and the unary temporal operators ❑ and
>. Thus, if P , Q , and R are atomic
predicates, then P~O(-QV+R) is an
assertion. Assertions that do not contain either

of the temporal operators ❑ or + are called
1 In this section, Ue give an intuitivepredicates.

description of how these temporal logic assertions

are to be understood as statements about some

system. Formal semantics are treated in the next

section.

A predicate P represents a simple declarative
statement about the state of the system; it is
interpreted to mean 11P is true nowtt. An assertion
represents a statement. about the system which may
refer to its state both now and in the future. The
assertion ❑ A represents the statement that A
is true now and will always be true in the future.

‘We define the terms IIpredicatett and IIassertion”

to be consistent with their use in the field of

program correctness, which differs from their use

in logic.

174

The assertion +A represents the statement that

A is true now or will become true sometime in the

future. (After becoming true, it could then become

false again.) We read ❑ as “henceforth” or
‘talwayslt, and + as !Ieventually!! or ‘Sometime!!.

The dual O to the operator ❑ is defined by

OA>-O-A . Since ❑ -A states that A will
never become true, we can read O as !Inot nevertt.

If it is not the case that A is never true, can
we conclude that A must eventually become true?

In other words, is “sometime” the same as JInot

never!!? The answer depends upon one’s conception

of the nature of time. In a nondeterministic
system, the present does not determine a unique

future, but rather a (perhaps infinite) set of

possible futures. ‘There are two radically

different ways of viewing these possible futures:

the theories of branchinq.t~ and linear time— —-

ln the branching time theory, all of the

possible futures are equally real and must be

considered. The assertion that a statement is

“henceforth” (or “always”) true means that it is

true now and will remain true during all possible

futures. A statement is ‘Ieventuallytt true if it is

true now or else during every possible future it

will be true at some time. !4 statement is “not

always not!v true if there is - possible future

in which it becomes true. This does not mean that
it becomes true during everv possible future, as

required for it to be ‘teventuallyft (or ~tsometime!t)

true. Hence, !Isometimel! and IInot never~t are nOt

equivalent in branching time.

In the theory of linear time, at each instant

there is only one future that will actually occur.
All assertions are interpreted as statements about

that one real future. ‘The assertion that a

statement is ‘Ialwayst! true means that it is true

now and will remain true during the one real

future. Similarly, it is !Ieventuallyt! true if it

is true now or will become true at some time during

the real future. Since only the one real future is

considered, any statement either is IInever!t true or

else it is “eventuallytt true. Hence, ~tsometimett is

equivalent to ‘Inot never!! in the linear time

theory.

2.2. ‘Exrmessins! Properties & Pro6!rams ~ TemDoral

!A2!&2
he now indicate how temporal logic is used to

express properties of a program -- particularly

properties of a concurrent program. We have found

that there are two fundamental types of properties

one wants to prove of a program: safetv

poverties, which assert that 81something bad never

happens!!; and liveness ~roDerties, which assert

that ‘something good must eventually happenl’. For

a sequential program, partial correctness is an

example of a safety property -- it asserts that the

program never halts with the wrong answer;

termination is a liveness property -- it asserts

that the program must eventually halt.

To state a safety property, we need a predicate

GOGD which represents the statement that the

system is in an acceptable state. The property

that “something bad never happens” is expressed by

the assertion ❑ GOOD . We do not assume any

special starting state, sn the initial conditions
must be explicitly specified. Letting lNIT be

the predicate which means that the system is in a

proper initial state, our desired safety property

is expressed by the following assertion:

INIT ~ a GOOD . (2-1)

Safety properties can be expressed using only

the concept of “always”, but one needs the
additional concept of !Ieventually’1 in order to

express liveness properties. Manna and Waldinger
[12] introduced the temporal operator+, which they

called ‘Isometimeit, for deterministic sequential
programs. In [9], we introduced the operator -.+ --
read !Ileads toll -- for concurrent programs. lt can
be defined in terms of+ by

A liveness property is of the form “something

which should happen eventually does happentt. To

express it formally, we need a predicate
REQUESTED which expresses the statement that the

system is in a state in which ‘Something should

happen”, and a predicate DONE which expresses the
statement that the required event has happened.
The liveness property is then expressed by the

assertion REQUESTED @ DONE , where -+ is defined
by (2-2). As before, we want this property always

to hold if the system is started in a proper

initial state. The desired liveness property is

then formally expressed by the assertion

INIT ~ ❑ [REQUESTED .+ DONE] , (2-3)

where INIT is as above.

Because we are not assuming any preferred

initial states, properties about the system must be

stated in the form INIT 3 It might seem
more convenient to specify the starting states as

part of the system instead of always writing the

initial predicate. However, in proving correctness

properties, one must often reason about the

behavior of the program when started in other

states. We have found it easier to write an

explicit initial predicate in our assertions than

to introduce preferred initial states and have to

keep track of what initial state is being assumed

when.

Safety and liveness properties seem adequate to

describe the desired behavior of most complete

programs. However, one sometimes needs to express
more complicated concepts when proving these

properties. One such concept is that of something

happening !Iinfinitely oftentv. The assertion

❑ + P represents the statement that property P

is true infinitely often. Examples of statement

requiring even more complex combinations of

temporal operators can be found in the work of

Francez arrd Pnueli [5J.

3. THE SEMANTICS

3.1. Models

The assertions of temporal logic are defined as
combinations of atomic predicates, logical
connective, and the temporal operators El and +.
To define tine semantics of temporal logio, we must
formally define how these assertions are to be
interpreted as statements about an underlying
model. The type of model we uae is quite general,
and includes almost all formal models of program

175

execution that we KIIOW of. (The one exception is

the model implicitly used in [11].) however, our

class of models is restrictive enough so we can

avoid many of the philosophical difficulties

discussed in [18], which plague more general

theories of temporal logic.

We define a state to be a truth-valued function

on the set of atomic predicates. To see why such a

function represents what we ordinarily think of as
a state, recall that an atomic predicate is an

uninterpreted symbol -- for example, the string of

characters IIa > ot!- For a program having a

variable a , a state x can be interpreted as one

in which a has the value 1 if x(!!a > Oil) =

true , x(ita > 1!!) . false , x(!!a > 211) = false

etc. Thus, the state of the program is defined b;

the truth or falsity of each atomic predicate.

