

SketchWizard: Wizard of Oz Prototyping of
Pen-Based User Interfaces

Richard C. Davis,1 T. Scott Saponas,2 Michael Shilman,4 and James A. Landay2,3

2DUB Group
UW, CSE

Box 352350
Seattle, WA 98195

3Intel Research, Seattle
1100 NE 45th Street,

6th Floor
Seattle, WA 98105

1CS Division
UC Berkeley

Berkeley, CA 94720
rcdavis@eecs.berkeley.edu

{ssaponas, landay}@cs.washington.edu

4ChatterPop, Inc.
2035 15th St. #3

San Francisco, CA 94114
michael@shilman.net

ABSTRACT
SketchWizard allows designers to create Wizard of Oz
prototypes of pen-based user interfaces in the early stages
of design. In the past, designers have been inhibited from
participating in the design of pen-based interfaces because
of the inadequacy of paper prototypes and the difficulty of
developing functional prototypes. In SketchWizard, de-
signers and end users share a drawing canvas between two
computers, allowing the designer to simulate the behavior
of recognition or other technologies. Special editing fea-
tures are provided to help designers respond quickly to
end-user input. This paper describes the SketchWizard
system and presents two evaluations of our approach. The
first is an early feasibility study in which Wizard of Oz was
used to prototype a pen-based user interface. The second is
a laboratory study in which designers used SketchWizard
to simulate existing pen-based interfaces. Both showed that
end users gave valuable feedback in spite of delays be-
tween end-user actions and wizard updates.
ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.
General terms: Design, Experimentation, Human Factors

Keywords: Wizard of Oz, pen-based user interfaces, in-
formal interfaces, sketching, mark-based user interfaces

INTRODUCTION
Interest in pen-based user interfaces has continued to grow
over the past decade [2,12,13,17–20,24,28,32]. Unfortu-
nately, no design standards have evolved, and adoption of
such systems in the marketplace has been slow. The soft-
ware shipped with pen computers is designed primarily for
mouse input and usually ignores the expressive power of
pen strokes and sketching. True pen-based user interfaces,
such as informal interfaces [3,7,10,17,30], harness this ex-

pressive power, but these systems are notoriously difficult
to design. We have addressed this situation by building
SketchWizard, a tool that allows designers to build and test
prototypes of pen-based user interfaces.
Designers work by quickly generating and evaluating nu-
merous design ideas [9,36], but this is hard to do with pen-
based interfaces because of the tight coupling between the
interface and the technology behind it. These systems pro-
vide rich interaction by recognizing, and at times transform-
ing, user sketches and pen gestures—processes that are diffi-
cult to simulate with paper prototypes [31,34]. The only cur-
rent alternative is to build a working system, but this takes
time and a deep understanding of technology. With Sketch-
Wizard, designers can build Wizard of Oz prototypes, which
have evolved as a solution to this type of problem for other
hard-to-build interface styles [6,8,11,14,15,20,22,26].
A Wizard of Oz prototype is an incomplete system that a
designer can simulate “behind a curtain” (usually by taking
the place of a recognizer) while observing the reactions of
real end users (see Figure 1). Existing tools make it possible
for designers with no programming skill to build Wizard of
Oz prototypes of speech [15], location-enhanced [20,22],
augmented-reality [8], and desktop [27] applications. With
these early-stage Wizard of Oz prototyping tools, designers
have the freedom to explore possibilities before technology
details are set in stone. This flexibility helps a design team
make reasonable technology decisions as the design iterates.
SketchWizard gives this ability to pen-based UI designers.
Whether it is possible to build effective early-stage Wizard
of Oz prototypes of pen-based UIs is an open question. In
other application domains where interactions can be modeled
with a small number of input/output primitives, designers can
mock up fairly complete interfaces. This way, simulations
can be run with minimal input from the designer (the “wiz-
ard”). Pen-based interfaces, however, have a much broader
input space, processing gestures and sketches in ways that
cannot be easily defined. Consequently, the wizard must
quickly execute complex transformations of pen input to
create an acceptable simulation. SketchWizard assists de-
signers with this process by offering special tools for captur-
ing and modifying end-user input.
Our work makes the following research contributions:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’07, October 7–10, 2007, Newport, Rhode Island, USA.
Copyright 2007 ACM 978-1-59593-679-2/07/0010...$5.00.

Figure 1: Wizard of Oz test setup. (a) A designer observing a user interacting with a pen-based user interface.
(b) Another designer operating the interface behind the scenes with SketchWizard.

(a) (b)

• A system, SketchWizard, that enables designers to
create and test Wizard of Oz prototypes of pen-based
UIs, capturing user actions for later analysis.

• Wizard of Oz tool features that enable fast responses to
end-user actions when pen-based UIs are being simu-
lated.

• Two sets of studies demonstrating that Wizard of Oz
testing of pen-based user interfaces in the absence of
an implementation is useful and feasible.

In the following section we describe the pen-based inter-
face design process in more detail and explain SketchWiz-
ard’s role. We then describe the various components of the
system. Then we present two evaluations of SketchWizard:
an early feasibility study that revealed the advantages and
challenges of our method, and a laboratory experiment that
demonstrates designers’ ability to successfully simulate
real interfaces with the tool. Finally, we review related
work, conclusions, and ideas for future work.

