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4 CONCLUSIONS AND FURTHER REMARKS

We have, in this paper, presented the basic algorithm which has been implemented by the
program enclosed. This algorithm uses the framed quadtree method as describe earlier to find the
conditional shortest path in a known 2D environment. This algorithm in attempting to optimize
the time and space taken to compute the conditional shortest path is held back by several limita-
tions.

 First, the path is usually not the absolute, but conditional, shortest path. This is due to the
‘coarseness’ of the path found by moving from frame to frame, and is exceptionally visible in
environments with a lot of small scattered obstacles. However, in large open areas, this algorithm
is extremely efficient and becomes a lot more accurate. Second, in small environments, this algo-
rithm is just as slow as, if not slower, than the regular grid based approach. This however, has
been remedied in this program. We implement the grid based approach for quads less than or
equal to size four and the framed-quad approach to anything larger. Third, because of the present
means of implementing the algorithm, the path found may not be the most desirable. The program
does not have a second criterion to base the choosing of the path on if there exists two distinct
paths with equal length.

The foundation has been set for further studies concerning the implementation of other
framed-tree models. This project may be expanded to deal with 3D environments using structure
known as framed-octrees (very similar to framed-quadtrees) and then taken one step further to
unknown environments.   At this point, possibilities for further research seem endless.
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3.3.4 Side Four Scheduling
Side four scheduling is a little more complicated because domination of entry points is not

as easily computed. This, along with the fact that each entry point on side one (even when unable
to propagate to a point directly above it) may propagate to many cells on side four, make side four
propagation perhaps the hardest of the four (figure 3.8). This problem is partially solved by sched-
uling only a subset of points after a specific time interval (once). This interval is determined
through a worst case scenario in which an entry point has to propagate from one corner of the f-
quad to the other corner. Regular Voronoi domains are assigned to this subset of entry points using
the same formulas used in side two propagation.

Again, an overlap in the domains was in order. This may lead to redundancy and a loss of
speed (slight) but will allow us to guarantee a correct conditional shortest path.

figure 3.8

3.3.5 Assigning Values
After determining the Voronoi domains of unblocked entry points, we may then assign

appropriate values to the border cells or sides two, three, and four. This is done by traversing the
entry point list and finding unblocked entry points with the potential to propagate within the given
waveval. The value which it would assign is calculated and compared to the current value of the
destination cell. If the new value is smaller, it is assigned to the cell and a pointer within the entry
point structure (origin) is set to point to the cell from which it propagated. The interval is then
incremented to represent the current propagating potential. This method of actually shrinking the
domain of each entry point vastly reduces the space as well as computational time required to
assign values to cells.

3.4 Finding the Shortest Path
After the goal quad has been reached (if it can), a fine path through specific cells and

quads may be found by simply tracing the path back from the goal to the robot through the ‘ori-
gin’ pointers. This, we assert, is the shortest conditional path from the robot to the goal at this
time, based on this framed quadtree algorithm.
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or equal to that of the closer point. This, however, is evident upon inspection and will be accepted
at face value.

After the initial points have been blocked, Voronoi domains are determined using the
equation for a hyperbola with a and b being the focus points. This equation is a general fourth
order equation and was solved with xmaple. The resulting equation was long and messy, but
works quite well in determining the border cell which divides side two into the regions to be dom-
inated by each of the two foci being considered. This procedure of assigning a region to each of
the unblocked entry points is repeated from right to left.

The initial Voronoi scheduling algorithm set out by Sczcerba called for the domains to be
split into two distinct regions, one including and above the division point and one below this
point. In implementing the algorithm, however, we found it necessary for the division point to be
included in both intervals. Although this means that the point will be checked twice by the entry
points, it does ensure that no incorrect values are assigned due to round off errors.

figure 3.6

3.3.3 Side Three Scheduling
Side three scheduling is merely a mirror image of side one scheduling, and implementa-

tion, with several minor modifications, is trivial (Figure 3.7).

figure 3.7
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may be implemented in linear time, greatly improves on the efficiency of regular quadtree propa-
gating methods. This scheme is thus both accurate and efficient.

Entry points for a given f-quad are put into a linked list as they enter from border quads.
These are the only cells which are allowed to propagate within an f-quad. All other cells are
assigned values from within the f-quad and are dominated by at least one other cell (the one from
which it came). During each iteration, the entry points are considered for internal propagation
within each f-quad. This task is broken into four cases, one for each of the four sides to which the
entry point may propagate. As there may be multiple entry points on each side, all coming in at
different times and with different path grid values, a scheduling algorithm must be used to deal
efficiently with the assignment of values. The algorithm is then repeated for entry points entering
on each of the four sides.