Since any predicate is a logical combination of

atomic predicates, there is a natural way to define

a state x to be a truth-valued function on

predicates. For example, for any atomic predicates

P and L) , we define x(-P A Q) to equal

-x(P) A x(Q) . The generalization to arbitrary

logical combinations should be obvious.

A L@@ M is a Pair (S, z) , where S is a

set of states and 1 is a set of sequences of
states satisfying property E below. The set of

states can be thought of as the set of all

conceivable states of a program; i.e., all possible

combinations of values of variables and “program

countertt values. A sequence so, s,, s2, . . . in

~ represents an execution that starts in state

so , performs the first program step to reach

state S1 , Performs the next program step to reach

state S2 ‘ ‘tc” The execution terminates if and

only if the sequence is finite. The set z
represents all possible executions of the program,

starting in any possible state.

The one assumption we make about a model,

expressed formally by property E below, is that the

future behavior depends only upon the current
state, and not upon how that state was reached.

Before formally stating this property, we introduce
some notation. For any element s of ~, we write

S=so! Sl! S2! where the Si are elements

of s. lf s is a finite sequence, so s .

so! . . . , Sn for some n , then we define Sm to

equal Sn for all m>n. Intuitively, Si

represents the state of the program at ‘ttime!~ i .
The finite sequence so! . . . ! Sn represents an

execution in which the program halted at time n
in state ‘n “ At all later times, it is still in

state Sn .

If S is a sequence of length greater than
one, then we define s+ to equal s,, S2 , . . . --

the sequence obtained by deleting the first element

Ofs. If S is of length one, then s+ is

defined to equal s . ‘The equality

(S+)i = ‘i+ 1 (3-1)

holds for all sequences s and nonnegative
integers i .

he can now state our condition which the set ~

must satisfy as follows:

This condition means that after the program reaches

state s, , its subsequent behavior is not affected

by how that state was reached.

We now define some more notation for later use.

For any element x in S, we let 2X denote the

set of all sequences in ~ which begin with x ; so

Zx={sez:so=xl. (3-2)

If S is the sequence so, s,, . . . ; then we

define s+n to be the sequence Sn, Sri+,,

More precisely, for any sequence s in z, we

define s+n inductively by:

S+o = s

s+n . (s+(n-1))+, for n > 0 .
(3-3)

In almost all models of programs, one defines a
nnext state!t relation next on pairs of states,

where y next x means that starting in state x

and executing one program step can put the program

into state y . For a nondeterministic program,

there may be several possible next states y . In

some models of programs, the set 1 of possible

executions is the set of all sequences of states

so) S1’ .“. such that ‘i+l next Si . This set

Z satisfies property E. In concurrent programs,

the next state relation is usually defined in terms

of arbitrarily choosing an active process and

executing one step of that process. However, some

restriction is often placed on how that choice can

be made in order to guarantee some sort of “fair

scheduling!! of process execution. The following

are three possible scheduling requirements.

- Eventual Fairness

A process cannot remain active forever

without ever being chosen.

Strong Eventual Fairness

A process cannot be active infinitely often

without ever being chosen.

Short-Term Fairneaa

There is an integer

function of the state

cannot be active for

without being chosen.

of processes, then

scheduling.)

One can then define the

all sequences of states so,

‘i+ I next Si for all

N -- which may be a

-- such that a process

N consecutive steps

(If N is the number

this is round-robin

set z to consist of

sl~ ... such that (i)

i, and (ii) the

appropriate scheduling requirement holds. For each
of the above three scheduling requirements, the
resulting set Z satisfies property E.

3.2. Intertn’etation of the Assertions

The semantics of a temporal logic system are

specified by defining how a temporal logic
assertion is to be interpreted as a statement about

an underlying model. This is done in two ways: one

for the logic of branching time, and one for the

logic of linear time.

176

3.2.}. Branching Time

in the logic of branching time, an assertion

A represents a statement about the current state.
Hence, we interpret A as a truth-valued function

on states. We let the branching I@lei
interpretation of an assertion A in the model M

= (S, 2) be the mapping
*M

B : S ~ [true<, false}

defined inductively as follows.

- If A is an atomic predicate, then for

any state x :

A~(x) = X(A) .

(Recall that a state is by definition a

truth-valued function on atomic

predicates.)

-If A is the logical combination of

simpler assertions, then its

interpretation is defined in the obvious

way in terms of the interpretations of

its components. For example, we have:

(CVD)~(X) s C:(x) V D;(X) (3-4)

for any x in S. (Note that the V on

the left side of (3-4) 1S an oPerator on

temporal logic formulas; the one on the

right side is the ordinary logical

operation on truth values.)

‘I’he interpretations of DA and ~A are

defined as follows in terms of the

interpretation of A , where x is any

element of S. (Recall the definition of

& given by (3-2).)

(U@jX) E

Vsezx: (V nLO: A~(sn)I (3-5)

(>A)#(x) a

VSE2X: [,anLO: A~(sn)l (3-6)

Since all assertions are obtained from atomic

predicates, logical connective and the temPoral
M for any assertion A “

operators, this defines AB

We say that the assertion A is M-valid in the

logic of branching time, written M*BA , if A~(x)

is true for all x in S . In other words, we

have:

(M~A) = vxIGS: A~(x). (3-7)

Using the definition OA z -O-A , one easily

obtains the following from (3-5):

(oA)~(x)s~s&Zx:[snL O: A#(sn)].

Comparing this with (3-6), we see that the

interpretations of +A and OA in general are

not equal. The former involves a universal

quantification over all possible futures, and the

latter involves an existential quantification. For
any assertion A , it is easy to find models in

which one of the assertions OA and ~A is valid

and the other is not. This formalizes our previous

observation that ‘Eventually!! means eventually

happening in every possible future, while “not

nevertt means eventually happening in some possible

future. Hence, IIsometime!! and lltlOk tl&IW” are nOt

equivalent in the branching time theory.

A deterministic system is one in which for

every state x there is at most one possible next

state y . In this case, 2X consists of a single

element, so universal and existential
quantification over it are the same. Hence,

IIeventually!t and ,,not nevero are equivalent for a

deterministic system. In fact, the theories of
branching time and linear time are equivalent for a

deterministic system, since the only ‘Impossible’!

future is the single “real” one.