PEN-BASED INTERFACE DESIGN WITH WIZARD OF OZ
Our interest in Wizard of Oz techniques comes from the
difficulty of designing successful pen-based applications.
In other interface domains, designers commonly conduct
many iterations with a progression of detailed prototypes
before beginning software implementation. Because of the
tight coupling between design and technology in pen-based
interfaces, however, we found ourselves jumping quickly
from rough sketches to implementation in the systems that
we created [7,17,20,30,32].
We envisioned a process (similar to the one described by
Dow et al. [8]) that uses Wizard of Oz prototypes to enable
three additional phases of design iteration:
1. Input language evaluation. In the earliest stages of

design, simple prototypes can be used to explore possi-
ble input languages (gestures or sketches). If a design
for an input language exists, it can be tested with real
users to see if it is sensible and learnable. If no design
exists, then a prototype may be used to explore user in-
tuitions about possible input languages. By recording

user input, designers can analyze input languages and
even use this input as test cases for training or evaluating
technology options. This technique has been used to
prototype interruptability systems [11] and augmented-
reality, pen-and-paper air traffic control systems [24].

2. Input and output language evaluation. As the input
language begins to take shape, Wizard of Oz prototypes
can introduce responses to input, such as recognition or
other transformations. Such prototypes have been used
successfully to design pen-based UIs [1] and augmented-
reality systems [29,35]. They can also help flesh out
poorly defined aspects of system behavior [20,26].

3. Whole-system evaluation. After specific technologies
are introduced, it is possible to evaluate the system as a
whole. Wizard of Oz prototypes are still useful in such
situations, but the wizard supervises the output of tech-
nology components rather than taking the place of
those components [8].

SketchWizard has grown out of our attempts to enable
teams of designers and developers to use this process. The
system currently supports the first two phases (designer
only) and may support the third phase (designer and devel-
oper) in the future. Let’s continue looking at these first two
phases, while examining how SketchWizard prototypes are
built and operated.

SKETCHWIZARD DESIGN AND IMPLEMENTATION
To make SketchWizard capable of simulating a wide vari-
ety of pen-based applications [3,10,12,13,16–19,28,30], we
did our best to avoid constraining the appearance or behav-
ior of prototypes. Therefore, we designed our system
around a simple drawing canvas shared between an end-
user interface (see Figure 2a) and a wizard interface (see
Figure 2b). End users interact with objects on the canvas
and have access to a limited number of other tools for
drawing, erasing, selecting, and moving objects. Using a
larger palette of drawing tools that includes ellipses, im-
ages, and buttons, wizards build the interfaces that users

(a)

(b)

Figure 2: User’s view (a) and wizard’s view (b) of
the shared drawing canvas in SketchWizard. The
wizard has deleted a box and arrow and replaced
the arrow with a beautified version. Updates ap-
pear to the user when the wizard presses the
Commit Changes button.

see. With these tools, wizards can simulate rich system
output, such as the “beautified” box and arrow in Figure 2.
By default, both end-user and wizard edits appear immedi-
ately in each interface. This is “Real-Time Mode.” Know-
ing, however, that a wizard would often want to delay up-
dating an end user’s view until multiple edit operations had
completed, we provided a “Manual Commit Mode.” In this
mode a wizard sends all pending edit operations to the end
user’s view by pressing a Commit Changes button. The
wizard can also discard all pending edits. During editing, a
grayed-out version of the end user’s view is shown behind
the wizard’s canvas, enabling quick execution of sketch
transformations, such as erasing a sketch and drawing a
recognized version on top of it, as in Figure 2.

The presence of this Manual Commit Mode introduces a
subtle question: should end users be able to edit the canvas
while the wizard is editing it? Our initial answer to this ques-
tion was yes, but, as we shall see later, the possibility of con-
current edits was confusing for end users. In addition, the
need to resolve conflicts between user edits and wizard edits
introduced considerable complexity into our implementation.
For these reasons, our current implementation blocks the end
user from editing the canvas after the wizard has begun to
make edits. When blocked, the end user’s cursor changes to
an hourglass to signify that the system is “working.”
The full SketchWizard system consists of three separate
applications: the User’s View, the Wizard’s Workspace,
and the Session Player. The User’s View appears in Figure
2a and has already been described in its entirety. In the
remainder of this section we describe the Wizard’s Work-
space in detail, then take a brief look at the Session Player,
and close by discussing implementation details and limita-
tions of the entire system.

Wizard’s Workspace
The Wizard’s Workspace (see Figure 3) allows designers to
build and run simulations of pen-based user interfaces. De-
signers can prepare a simulation, save it, and reload it before
running a test. During test sessions, wizards must operate
their prototypes by making fast edit operations. Conse-
quently, the Wizard’s Workspace is optimized for fast access
to commands and runs best on a large, high-resolution
screen.
To the left of the main drawing canvas in the Wizard’s
Workspace is a palette of tools that is similar to what de-
signers find in most vector graphics applications. This pal-
ette includes lines, rectangles, ellipses, imported images,
text boxes, and gradients. Interface designs can be created
in SketchWizard with these tools or copied from another
Windows application that supports image, text, or XAML
formats. Wizards can also create buttons that end users can
press to signal their desire to execute a command.
The panel to the right of the drawing canvas is for editing
the drawing properties of selected objects. Most of these
properties are similar to those found in other tools (e.g., fill
color, stroke color, stroke thickness, and font size). Others
(e.g., the editable property on text boxes) control the abil-
ity of end users to manipulate these objects.
The end user’s current pen mode can be set by the wizard or
the end user. The wizard controls this mode with a combo box
above the canvas. Checked items in this combo box will also
appear in the end user’s palette of tools. SketchWizard pro-
vides up to four tools to the end user: a pencil, an eraser, a
selection loop, and a gesture tool that shows a trace but leaves
no ink behind. This limited set of end-user tools provides all
the functionality needed by a wide range of pen-based appli-
cations.
Because making real-time edits to a complex interface de-
sign can be challenging, the Wizard’s Workspace has pow-
erful tools for making fast edits: a list of views, an event
stream, paste buttons, and a scratch pad.