3.2.2. Linear Time

In the temporal logic of linear time, an

assertion represents a statement about the actual

current and future behavior of the Drojzram. Hence,

we let the linear time interDret;tion of an

assertion A in the model M = (s, 2)

mapping

A: : I ~ {true, false]

defined inductively as follows.

lf A is an atomic predicate, then

any state x :

‘fl(x~s the ~ogical combination

= x(A)

If A
.

simpler assertions, then

be the

for

(3-8)

of

its

interpretation is defined in the obvious

way in terms of the interpretations of

its components. For example,

(CVD)~(x) z c!(x) V D!(x)

for any x in S.

For any assertion the
interpretations of OA andA ‘~A are

3-9)

defined as follows, where x is any

element of S. (Recall the definition of
s(+n)

given by (3-3).)

(nA)~(s) z V nLO: A~(s+n) (3-10)

(~A)f(s) = an20: A~(s+n) (3-11)

We say that an assertion A is M-valid in the

logic of linear time, written M~A , if A!(s) is

true for every sequence s in 2 . In other

words, we have:

(M~A) s V SE ,2: Au(s) . (3-12)

Using the definition OA z -O-A , it follows

easily from (3-10) and (3-11) that (~A)~ ~ (OA)~

for any assertion A . Hence, the linear time

assertion ~A z OA is M-valid for every model

M,so ‘tsometime!r is the same as !Inot never” in

the theory of linear time.

4. EXPRESSIVENESS

We now consider the expressiveness of the
branching and linear time temporal 10gicS -- i.e.,

what statements about the underlying models can be

expressed by assertions in these logics. Not all

statements about an underlying model are

expressible. For example, the statement that a

177

model satisfies the short-term fairness condition

described in Section 3.1 is not expressible in

either of our two temporal logics.

In this section, we compare the expressiveness
of the temporal logic systems of branching time and
linear time. We prove that neither is more
expressive than the other -- each can express
things that the other cannot. We also argue that
the expressive power of the logic of branching time
indicates that it is better for reasoning about
nondeterministic programs, while the logic of
linear time is better for reasoning about
concurrent programs.

4.1.~

To discuss formally the expressive power of our

temporal logics, we must define what it means for

an assertion of t’he branching time logic to have

the same meaning as an assertion of the linear time
logic. We can do this because we have defined the
semantics of both temporal logics in terms of the

same underlying models. We make the following

obvious definition: an assertion A in a logic

X is &eauivalent to an assertion B in a logic

Y if either A and B are both M-valid (in

their respective logics), or if neither one is

M-valid. In other words, A and B are

M-equivalent if (M&XA) = (M~B) .

M-equivalence for a single model M is not an

interesting concept, because any assertion is

M-equivalent to one of the trivial assertions ~

or ~. (We can define ~ to equal P V -P

and false to equal PA-P, for some atomic

predicate P .) In other words, every assertion is

simply true or false for a particular model. The

interesting concepts of equivalence are ones in

which the two assertions are equivalent for some

class of models.

The strongest form of equivalence is when two

assertions are equivalent for all models. he

therefore say that two assertions are stronglv

equivalent if they are M-equivalent for all models

M. For example, any predicate P in branching

time logic is strongly equivalent to the assertion

❑ P in linear time logic. To prove this, note
that for a model M=(S, Z), P is M-valid in

branching time logic if and only if

VxES: ‘tfs&Ix: s(P) is true, ❑ P is

M-valid in linear time logic if and anly if

‘v’ SE Z V n.2_0 : s+n(P) is true, and property
E implies that these two conditions are equivalent.

Strong equivalence implies that the two
assertions have the same meaning regardless of the

meaning of their camponent atomic predicates. It

is natural to define a weaker form of equivalence
-. one in which two assertions are the same for a
particular meaning of their atomic predicates. For

example, we might be interested only in models for

which atomic predicates such as “a > 0“ can be

interpreted as statements about a program variable

named ‘tall, so that the truth of !ta > l!! implies the

truth of ‘la > O1!. This means that we want to

restrict ourselves to a particular set of states.
For a set of states S , we define an assertion in

one logic to be S-equivalent to an assertion in

another logic if the two assertions are
M-equivalent for every ’model M having S as-its

set of states. Strong equivalence obviously
implies S-equivalence.

4.2. Ineauivalence Results

We now show that the two temporal logics have

different expressive powers, and that neither is

strictly more expressive than the other -- each can

express statements that the other cannot. We do

this by showing that for any nontrivial set of

states S , there is an assertion in each logic

that is not S-equivalent to any assertion in the

other logic. Note that this is a stronger result

than proving the nonexistence of any strongly

equivalent assertion.

We say that a predicate P is trivially true

for a set of states S if x(P) = true for all

x inS. Trivially false is similarly defined.

A predicate is said to be trivial for a set of

states if it is trivially true or false.

Our inequivalence results are contained in the

following two theorems.

Theorem 1: For any set of states S , if P is

a nontrivial predicate for S , then the assertion

OP in the branching time logic is not

S-equivalent to any assertion in the linear time

logic.

Proof: We first define two models ‘1 ❑

(S, 21) and M2 ❑ (S,~2) , with the given set of

states. Since ‘P is nontrivial, there are states
p and q in S such that p(P) . true and q(P)

= false . Let z, consist of all infinite sequences

of the form x, p, p, p, . . . with x different

from q9 together with the sequence

q~q, q9 Let 22 be the set containing all

the elements of ~, together with the sequence

q, P*P9

From equations (3-5) and (3-7) and the
definition of O, it is easy to see that for both

of these models Mi , OP is Mi-valid in

branching time logic if and only if the following
expression is true:

VxES:3sEZx:2nXO: sn(P).

From this, we see that op is M2 valid, but it is

not Ml valid. However, ~, is a subset of 22, and

it is an immediate consequence of the definition of

lY-validity for the linear time logic (equation
(3-12)) that any assertion which is M-valid for one

model must be M-valid for a model having fewer

execution sequences. Any linear time assertion

that is M.-valid must therefore be M,-valid.

Hence, ther~ is no assertion of the line~r time

logic which is S-equivalent to the assertion OP

of the branching time logic. D

Theorem 2: For any set S of states, if P is

a nontrivial predicate, then the assertion ~lJP

of the linear time logic is not S-equivalent to any

assertion of the branching time logic.

Proof: Let PP denote the set of all states p

such that p(P) equals true. Let M, ❑ (S, ~1)

and M2 ❑ (S, 22) , where 21 consists of all

sequences which end with an infinite sequence of

178

elements all in PP, ar!d 22 consists of all

sequences containing an infinite number’ of elements

of PP. Since P is not trivially true, it is easy
to verify from (3-12) that the assertion >CIP is
Ml-valid but is not M2-valid in the linear time

logic.

Now let A be any assertion. lie first show

that when M is either of the models
‘1 ‘r M2 :

(tl A)~(x) s ‘# YE S: A~(y) (4-1)

(+A)~(x) = A~(x) V

‘d pE PP: A:(p) . (4-2)

By (3-5) of Section 3.2, to prove (4-1) we have to
show that

VSE2X: [’d nLO: A~(sn) 1 s

V YES: A~(y)

This follows easily from the observation that in

both models, for any states x and y , Zx
contains a sequence of the form x, y ,

To prove (4-2), it follows from (3-6) that we
must show that for both models:

VSE2X: [an~O: A~(sn)] z

A~(x) V [V PEPP: AH(P)] .

The right side implies the left side because in

both models, every sequence in 2X contains x

and some element of PP . The left side implies the

right side because in both models, & contains

the sequence x, p, p, p, . . . for every p in PP.
This completes the proof of (4-1) and (4-2) for

both models.

Let x be any element of S. If Q is a

predicate, then Q~(x) has the same truth value in

both models. If A is any assertion such that

A~(x) has the same truth value for both models,

then: (i) since (4-1) holds in both models,

(DA):(x) must also have the same truth value for

both models; and (ii) since (4-2) holds for both

models, (~A)#(x) must also have the same truth

value for both models. Any assertion is built up

from predicates using only ordinary logical

operators and the temporal operators •l and ~, so a

simple induction argument shows that for any

assertion A , A;(x) has the same truth values

for both models. Since this is true for any state

x , it follows from the definition of M-validity
for the branching time logic (3-7 of Section 3.2)

that any assertion A of branching time logic is
Ml-valid if and only if it iS M2-valid. However,

the assertion +nP of linear time logic is

Ml-valid and not M2-valid. Hence, it is not

S-equivalent to any assertion in branching time

logic. II

4.3. Nondeterminism versus Concurrence

In almost all formal models of concurrent

processing, a concurrent system is represented by a

nondeterministic sequential one. The concurrent

execution of two operations that takes place in the

real system appears in the model as the

nondeterminism of which one occurs first. This use

of nondeterminism to model concurrency has caused
some confusion, since the type of nondeterminism

involved is conceptually quite different from the

nondeterminism studied in automata theory and in

the theory of nondeterministic algorithms.

4.3.1. Nondeterminism

In automata theory, a nondeterministic machine

is thought of as one that simultaneously pursues

all possibilities. The machine is considered to

complete its computation successfully if one of

these possibilities succeeds. This has led to the

study of nondeterministic algorithms, implemented

by concurrently executing all possibilities and
stopping the entire computation if one succeeds.
The theory of branching time is appropriate for

reasoning about this type of nondeterminacy. If
H is a predicate which represents the statement

that the machine has reached a successful

completion, then the assertion OH in the logic

of branching time states that some computation will

succeed. Theorem I shows that this cannot be

expressed in the temporal logic of linear time, so

there is no choice about which type of temporal

logic is appropriate here.

Pratt [16] has developed the elegant formalism

of dynamic logio for discussing nondeterminism of

this kind. To express his system in terms of our

model, we must divide the set of halting states --

those with no possible next states -- into two

classes: failed states, and successful states.
Let H be the predicate that is true only for

successful halted states. The dynamic logic

assertion lalP corresponds to the temporal logic
assertion D(H ~ P) for the model defined by the

program a .

Harel and Pratt [7] extended the original

dynamic logic to the system DL+ in order to

consider nondeterminiatic algorithms for which all

the possible cnoices lead to terminating

computations. From our point of view, we see that

an extension was needed because this new type of

termination cannot be expressed with only the

temporal operator ❑ , but requires the additional
operator ~. All the formulas of DL+ can be

obtained by adding formulas of the form

[a]+’’true” to the original dynamic logic of [16].

This formula can be expressed in the branching time

logic defined by the program a as +H . The

meaning of termination for nondeterministic
programs is discussed at length in [8].

Dynamic logic only allows one to reason about

the states before and after program execution. In

[17], Pratt extended dynamic logic to “process

logic” which allows reasoning about the states

entered during execution. Process logic is a form

of branching time temporal logic.

4.3.2. Concurrency

Our view of concurrent programs is that the

nondeterminism represents different possibilities,

only one which actually occurs. This suggests that

the linear time tempoval logic should be more

appropriate for reasoning about concurrent

programs. Althcmgh

provable property, we

strong arguments that

‘nappropriateness!t is not a

will give what we feel to be

this is indeed the case.

Recall that the two basic properties one proves

about concurrent programs -- safety and liveness --
are expressed by the assertions (2-1) and (2-3).

It can be shown that each of those assertions in

the linear time logic is strongly equivalent to the

identical assertion in the branching time logic.

Hence , both logics can express the required

correctness properties. The superiority of linear

time logic manifests itself only in the attempt to

prove these properties.

The correctness of a concurrent program usually

depends upon the fairness properties assumed for

scheduling the execution of operations in different

processes. One type of fairness that is often

assumed is the strong eventual fairness condition

described in Section 3.1. This condition can be

expressed in the temporal logic of linear time by
the assertion (>O -ACTIVE) V + CHOSEN , where

ACTIVE and CHOSEN represent appropriate

predicates. lt follows from Theorem 2 that this

cannot be expressed in the logic of branching time.

I.e., this assertion is not S-equivalent to any

branching time assertion for a nontrivial set of

states S . (If it were, then it would have to be

equivalent for the subset of states in which

CHOSEN is trivially false, contradicting Theorem

2 for P . -ACTIVE .) This strongly suggests that

the linear time logic is more appropriate than the

branching time logic.

Another argument in favor of the linear time

logic comes from our experience in proving liveness

properties of concurrent programs. We find

ourselves continually using the following type of
reasoning to prove that P eventually becomes

true.