List of Views. The list of views (bottom left of Figure 3) al-
lows wizards to store full screens of content and switch to
them quickly during a test. This list can be used, for example,
to provide multiple canvases or to create a rough simulation of
a dialog box. Wizards can add any number of new views,
name them, and switch to them by selecting the item in the
list.
Like other wizard edits, switching to a new view updates the
User’s View either immediately (in Real-Time Mode) or
when the wizard commits changes (in Manual Commit
Mode). However, if the wizard is in Manual Commit Mode
and edits a view other than the one visible to the end user, the
end user is not blocked from interacting with his view. This
feature allows a wizard to prepare a new view, such as a dia-
log box, while the end user is still working. To keep the wiz-
ard aware of the User’s View at such times, a scaled-down
version of the User’s View appears above the list of views.
Event Stream. As mentioned already, end users can signal
their desire to initiate actions by pressing buttons or mak-
ing pen gestures. In our early use of SketchWizard, how-
ever, we found that we could become so focused on editing
the end user’s view that we would miss end-user actions.
To keep the wizard aware of pending end-user actions such
as these, we added an event stream (lower right corner of
Figure 3). When an end user draws with the gesture tool or
clicks on a button, an item is added to the top of this list
showing the gesture or the name of the button. Events that
occurred before the most recent wizard commit appear
slightly transparent to distinguish them from recent events.
Paste Buttons. The paste buttons (upper right corner of
Figure 3) are useful when wizards need to repeatedly add

complex objects to the canvas. This need can arise, for ex-
ample, if end-user drawings are recognized and transformed
to a set of beautified or iconic forms—a common occurrence
in many pen-based user interfaces. Before a simulation be-
gins, a wizard can create a set of objects, copy it to the clip-
board, and then click Add from clipboard to add a button to
this box. Clicking on the button pastes the copied item to the
canvas. If objects are selected when the button is pressed,
they will be replaced with the pasted objects, giving wizards
a fast way to replace objects with recognized versions.
Scratch Pad. Designers may wish to operate on drawings in
a safe area where there is no danger of locking or updating
the User’s View. We provide a scratch pad in a separate
window (not shown) for this purpose. This window looks
much like the main Wizard’s Workspace window, but it
omits the paste buttons, event stream, and tools for moni-
toring or updating the User’s View. This window can be
used to build a complex transformation of a user drawing
over time without interrupting the end user.

Session Player
With some planning and practice, designers can use the
Wizard’s Workspace to simulate an interface accurately
enough to get informative feedback on a design. This feed-
back may come in the form of comments from users, but
the most valuable feedback comes from observing user
behavior during a test. To facilitate this type of observa-
tion, the User’s View session can be saved to a file and
analyzed later with the Session Player.
The Session Player has a simple interface consisting of a
view of the drawing canvas and the tools menu with a few
added controls for loading and playing sessions. Session

Figure 3: SketchWizard Wizard’s Workspace: (Top left) Scaled-down User’s View. (Bottom left) List of views that the
wizard can edit and show to the user. (Center) Main drawing canvas. (Top right of center) Radar view of the main
drawing canvas. (Bottom right of center) Editable properties of selected objects. (Top right) Paste buttons. (Bottom
right) Event stream.

recordings include all pen movements and changes to the
drawing canvas and tool selection. These recordings can be
played back at actual speed or high speed (i.e., with pauses
removed). In the evaluations presented below, we shall see
that the ability to review test sessions is an essential part of
the SketchWizard system.

Implementation Details and Limitations
SketchWizard is implemented in C# and XAML and runs
on top of the Microsoft .NET Framework 3.0. It consists of
approximately 26,500 lines of code spread across the three
applications and a common library. The system is currently
robust enough for designers to simulate a wide variety of
pen-based user interfaces.
The system is, however, a work in progress. Although Sketch-
Wizard covers much of the pen-based interface design space,
there are needs we have not addressed. Pen-based menus
(e.g., marking menus [16]) are another common feature in
pen-based interfaces that are not directly supported by
SketchWizard. They can be simulated somewhat awkwardly,
though, with multiple views.
In the later stages of design it becomes important for a pen-
based interface prototype to integrate real recognition tech-
nologies. We acknowledge that the addition of recognition
technologies would enhance the tool’s value. Even without
these capabilities, however, SketchWizard is a valuable
part of the design process. The following section presents a
series of evaluations that we conducted to demonstrate this.