We show that if P is always false during

the program execution, then the program

will cause P bo become true. Hence, P

cannot remain false forever, so it must

eventually become true.

This reasoning is based upon the hypothesis that

either P is eventually true, or it is always

false. In other words, it assumes an axiom of the

form ~P V Cl(-P) . in the linear time theory,

this assertion is M-valid for all models M .
However, it is easy to construct a model for which

the assertion is not M-valid in the branching time

logic, so this reasoning cannot be used in

branching time logic.

The logic of linear time corresponds to the way

one tends to reason informally about concurrent

program execution. We have therefore found it easy

to use the linear time logic to formalize the proof

techniques described in [9] and [14]. We do not

know if it is always possible to prove the same

properties of concurrent programg by reasoning
within the branching time logic. However, our

experience has convinced us that even if it is

possible, the resulting proofs will not be as

simple and natural as the ones using the linear
time logic.

It might be argued that one should have a
system powerful enough to subsume both the

branching and linear time logics. Such systems can
be constructed. However, that approach is based

upon the misguided notion that the more expressive

a system is, the better it is. We could get a very

expressive system by simply reasoning about the

underlying models. However, one uses temporal

logic to hide the irrelevant details of the models.

The ideal logic would be one in which we could

express all the relevant properties of the models

and none of the irrelevant ones. We have not

considered temporal logics having an explicit ‘Inext

instant!! operator, such as the one studied in [61,

because we feel that they are too expressive.

Since what is relevant depends upon the

application, different logics should be better for

different applications. We believe that the

temporal logic of linear time (as generalized in

Section 6 has precisely the expressiveness that

one needs for reasoning about concurrent programs.

5. THE THEOREMS OF TJH4PORAL LOGIC

5.1. Validitv

An assertion is M-valid in a temporal logic if

its interpretation is true for the model M . We

are also interested in assertions whose

interpretations are true for more than just a

single model. We define an assertion A to be

stronRlv valid if it is M-valid for all models M .

We say that A is S-valid for a set S of states

if it is M-valid for every model M having S as

its set of states.

A strongly valid assertion is one that is true

for any interpretation of its atomic predicates.

For example, it is easy to check that the following

assertion is strongly valid for the logics of both

branching and linear time.

This assertion is a true statement about any model,

regardless of how the atomic predicates P and Q

are interpreted in that model. Strongly valid

assertions are the tautologies of temporal logic.

Now consider the assertion

❑ l”a> l“ 3 ❑ “a>O” ,

where “a > O“ and “a > If! are atomic formulas.
This assertion is not valid for all models, since
there are models having states in which !!a > Ill

is true and IIa > 0!1 is false. However’, such

models are of no interest if we are trying to
reason about a program variable named ‘tat!. In this
case, we are interested in S-validity, where S is
the set of possible program states. The above

assertion will be S-valid for such a set S of

states in both the branching and linear time

theories.

5.2. Deductive Svstems

Thus far, we have discussed the validity of

temporal logic assertions, but have said nothing

about proving things. A temporal logic deductive

system consists of a formal method for deriving
theorems. We write FA to denote that the

assertion A is a theorem of a deductive system.

A deductive system generally consists of a

collection of axioms -- assertions that are assumed

to be theorems -- and a collection of inference
rules for deriving theorems from other theorems.

For example, the following might be taken as a

180

temporal logic axiom (in either a branching or

linear time logic):

FO(AAB)SOAAUB. (5-1)

In this formula, A and B are formal parameters

that represent any assertion. It may be viewed

either as an infinite set of axioms -- one for each

choice of the assertions A and B ; or else as a

single axiom -- in which case there must be a rule

of inference that permits one to obtain new

theorems by substituting arbitrary assertions for
A and B in (5-l). The following is an example

of an inference rule:

If~A then ~aA . (5-2)

Note that this is not the same as ~A = DA ,
which is not a valid theorem. Rule (5-2) is the
!Inecessitation!l rule of modal logic.

A deductive system is said to be valid if all

its theorems are valid. It is said to be comulete

if every valid assertion is a theorem. There are

three types of validity that are of interest:
strong validity, S-validity and M-validity. They

lead to three classes of theorems: theorems true

for all models, theorems true for all models with a

specific set of states, and theorems true for a
model representing a particular program.

5.3. Tautologies

A strongly valid assertion is one that is

trivially true, in the sense that its truth does

not depend in any way upon the model under

consideration. We therefore call such an assertion

a tautoloxv. A temporal logic deductive system

should be able to prove such trivial theorems, so

it should contain a subcollection of axioms and

rules of inference for proving tautologies. For

example, it might contain the axiom (5-1) and the

rule of inference (5-2). We now consider the

deductive system formed by this subcollection of

axioms and inference rules for deriving

tautologies.

A deductive system is called tautologicallv

J@J@ if all of its theorems are tautologies. TO
prove that a system is tautologically valid, one

must prove that each axiom is a tautology, and that

each inference rule can generate only tautologies.

This is a straightforward task.

A deductive system is said to be tautoloRicallv

comolete if every tautology is a theorem. Finding

a complete logical system is more difficult than

finding a valid one. in [18], Rescher and Urquhart

give axioms and inference rules that are sufficient

to prove every tautology for the tense logics ‘b
and K1 , which are closely related to our temporal

logics of branching time and 1 inear time,

respectively. lt should be possible to adapt their

axioms and inference rules to obtain ones that are

sufficient to ensure tautc)logical completeness for
temporal logic systems of branching and linear

time. However, such an exercise is beyond the

scope of this paper.
2

5.Q. S-Valid Formulas

An S-valid assertion is one that is true when

its atomic predicates are given the meanings

implied by the set S of states. To prove S-valid

theorems, a deductive system must be able to prove

tautologies, and it must also be able to derive

theorems about predicates. The following theorem

shows that this is sufficient, because any S-valid
assertion can be derived from a tautology and an

S-valid predicate. Questions of validity and

completeness are reduced to the corresponding

questions for tautologies and for predicates,

To see that the following theorem does what we

claim, observe that by using the valid inference
rule (5-2), substitution, and !J@JQ ponens

(deducing *B from FA and ~A ~ B), we can

deduce FA from *P and ~UP 2A .

‘fheorem~: For the logics of both branching and

linear time: if S is a set of states and A is

an S-valid assertion, then there exists an S-valid

predicate P such that ❑ P 3 A is strongly

valid.

w: Let PI! . . . , Pn be the predicates

appearing in the assertion A . Define a
boolean-valued function F of n boolean

arguments by letting F(al, . . . , an) equal true

if and only if there is a state x in S such
that x(Pi) . ai for all i . Such a function can

always be expressed as a logical combination of its

arguments. We can then define P to be

F(P1, . . . , pn) , where the latter expression is

the predicate obtained in the obvious way from the

expression of F as a logical combination of its

arguments. Note that for any state x (not

necessarily in S):

x(P) 23x1 ES: V i: x(Pi) =x’(Pi). (5-3)

This clearly implies that P is S-valid.

To complete the proof, we must show that the

assertion ❑ P ~ A is M-valid for all models M .

We prove this for the linear time logic. The proof

for the branching time logic is very similar and is

omitted. It follows from the definitions of
Section 3.2 that for any model M and any sequence

of states s :

(DP ~ A)!(s) s

(V n20: sn(P)) ~ A!(s) . (5-4)

For anY model M = (S”, ~) , define a new model M’
= (s’, z’) by letting

{XE s“ : x(P) = ‘ttrueti} and z:’ :
{SE2 :snESt for all n}. It follows easily

from (5-4) and (3-12) that the assertion DP = A
is M-valid if and only if it is M’-valid.

Moreover, this assertion is M’-valid if and only if

the following is true:

VSEZ’ : AL’(s) (5-5)

Hence, we need only prove (5-5).

2Such a completeness result is claimed by Pnueli

in [151. However, he based his temporal logic of

linear time on the tense logic
‘b of branching

time (plus the identification of ~ and O), so it

is difficult to evaluate his claim.

181

Let $: S’ * S be any mapping such that for
every xEsf: +(X)(pi) ❑ X(Pi) for all i .

It follows from (5-3) that such a mapping exists.

We extend $ to be a mapping on sequences in the

obvious way so that ~(s)n . l(sn) . We next

define a model M!! = (S, ~“) , where S is our

original state space, by letting

{$(s)
2“ =

:Sez!}. Since the Pi are the only
atomic predicates in the assertion A , it is easy

to verify that for all s E ~’ :

At’(s) s A~’’($(s)) .

Since A is S-valid, it is M“-valid. Hence, this

equality and (3-12) imply (5-5), completing our

proof of the M-validity of ❑ P ~ A for any model

M.H

5.5. &Validitv

To prove theorems that are valid only for an

individual model, there must be some way to prove

properties of that model. For a temporal logic of

programs, this means a way of proving properties of

a particular program. In practice, one begins with

certain elementary theorems about a program, and

then manipulates them to prove more complex

theorems. For example, consider the following

portion of a sequential program without gotos.

y@r’J:=l

label: . . .

We should be able to deduce the following theorem

about this program:

i (control at~) 3 (~= 1) .

Given this type of elementary theorem, the axioms

and deduct~~.. . ~~es for deriving tautologies and

state valid theorems may be used to deduce more

complex theorems about the specific program.

A deductive system for proving properties of

programs must therefore have a method for deducing

these elementary properties. Such a method provides

a formal definition of the semantics of a
programming language. For concurrent programs, we
believe that the only types of elementary
properties that are needed are safety properties

and liveness properties.

5.5.1. Safety Properties

The usual method of deducing safety properties

rests upon the following induction DrinciDle, where
nextr denotes the Itnext state!! relation for a

program IT , and M(W) is the model defined by
this program.

For any predicate P :

If vx,yEs:

(x(P) A ynextwx) ~y(P)

then M(7T)~ P = IJP .

Observe that the hypothesis is a statement
about the model and the conclusion asserts the
validity of a temporal logic assertion. Thus, it
leads to an inference rule for deducing temporal
logic theorems from theorems about the underlying

model. This induction principle is the basis of
all the inductive methods that have been proposed

for proving safety properties of programs --

starting from FloydJs original inductive assertion

method for proving partial correctness [4]. To

prove the safety property (2-1) of Section 2.2, one

proves three theorems: (i) ~INIT ~ P ;

(ii) ~ P ~ UP ; and (iii) j- P 3 GOOD -- for some

suitable predicate P . The first and last of

these are theorems about predicates, and are

usually easy to prove. The difficult part of

constructing a proof is choosing the appropriate

predicate P so that (ii) can be proved from the

induction principle.

To apply this induction principle, we need a

formal method of proving theorems about the model’s

next relation. This requires developing a formal

semantics of the safety properties of the

programming language. We have recently developed a

method of doing this for concurrent programs, which

is described in [10]. It is based upon a method

for proving formulas of the form {P} W {Q} , where

P and Q are predicates and W is a program
statement. This formula is interpreted to mean
that if execution is begun anywhere inside T in a
state such that P is true, then P will stay

true while control remains in T , and Q will be

true if and when W terminates. We can then

restate the induction principle as follows.

For any predicate P :

if {P} ‘if {P} then M(W)!=P ~ ❑ P .

5.5.2. Liveness Properties

General methods for deducing elementary

liveness properties have not yet been developed.

Liveness properties for programs written in the

simple flowchart language used in E9] and [15] can

be proved by introducing thz following axiom for

each flowchart box of each process:

b (control on arc leading into box) ~

~ (control on one of the arcs

leading from box) .

These axioms describe a system satisfying the

eventual fairness properties described in Section
3.1. (In these simple flowchart programs, a

process is always active, so weak and strong

eventual fairness are equivalent. Waiting is

represented by a loop.)

More sophisticated axioms are needed for

concurrent programs written in languages with

explicit synchronization primitives. For example,

consider programs using a semaphore s . There are

several types of liveness assumptions we can make

for semaphore operations. A common assumption is

that if the value of the semaphore s becomes

positive infinitely often, then every process

waiting on a P(s) operation must eventually

complete that operation. (This is a strong

eventual fairness assumption.) It can be expressed

in linear time logic by adding the following axiom

for each occurrence of a semaphore operation
P(s) .

\ [(control at the P(s) operation)

Acl+(s>o)l n

182

~ (control after the P(s) operation).