SKETCHWIZARD FEASIBILITY STUDY
Early in the development of SketchWizard, we conducted a
feasibility study to verify that our approach to Wizard of
Oz testing was sound. We hoped that real-time edits to a
user’s view would not introduce significant delays that
would destroy a user’s sense of immersion and invalidate
any test results. We also hoped that this type of testing
would provide feedback that went above and beyond what
could be obtained from paper prototypes.
To answer these questions, we attempted to design a pen-
based user interface using SketchWizard. This study had
two parts, corresponding to the first two phases of Wizard
of Oz testing that we described earlier (“input language
evaluation” and “input and output language evaluation”).
Both parts took place during the early stages of design for
an interactive sketch beautification system (inspired in part
by Igarashi’s work [13]).
The SketchWizard implementation that we used to conduct
this study was much less mature than the one that we have
described here, but all the essential components were pre-
sent. The Wizard’s Workspace, in particular, was little
more than a drawing canvas with tools for creating and
positioning straight lines. It included none of the tools for
fast editing shown in Figure 3, and some programming was
required to tailor the system to a particular test. In addition,
as mentioned earlier, users and wizards were able to edit
the canvas concurrently while in Manual Commit Mode.

Input Language Evaluation
As a first step in designing our beautification system, we
wanted to see what kinds of gestures users would make
spontaneously over their sketches to beautify them. We
found three employees at a large software corporation who
had diagrams they wished to beautify on whiteboards in their
offices. We photographed these diagrams and displayed them
on the SketchWizard drawing canvas. The User’s View was
configured with a single gesture tool (highlighter strokes that
disappeared immediately after the pen was lifted). We then
asked participants to gesture over their own diagrams in si-
lence with this disappearing highlighter in such a way that
we could figure out how to beautify their diagrams. Later, we
analyzed their gestures with the Session Player and gave
participants beautified versions of their diagrams to verify
our interpretation of these gestures.

Though primitive, this study did reveal valuable information
about user intuitions. Two end users worked by tracing over
pieces they wished to beautify. One end user invented a par-
ticularly rich gesture set. In all, we identified 29 gestures
from the three participants and classified them into 15 types.
We imagined conducting this study on a larger scale to iden-
tify stronger patterns of user input, and we saved end users’
gestures to train a future sketch beautification technology.

This part of our study demonstrates how a Wizard of Oz
system can assist designers with input language evaluation.
Even though the wizard did not need to simulate any system
behavior during each test, the recordings of end-user input
enabled a deeper analysis than was previously possible.

Input and Output Language Evaluation
Using the data from our first study, we defined a simple
beautification language: “tracing” to straighten individual
lines, and “circling” to beautify whole sections. We then
evaluated this language by conducting a second study using
SketchWizard. We found seven software company employ-
ees with diagrams they wished to beautify. We then asked
the participants to redraw their diagrams in the SketchWizard
User’s View and gesture over their diagram with a high-
lighter to beautify it. Figure 4 shows how one participant’s
drawing evolved from whiteboard drawings (part a of the
figure) to drawings in our tool (part b) to beautified figures
(part c). We did not tell participants that beautification was
being performed by a human being. Instead, we told them
that the system was unfinished, slow, and operating over a
network.

This study also produced valuable feedback on our design.
All end users guessed the essentials of our input language
without prompting. End users also invented two strategies
for correcting beautification errors: some erased sections
and redrew them; others “nudged” lines with the high-
lighter. We were also encouraged by the end users’ positive
responses to the system, though we noted that their ap-
proval correlated with beautification accuracy. We sur-
mised that a highly accurate beautification technology was
needed to make this design viable.

(a)

(b)

(c)

Figure 4: User data from input and output lan-
gage evaluation. (a) Original sketch. (b) Redrawn
sketch. (c) Beautified figure.

Promising as these results were, we were more interested in
what they said about our Wizard of Oz system. We were
surprised to find that, in spite of delays on the order of 10
to 20 seconds between end-user pen strokes and view up-
dates, only one of our seven participants suspected that the
system was run by a human being. End users were able to
scale back their expectations of the system and focus their
attention on the aspects of the design that we wanted to
evaluate. Because concurrent edits were possible, however,

many users could not tell that the system was “working”
during this delay. Some users repeated pen strokes, for
example, wondering if the system had missed them the first
time. Our current implementation of SketchWizard re-
moves this confusion by preventing concurrent edits.
Our experience using SketchWizard in this design process
demonstrates that our Wizard of Oz testing approach can
help designers discover new designs and also produce use-
ful feedback on existing designs. The ability to capture and
record user pen gestures in an appropriate context helped
us discover a natural system design. Simulating system
behavior with real-time edits was slow, but users still inter-
acted with interfaces as if they were real, allowing us to
observe their reactions to our chosen gesture set.
Satisfied that our approach had merit, we set about complet-
ing our implementation of the Wizard’s Workspace. This
application would enable designers with no programming
experience to simulate more complex systems than the one
we had evaluated in this study. The next section presents our
final study, which evaluates designers’ ability to use the
complete SketchWizard system that we have described.

SKETCHWIZARD LABORATORY EVALUATION
To assess designers’ ability to work with SketchWizard,
we conducted a laboratory study in which seven designers
simulated two existing pen-based user interfaces. Five of
our designer participants were professional interaction or
interface designers, one was a student who had worked
previously as an interaction designer, and one was a
graphic designer. Experience ranged from up to three years
to more than nine years as a designer. None of the design-
ers had ever designed a pen-based UI, and none were fa-
miliar with the term “Wizard of Oz” before participating in
the study. Designers participated in two sessions each and
were compensated with a $150 gift certificate.