Now consider a weaker form of semaphore which

simply guarantees that if s becomes positive,

then eventually some pending P(s) operation must

be executed. (This is weaker because it allows an

individual process to wait forever if other

processes are repeatedly executing P(s)

operations.) To express the liveness property of

such a semaphore, one must introduce a single,

complicated axiom that depends upon all the P(s)

operations of the entire program.

Further work ie needed in the formal

specification of liveness properties for

synchronization primitives. One can, of course,

define these primitives in terms Of flowchart

programs, tnus basing the semantics of the language

on the semantics of flowchart programs. However,

this does not solve the practical problem of

proving the global liveness properties that are

achieved by these primitives; it merely pushes the

problem back one level.

5.5.3. Completeness

We now consider the question of completeness --

the ability of a deductive system to prove all
valid assertions about individual programs. We

cannot in general expect this type of completeness,

since we can construct an assertion which states

that the given program halts. instead, one can try

to construct a deductive system for whicn a result

analogous to Theorem 3 of Section 5.4 holds: any

assertion that is valid for a given program can be

deduced from a tautology and a valid theorem about
predicates. If the system were tautologically

complete, any incompleteness would then be due to

an incompleteness in the system for reasoning about
predicates. This concept of !frelative

completeness” was introduced by Cook [2] for

sequential programs.

Such completeness results have been obtained

for particular types of assertions. For example,

Owicki [131 and Flon and Suzuki [3] have shown that
proving a valid safety property can be reduced to
the problem of proving valid theorems about

predicates. however, Owicicits proof requires the
addition of !Tdummytf variables to tbe program, while
Flon and Suzuki’s result requires the use of

nonrecursive predicates. Apt [lj has shown that

this is unavoidable: if dummy variables are not

allowed (other than for describing the state of

program control), then nonrecursive predicates are

required.

Certain relative completeness results for

liveness properties have also been obtained for

models with no fair scheduling requirements. Flon

and Suzuki [31 showed that if the set of predicates

is rich enough, then the problem of proving certain

types of simple liveness properties can be reduced

to the problem of proving valid predicates. They

considered programs written in a flowchart language
in which a waiting condition can be added to delay

the execution of an operation. Pnueli [15] has

proved a similar result for more general liveness

properties of simple flowchart programs.

Although such relative completeness results are

of interest, they do not answer what we feel to be

the most important question: is any deductive

power lost by using temporal logic instead of

reasoning directly about the underlying model? Let
TL be a deductive system for linear time temporal

logic, and let ML be a deductive system for

proving theorems about the model M z (S, ~) . We

say that TL is complete relative to ML if for

every assertion A : if VSEZ: A?(s) is

provable in ML , then A is provable in TL . (A
similar definition can be made for a branching time

temporal logic.) No deductive power is lost by

using the temporal logic system TL instead of
reasoning directly about the model with ML if and

only if TL is complete relative to ML .

If we are allowed to introduce dummy variables

for reasoning about programs, then for any ML we

can construct a temporal logic deductive system

TL which is complete relative to ML . This is

done by adding a variable that records a complete
lltrace}~ of the programts eXeCUtiOn. Any reasoning

in ML about execution sequences can be mirrored

in TL by reasoriing about the value of this dummy

variable. (This approach was used in [13].)

Introducing such a dummy variable obviously

defeats the whole purpose of using temporal logic,
since it brings us back to reasoning directly about

the model. Given a system ML for reasoning about

program execution sequences, we would like to find

a temporal logic deductive system TL that does
not use dummy variables and is complete relative to

ML . We suspect that this is not always possible.

For example, if a multiprocess program uses a short

term fairness scheduling discipline, then the set

of execution sequences 2 would satisfy an

important scheduling property that cannot be

expressed in our temporal logics, so reasoning

about the model should enable one to prove
properties that cannot be proved with a temporal

logic deductive system. However, we conjecture

that one can construct such a relatively complete

temporal logic deductive system for a useful class

of programs and an interesting class of systems

ML . We regard the study of this type of relative

completeness to be a useful area for further

research.

6. llAS LONG As!!

Thus far, we have restricted the discussion to

temporal logics that use only the temporal

operators ‘Jalways’f (0) and “eventually” (~) . We
now show that these operators cannot express

certain important properties of concurrent

programs, and briefly describe a more general

operator. We consider only the linear time theory,

since we are concerned with describing properties

of concurrent programs. More general operators can

also be defined for the branching time theory.

In the linear time theory, ~ is equivalent to

o, which is equivalent to -0-; so we have to

consider only the single temporal operator n. The

assertion UB represents the statement that B

is ‘Ialways!! true in the single (real) future. We

can generalize this to an assertion A ❑ B which

asserts that B is true ‘Ias long as” the, assertion
A remains true. Formally, the meaning of

A ❑ B is defined by extending the interpretation
defined in Section 3.2.2 as follows.

(A D B)fl(s) =

V’nzO:[Vi~ {O, . . . ,n}: A~(si)]

183

3 B~(s+n) (6-1)

A temporal logic using assertions constructed

with the dyadic operator ❑ will be a called a

generalized temporal logic, and the logic we have

been discussing up to now will be called ordinary

temporal logic. It is easy to check the strong

validity of the following equivalence, which shows
that the generalized temporal logic is at least as
expressive as the ordinary one:

true n B s ❑ B .

The following theorem shows that the generalized
logic is actually more expressive than the ordinary
one.

Theorem 4: Fon anY set of states S J if p !

Q and R are any predicates such that none of

the three predicates P AQ A R, -Q ,

-P A Q A -R is trivially false for S , then
the assertion P 2 (Q ❑ R) is not S-equivalent

to any ordinary temporal logic formula.

Proof: The idea is the same as for the proofs

in Section 4.2: we construct two models M =

(s, z) and M’ = (s, 2’) which cannot be

distinguished by any ordinary temporal logic

formula, such that the assertion P = (Q a R) is

valid for one model and false for the other. Let

a, b and be states such that

a(P A Q A R) , :(-Q) and C(-P A Q A -R)

are true. Let ~ consist of the following three

infinite sequences:

s[l] =a,b, c,a,b, c, . . .

s[2]=b, c,a, b,c,a, . . .

s[31 =c,a,b, c,a,b, . . . ;

and let Z! consist of the following

sequences:

st[l] ❑ a, c, b, at c> b, . . .

s![2] = b, a, c, b, a, C, . . .

three infinite

st[31 = c, b, a, C, b,a,

It is easy to verify that P~(QUR)is
M-valid but is not M’-valid.

We now prove that any assertion constructed
using predicates, logical connective, and the

unary operator ❑ cannot be valid for one model and
invalid for the other. To do this, we show that

for any such assertion A , and each i z 1, 29 3 :

(6-2)A~(s[i])} = A~’(s![i]) .

The proof is by induction. It is obviouslY true ‘f

A is a predicate, since the first element of the

sequence s[il is the same as the first element of

the sequence s![il . It is easy to see that if

(6-2) holds for a collection of assertions A ,
then it holds for any logical combination of those
assertions. TO complete the proof, we need onlY

show that if (6-2) holds for all i , then:

(UA)~(s[i]) a (UA)~’(s’[i]) .

But this follows easily from (3-1O). From (6-2).we

conclude that any ordinary linear time assertion

A that is M-valid must also be M’-valid,

completing the proof. 11

Assertions of the form A ❑ B can be used to

express a more general class of safety properties.

One such property is ,,first-come-first-served” ~

which can be expressed as follows: ‘!if process p
requests service befcre process q does, then
process q cannot be served before process P “.

This is not a liveness property, since it does not

state that any process eventually does get served.

It is expressed formally by the assertion

P.FIRST n (P.WAi’TING ❑ Q.NOT-SERVED),

where the predicates are defined to have the

following meanings.

P.Fl?lS’I’:

P is waiting for service and q is neither
waiting for service nor being served.

P.WAITING:
p is waiting for service.

Q.NOT.SERVED:

q is not being served.

The above theorem shows that this assertion

expresses a property that cannot be expressed with
only the unary operator a.

One can define a dual O tc the dyadic operator

❑ as follows:

AOBE -(-A ❑ -B) .

(This makes ❑ and O duals in the same sense that

A and V are.) The assertion A O B represents
the statement that B eventually becomes true. and

it becomes true before A does. This is

equivalent to the following assertion:

OB A (-B n -A) . We have thus far found no

need for the dyadic operator O.

7. CONCLUSION

Temporal logic provides a very convenient
language for stating and proving proPerties of
concurrent programs, and we believe that it will
also provide an important logical foundation for

the semantics of concurrent programs. The linear
time temporal logic originally used by Pnueli in
[15] is very ~imple, involving the addition of the

single temporal operator ❑ to ordinary logic. It
allows one to hide many irrelevant concepts that
appear in the ordinary computational models used to
describe concurrent programs. We believe that when
generalized as in Section 6, it is adequate for
expressing all the relevant properties of
concurrent pro.&ams, but more experience is needed

before-we can be certain of this. We still do not

know if a temporal logic deductive system can prove
all of the relevant properties that could be proved

directly from the models.

We have found that when thinking informally

about such concepts as ‘thenceforth” and

‘Ieventually!l, most computer scientists seem to

adopt the branching time theory. This is one

reason for our interest in branching time logic.
Branching time logic is important for studying

nondeterministic programs, and comparing the two

types of temporal logic has helped us to understand
better the relationship between concurrency and

nondeterminism.

184

ACKNOWLEDGMENTS 17. V.R. Pratt. Process Logic: Preliminary

We wish to thank Albert Meyer and David Harel Report . Proc. 6th Ann. ACM Symp. on Principles of

for their critical comments on an earlier version Programming Languages, ACM, January, 1979, pp.

of this paper. We also benefited from numerous 93-1oo.

discussions with Susan Owicki.
18. N. Rescher and A. Urquhart. Tenmo ral Loxic.

Springer-Verlag, New York, 1971.
REFERENCES

1. Krzystof R. Apt. Recursive Assertions and
Parallel Progams, 2 October 1979.

2. Stephen A. Cook. Soundness and Completeness of

an Axiom System for Program Verification. ~

~. ComDut. 1, 1 (February 1978), 70-90.

3. L. Flon and N. Suzuki. Consistent and Complete

Proof Rules for the Total Correctness of Parallel

Programs. Proceedings of 19th Annual Symp. on

Found, of Comp. Sci., IEEE, October, 1978.

8. R. W. Floyd. Assigning Meanings to Programs.

Proc. Symposium on Applied Math., Vol. 19, Amer.

Math. Sot., 1967, pp. 19-32.

5. N. Francez and A. Pnueli. A Proof Method for

Cyclic Programs. Proceedings of the 1976

International Conference on Parallel Processing,

IEEE, 1976, pp. 235-245.

6. D. Gabbay, A.l?nueli, S. Shelah and Y. Stavi.

Completeness Results for the Future Fragment of
Temporal Logic.

-i. D. Harel and V, R. Pratt. Nondeterminism in

Logics of Programs, Proceedings of a Symposium on

Principles of Programming Languages, ACM-Sigplan,

January, 1978.

8. David Harel. On the Total Correctness of
Nondeterministic Programs. RC 7691, IBM T.J.

Watson Research Center, 1979. To appear in

Theoretical ComDuter Science.

9. L. Lamport. Proving the Correctness of

Multiprocess Programs. IEI%E Trans. Q Software

Engineering %&Z-S, 2 (March 1977), 125-143.

10. L, Lamport. The ‘Hoare Logic’ of Concurrent

Programs. CSL-79, SRI International, October,

1978.

11, L. Lamport. A New Approach to Proving the

Correctness of Multiprocess Programs. AGkl-..
QQ Programming Lanzuas?es ~ Svstems 1, I (JuIY

1979), 84-97.

12. Z. Manna and R. Waldinger. 1s ‘Sometime’

Sometimes Better than lAlways’?. Comm. ACM 21, 2

(February 1978), 159-172.

13. S. Owicki. Axiomatic = Techniques m

Parallel Proarams. Ph.D. Th., Cornell University,

August 1975.

14. S. Owicki and D. Gries. An Axiomatic Proof

Technique for Parallel Programs. A&a Informatica
~, 4 (1976), 319-340.

15. A. Pnueli. The Temporal Logic of Programs.

18th Annual Symposium on the Foundations of

Computer Science, IEEE, November, 1977.

16. V. R. Pratt. Semantical Considerations on

Floyd-Hoare Logic. 17th Symposium on Foundations
of Computer Science, IEEE, October, 1976.

185