Procedure
In the first session, designers were introduced to Sketch-
Wizard and the Wizard of Oz concept. They were then
taught how to use SketchWizard and asked to build and
simulate subsets of two existing pen-based interfaces. In
the first interface, Windows Journal, designers were asked
to simulate free-form note taking and conversion to recog-
nized text. They were also asked to use a button instead of
a menu to trigger recognition (see Figure 5), and they were
told not to simulate the dialog boxes that appear during
recognition. Though the designers could have simulated
these features by adding views, we wished to focus on the
more interactive aspects of the target application, so we
omitted them from the designers’ task.
The second interface that we asked designers to build and
simulate was the DENIM web site design tool [30]. Design-
ers were asked to simulate a mode with three responses to
end-user input (see Figure 6): (1) Sketched squares were
converted to page objects. (2) Handwritten text was grouped
with gray boxes. (3) Sketched lines from text to pages were
recognized as links, turning into straight green lines and turn-
ing the anchor text blue. These behaviors, together with those

Figure 5: User’s View during a study session in which
a designer participant simulates Windows Journal.

of Windows Journal, cover a range of the behaviors and data
types in pen-based UIs.
For each task, designers viewed a one-minute video dem-
onstration of the interaction that they were to simulate be-
ing performed on the actual system. They then built the
simulation and practiced the action of both wizard and end
user. Toward the end of each task, they practiced simulat-
ing the interface as a wizard while a researcher acted as the
end user. A desktop computer was used for the Wizard’s
Workspace, and a Tablet PC was used for the User’s View.
The first session lasted 75 minutes on average.

The second session followed four to seven days after the
first session and also lasted 75 minutes on average. De-
signers were again asked to run their saved simulations, but
this time the end user worked on a Tablet PC in a separate
room. Four of these end users were different study partici-
pants (frequent computer users from the Seattle area) who
came only for this session and were compensated with a
$30 gift certificate. These participants were not initially
told the true nature of the study, but instead were told that
they would be testing a new recognition server. The other
three end users were members of our research team.
The first task given to end users was to use the (simulated)
Journal interface to take notes on the Wikipedia page for
“apple” (fruit) and convert them to text (see Figure 5). The
second task was to prepare a site map of a simple web site
about apples using the (simulated) DENIM interface
(though some participants decided to create a web site on a
different topic, as in Figure 6). The designers were told to
do their best to simulate the recognition and interaction of
the original applications.

Results
By the end of the first session, all of the designers were
able to simulate system behaviors in a reasonable amount
of time (5–15 seconds). Many of our participants enjoyed
the experience of being the wizard. One participant re-
marked, “This is like advanced paper prototyping.” Some
designers also stated that they would like to use Sketch-
Wizard for prototyping interfaces and asked when and
where they could download the tool.
In the second session, our four end-user participants were
able to comment on the interaction design of the interfaces,
despite occasional annoyance with recognition delays. The
test administrator noted informative end-user reactions to
both the Convert to Text button in the Journal prototypes
and the gray grouping rectangle for text in the DENIM
prototypes. Continuing the trend in our feasibility study, no
end user could tell that the interfaces were controlled by
humans rather than computers. All imagined plausible ex-
planations for the long delays and adapted to the situation.
When simulating Windows Journal, all of the designers
watched the event stream for a signal that the recognize
button had been pressed. When simulating DENIM, most
designers chose to use paste buttons to prepare items that
they knew they would need. For example, they pasted
“pages” (see Figure 6) as replacements for sketched rec-
tangles. Unfortunately, these tasks were not complex
enough to require the scratch pad or multiple views.
Designers had many positive comments upon completion
of the study. One designer remarked, “I’ve only used it a
couple of times and I think I could use it in a study.” An-
other said, “Very intuitive and easy compared to other
drawing and graphic programs I’ve had to learn.” Another
saw value in SketchWizard beyond user tests, saying, “I
could project this on a whiteboard during a meeting to rap-
idly iterate on an interface design.”

Figure 6: Recorded data from an end-user partici-
pant in our laboratory evaluation, showing before
(a) and after (b) recognition of a sketched rectan-
gle representing a web page.

(b)

(a)

Designers also saw room for improvement. Many asked for
straightforward improvements, such as keyboard shortcuts, a
rectangle selector, grid snapping, and configurable defaults
for object line and fill styles. Several suggested that pasted
items should scale to the size of the replaced objects. Some
asked for tools to help them work SketchWizard into their
design process, such as notes on how to run the simulation
that would be saved with the design. Others complained that
they felt disconnected from end users in another room. These
designers wanted live audio, video, or a one-way mirror for
watching the end user, or at least an instant-messenger con-
nection to the other test administrator.
This evaluation demonstrates that designers can use Sketch-
Wizard to test pen-based interface designs with end users
before any underlying technology is implemented. The event
stream and paste buttons were shown to be particularly use-
ful for simulating interfaces quickly. And once again, despite
delays caused by human wizards manipulating the canvas,
end users became immersed in their experience of the inter-
face and gave valuable design feedback.

RELATED WORK
Wizard of Oz prototyping of pen-based user interfaces is a
relatively new idea. The designers of the CINCH 3D brain-
imaging application used this method to prototype gestures
[1], but we are aware of no other attempts to use Wizard of
Oz in pen-based UI design. Note that the CINCH prototype
was programmed from scratch, while SketchWizard seeks
to allow prototyping of such applications by designers with
no programming skill. Also note that SketchWizard does
not currently allow 3D models to be imported or manipu-
lated, but it could be extended to do so.
There is more work in interface prototyping methods that is
related to SketchWizard. Next we consider how paper pro-
totyping might be applied to pen-based user interfaces.
Then we look at Wizard of Oz tools for other domains.

Paper Prototyping
In paper prototyping [31,34], a designer prepares parts of
an interface with paper, Post-its, transparency film, and
other office supplies. The experimenter simulates this
rough prototype with end users by moving the pieces by
hand in response to end-user actions. This type of prototyp-
ing can be applied to pen-based user interfaces, but it
breaks down when the end user’s input is not highly con-
strained. If end users are allowed to take free-form notes,
for example, copying and transforming these notes in real
time by hand becomes prohibitively time-consuming. Even
when input is constrained, as in a circuit diagram, editing
can cause cascading changes that are hard to simulate with
paper.
We know of only two attempts to apply paper prototyping
to pen-based UIs: a handwriting recognition application
and a collaborative digital whiteboard application [5]. The
administrators managed the delay between end-user input
and system output by assigning simulation roles to multiple
experimenters, which was costly and produced awkward
simulations.

SketchWizard is conceptually similar to a paper prototyp-
ing system in which the test administrator is invisible. In
addition, SketchWizard has special tools for fast creation
of the interface parts that must be created during a test. It
also adds the important ability to capture detailed re-
cordings of end-user interactions for later analysis.

Wizard of Oz Prototyping Tools
A number of research tools support Wizard of Oz prototyp-
ing. NEIMO [4] is a tool for later-stage prototyping of mul-
timodal interfaces. It allows an administrator to take the place
of ink and speech recognizers in an implemented system to
elicit feedback on a design before the recognition technology
is finalized. Like SketchWizard, it does capture end-user
interactions for analysis both by interface designers and rec-
ognition technology developers. However, NEIMO does not
address the central problem of bringing designers and end
users into the early stages of a pen-based UI design process.
In other application domains, several tools have addressed
this problem by allowing designers to construct early-stage
Wizard of Oz prototypes. SUEDE [15] is a prototyping tool
for speech-based UIs that provided much of the inspiration
for our work. Like SketchWizard, SUEDE provides an
interface for specifying UIs that is very accessible to de-
signers, allowing them to explore designs before a recogni-
tion technology is chosen. SUEDE also captures end-user
actions during tests and provides an interface for analyzing
this test data, as does SketchWizard.
Inspired by SUEDE, CrossWeaver [33] supports early-stage
prototyping of multimodal interfaces. With CrossWeaver,
designers create storyboards, end users can execute proto-
types of these storyboards to give feedback on a design, and
test data is analyzed with CrossWeaver’s analysis tool. Pens
are a supported input mode, and designers have the option of
recognizing single-stroke pen gestures through Wizard of
Oz. However, CrossWeaver does not allow end users to ma-
nipulate their own input, and it is therefore incapable of
simulating the rich ink transformations that are possible in
SketchWizard prototypes.
Ozlab [27] is a tool for prototyping interactions in tradi-
tional graphical user interfaces through Wizard of Oz. It
was built on top of Macromedia Director to make it acces-
sible to designers. Ozlab prototypes can allow a wizard to
simulate some continuous interactions, such as dragging
objects, but they cannot support user-created content as
SketchWizard prototypes can. Furthermore, Ozlab does not
capture end-user interactions during a test.
Topiary [20], DART [8,23], and BrickRoad [22] are all
Wizard of Oz prototyping tools for location-enhanced ap-
plications. All are targeted at designers, either providing
their own interface for constructing prototypes (Topiary
and BrickRoad), or building on top of Director (DART). In
addition, DART captures sensor data during tests in order
to refine system behavior.

None of these systems provide the powerful, run-time editing
capabilities that are needed to construct early-stage Wizard
of Oz prototypes of pen-based user interfaces. All but Brick-
Road require very detailed specifications before any simula-
tion can be run, and all severely constrain the input language
of interactions. Pen-based interfaces have such a broad input
space that the input language cannot be easily defined. And
as Li and colleagues point out, flexibility is particularly im-
portant in the earliest stages of prototyping [21].

CONCLUSIONS AND FUTURE WORK
In this paper we have argued that Wizard of Oz testing of
pen-based user interfaces is useful and feasible even in the
absence of a working system. We have presented two sets
of studies to demonstrate this: one conducted during a pen-
based UI design process, and another in a laboratory set-
ting. The system we produced, SketchWizard, enables de-
signers with no programming skill to produce early-stage
Wizard of Oz prototypes of pen-based UIs, allowing them
to participate more fully in the design process. We have
also presented several features of this prototyping tool that
enable fast responses to end-user input during tests.
SketchWizard prototypes consist of a drawing canvas that
is shared between an end user and a wizard, with simple
drawing and selection tools for the end user and more ex-
tensive editing tools for the wizard. SketchWizard proto-
types can elicit feedback on a design much more easily
than a paper prototype can because wizards can quickly
execute detailed transformations of end-user pen strokes
and sketches. In addition, end-user interactions with
SketchWizard prototypes can be saved for analysis by de-
signers or developers of recognition technology.
To facilitate the process of transforming end-user input,
SketchWizard has several unique features. Wizard edits
can be done either in Real-Time Mode or in Manual Com-
mit Mode. A list of views allows wizards to switch an end
user’s view between multiple displays of information. An
event stream captures end-user actions, such as gestures or
button presses, in case the wizard misses them while focus-
ing somewhere else. Paste buttons allow complex drawings
to be placed on the canvas quickly in response to end-user
input. Finally, a scratch pad is provided for preparing inter-
face elements without danger of accidentally updating the
end user’s view or blocking interaction.
The first study we conducted was an early feasibility study
in which SketchWizard was successfully integrated into the
early stages of a pen-based UI’s design process. The sec-
ond was a laboratory study in which real designers used
SketchWizard to prototype interactions in existing pen-
based UIs with end users in another room. In both evalua-
tions, end users gave valuable feedback in spite of the de-
lay between end-user actions and wizard updates.
In the near future, we hope to extend SketchWizard with
better selection tools and keyboard shortcuts. We also hope
to create new tools for faster selection of objects. In the
longer term, we hope to evolve SketchWizard into a tool

that will also support the later stages of pen-based interface
design. Such evolution would require the ability to extend
the system with additional automated behaviors, such as
menus. It would also require the ability to plug in existing
recognizers or other technologies to test them on end-user
input. Designers could then use SketchWizard to supervise
the actions of these recognizers (as suggested by Dow et al.
[8]), and evolve their early designs into robust, finished
systems.

ACKNOWLEDGMENTS
This work has been supported by NSF Grants 0080562 and
0205644, and by grants from Microsoft Research and Intel
Research Seattle. We also thank Patrice Simard and Mary
Czerwinski for their invaluable support of this work, John
Canny for his continuing support, and Yongjoon Lee for
helping us execute the laboratory study.

REFERENCES
1. Akers, D. CINCH: A cooperatively designed marking

interface for 3D pathway selection. In Proceedings of
UIST ‘06 (October 15–18, Montreux, Switzerland),
2006, pp. 33–42.

2. Anderson, R. J., Hoyer, C., Wolfman, S. A., and Ander-
son, R. A study of digital ink in lecture presentation. In
Proceedings of CHI ’04 (April 24–29, Vienna, Austria),
2004, pp. 567–574.

3. Bailey, B. P., and Konstan, J. A. Are informal tools bet-
ter?: Comparing DEMAIS, pencil and paper, and au-
thorware for early multimedia design. In Proceedings of
CHI ‘03 (April 5–10, Ft. Lauderdale, FL), 2003, pp. 313–
320.

4. Balbo, S., Coutaz, J., and Salber, D. Towards automatic
evaluation of multimodal user interfaces. In Proceedings
of IUI ‘93 (January 04–07, Orlando, FL), 1993, pp. 201–
208.

5. Chandler, C. D., Lo, G., and Sinha, A. K. Multimodal
theater: Extending low fidelity paper prototyping to
multimodal applications. In CHI '02 Extended Abstracts
(April 20–25, Minneapolis, MN), 2002, pp. 874–875.

6. Dahlbäck, N., Jönsson, A., and Ahrenberg, L. Wizard
of Oz studies: Why and how. In Proceedings of IUI ‘93
(January 4–7, Orlando, FL), 1993, pp. 193–200.

7. Davis, R. C., and Landay, J. A. Informal animation
sketching: Requirements and design. In Proceedings of
2004 AAAI Fall Symposium on Making Pen-Based In-
teraction Intelligent and Natural (October 21–24, Ar-
lington, VA), 2004, pp. 42–48.

8. Dow, S., MacIntyre, B., Lee, J., Oezbek, C., Bolter, J.
D., and Gandy, M. 2005. Wizard of Oz support
throughout an iterative design process. IEEE Pervasive
Computing 4, 4 (2005), 18–26.

9. Gould, J. D., and Lewis, C. Designing for usability—Key
principles and what designers think. In Proceedings of
CHI ‘83 (December 12–15, Boston, MA), 1983, pp. 50–
53.

10. Gross, M. D., and Do, E. Y. Ambiguous intentions: A
paper-like interface for creative design. In Proceedings
of UIST ’96 (November 6–8, Seattle, WA), 1996, pp.
183–192.

11. Hudson, S., Fogarty, J., Atkeson, C., Avrahami, D.,
Forlizzi, J., Kiesler, S., Lee, J., and Yang, J. Predicting
human interruptibility with sensors: A Wizard of Oz
feasibility study. In Proceedings CHI ‘03 (April 5–10,
Ft. Lauderdale, FL), 2003, pp. 257–264.

12. Igarashi, T., Edwards, W. K., LaMarca, A., and Mynatt,
E. D. An architecture for pen-based interaction on elec-
tronic whiteboards. In Proceedings of AVI ’00 (Pal-
ermo, Italy), 2000, pp. 68–75.

13. Igarashi, T., Matsuoka, S., Kawachiya, S., and Tanaka,
H. Interactive beautification: A technique for rapid geo-
metric design. In Proceedings of UIST ’97 (October 14–
17, Banff, AL, Canada), 1997, pp. 105–114.

14. Kelley, J. F. An iterative design methodology for user-
friendly natural language office information applications.
ACM Transactions on Information Systems 2, 1 (Jan.
1984), 26–41.

15. Klemmer, S. R., Sinha, A. K., Chen, J., Landay, J. A.,
Aboobaker, N., and Wang, A. SUEDE: A Wizard of Oz
prototyping tool for speech user interfaces. In Proceed-
ings of UIST ‘00 (November 6–8, San Diego, CA),
2000, pp. 1–10.

16. Kurtenbach, G., and Buxton, W. User learning and per-
formance with marking menus. In Proceedings of
SIGCHI ‘94 (April 24–28, Boston, MA), 1994, pp. 258–
264.

17. Landay, J. A., and Myers, B. A. Sketching interfaces:
Toward more human interface design. IEEE Computer
34, 3 (March 2001), 56–64.

18. LaViola, J. J., and Zeleznik, R. C. MathPad2: A system
for the creation and exploration of mathematical
sketches. In ACM SIGGRAPH 2004 (August 8–12, Los
Angeles, CA), 2004, pp. 432–440.

19. Li, Y., Guan, Z., Wang, H., Dai, G., and Ren, X. Struc-
turalizing freeform notes by implicit sketch understand-
ing. In Proceedings of the AAAI Sketch Understanding
Symposium (March 25–27, Palo Alto, CA), 2002, pp. 91–
98.

20. Li, Y., Hong, J. I., and Landay, J. A. Topiary: A tool for
prototyping location-enhanced applications. In Proceed-
ings of UIST ‘04 (October 24–27, Santa Fe, NM), 2004,
pp. 217–226.

21. Li, Y., Hong, J. I., and Landay, J. A. Design challenges and
principles for Wizard of Oz testing of location-enhanced
applications. IEEE Pervasive Computing 6, 2 (2007), 70–
75.

22. Liu, A. L., and Li, Y. BrickRoad: A light-weight tool
for spontaneous design of location-enhanced applica-
tions. Proceedings of CHI ’07 (April 28–May 3, San
Jose, CA), 2007, pp. 295–298.

23. MacIntyre, B., Gandy, M., Dow, S., and Bolter, J. D.
DART: A toolkit for rapid design exploration of aug-
mented reality experiences. In Proceedings of UIST ‘04
(October 24–27, Santa Fe, NM), 2004, pp. 197–206.

24. Mackay, W. E., Fayard, A., Frobert, L., and Médini, L.
Reinventing the familiar: Exploring an augmented reality
design space for air traffic control. In Proceedings of CHI
’98 (April 18–23, Los Angeles, CA), 1998, pp. 558–565.

25. Mankoff, J., Hudson, S. E., and Abowd, G. D. Providing
integrated toolkit-level support for ambiguity in recogni-
tion-based interfaces. In Proceedings of CHI ’00 (April
1–6, The Hague, Netherlands), 2000, pp. 368–375.

26. Maulsby, D., Greenberg, S., and Mander, R. Prototyp-
ing an intelligent agent through Wizard of Oz. In Pro-
ceedings of CHI ‘93 (April 24–29, Amsterdam, Nether-
lands), 1993, pp. 277–284.

27. Molin, L. Wizard-of-Oz prototyping for co-operative
interaction design of graphical user interfaces. In Pro-
ceedings of NordiCHI ’04 (October 23–27, Tampere,
Finland), 2004, pp. 425–428.

28. Moran, T. P., Chiu, P., van Melle, W., and Kurtenbach,
G. Implicit structure for pen-based systems within a
freeform interaction paradigm. In Proceedings of CHI
’95 (May 7–11, Denver, CO), 1995, pp. 487–494.

29. Moreno, E., MacIntyre, B., and Bolter, J. D. Alice’s
adventures in new media: An exploration of interactive
narratives in augmented reality. In Conference on Com-
munication of Art, Science and Technology (September
21–22, Bonn, Germany), 2001, pp. 149–152.

30. Newman, M. W., Lin, J., Hong, J. I., and Landay, J. A.
DENIM: An informal web site design tool inspired by
observations of practice. Human-Computer Interaction,
18, 3 (2003), 259–324.

31. Rettig, M., Prototyping for tiny fingers. Communica-
tions of the ACM 37, 4 (1994), 21–27.

32. Shilman, M., Wei, Z., Raghupathy, S., Simard, P., and
Jones, D. Discerning structure from freeform handwrit-
ten notes. In Proceedings of the Seventh International
IEEE Conference on Document Analysis and Recogni-
tion (August 3–6, Washington, DC), 2003, pp. 60–65.

33. Sinha, A. K., and Landay, J. A. Capturing user tests in a
multimodal, multidevice informal prototyping tool. In
Proceedings of the 5th International Conference on
Multimodal Interfaces (November 5–7, Vancouver, BC,
Canada), 2003, pp. 117–124.

34. Snyder, C. Paper Prototyping: The Fast and Easy Way
to Design and Refine User Interfaces. Morgan Kauf-
mann, San Francisco, CA, 2003.

35. Voida, S., Podlaseck, M., Kjeldsen, R., and Pinhanez,
C. A study on the manipulation of 2D objects in a pro-
jector/camera-based augmented reality environment. In
Proceedings of CHI ‘05 (April 2–7, Portland, OR),
2005, pp. 611–620.

36. Wagner, A. Prototyping: A day in the life of an inter-
face designer. In The Art of Human-Computer Interface
Design, B. Laurel, Editor (Addison-Wesley, Reading,
MA, 1990), pp. 79–84.