In implementing this side scheduling algorithm, we used a control function
(propogate_to_same_quad) which called the side one, two, and three scheduling functions four
times, once for entry points on each of the four sides. Once the Voronoi domains were assigned to
the entry points, the functions which assigned values to the appropriate cells were called (once
again four times). Side four propagation was only performed once for each set of entry points
entering on each side. This procedure is explained in detail below.

3.3.1 Side One Scheduling
Perhaps the easiest and most straightforward of the four cases, side one scheduling, is

based on regular distance transform calculations. The waveval (iteration number) is used to calcu-
late the distance which the entry point may propagate in either direction. Once this is determined,
deciding whether or not to propagate is a trivial task.

figure 3.5

3.3.2 Side Two Scheduling
Side two scheduling is a little trickier than side one scheduling. For the case of side two

scheduling, every border cell may attempt to propagate to more than one side two cell (figure 3.6).
A more complex scheduling algorithm is thus in order. Since the entry points arrive at different
times and in no particular order, they must first be sorted. This came down to inserting an entry in
the appropriate spot in a linked list, an easy task. The first step in scheduling these entry points is
to remove all dominated entry points. It may be proved that if two entry points enter with two dis-
tinct path grid values then the point further from side two is dominated if its value is greater than
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figure 3.3

3.2.4 Corner Clipping
This brought about the problem of corner clipping as shown in figure 3.4a. This path is not

one that the robot would physical be able to execute. If the robot were to follow this path half of it
would run into the obstacle. To alleviate this problem it was necessary to first check if the origin
frame was a corner frame. Then we put in a check to determine if the neighbors frame was a cor-
ner frame. If both these conditions were met it was then determined if these two quads shared a

a.                                                               b.
figure 3.4

neighbor which was an obstacle. If it was then the diagonal propagation was not allowed to con-
tinue. With these checks in place the correct path, shown in figure 3.4b was found.

3.3 Propagation Within a Given Quad
A feature of this wave propagation algorithm is the method for propagating the wave

within a particular f-quad. The wave is only propagated through border cells (or frames) of f-
quads in the wave frontier table. Propagating to only these border cells, which fully define the
entry and exit points of the robot from that particular f-quad, drastically reduces the calculations
required to compute wave transforms for every cell within the f-quad. In fact, this method, which
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mixed type. Special checks were put in to deal with cases where this quad was an obstacle. To find
the index of the smaller quad we wrote a function called find_smaller which returns the quad that
a particular frame is adjacent to and the index in this new quad. The method used is depicted in
figure 3.2. First, by using the index value in the origin quad it is determined which child of the
new neighbor to take. In this case since the frame index, 4, is greater than size/2 it can be deter-
mined that the northeast child is to be taken and the index is then decremented by size/2.   Then
the new neighbor quad is set to point at this northeast child. At this point the index has a value of
4-4 = 0. Since this is less than half the new quad size it is determined that the northwest neighbor
must be taken and nothing is done to the index value. The new quad is then set to equal

figure 3.2

to its northwest child and it is found that its type is free so this loop stops. The new index is then
determined by subtracting the index from new quad size*3-3. As with determining the larger
neighbors index simple equations are used to determine the relative index on each other side as
compared to the smallest index on that side.

3.2.3 Propagating Diagonally
The next problem encountered was determining the diagonal quads that a particular frame

could propagate to in other quads. In the case where the new index found was not a corner it was
a simple matter of incrementing or decrementing this index and then just assigning this a value
equal to the value of the origin frame plus the square root of 2. However, if the new found index
was a corner then it was sometimes necessary to find a neighbor of this new quad. For example, in
figure 3.3, the frame labeled 17 would be able to propagate to the frame labeled 3. However, to
get the index and quad of this frame it is first necessary to use find_smaller going north to get the
frame labeled 0 and then find_larger_or_eq going west on this new frame and quad to finally
arrive at this frame labeled 3. Using the values we assigned for the directions (south =0, east=1,
north=2, west=3) It was found that only 2 cases needed to be tested. If the new frame index was
equal to size*(direction+1) mod 4 - (direction +1)mod 4, then a diagonal propagation could not
occur in the same quad less one index and so a neighbor in (direction +2)mod 4 must be found. If
the new frame index was equal to (direction +1)mod 4 then propagation in the same quad plus one
index could not occur and the neighbor of this new quad in direction+1 must be found.
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of these is in determining the frame of an adjacent quad which is adjacent to a given frame and a
given quad. This involves knowing the size and type of the quad containing the origin and desti-
nation frames. Both of these bits of information were stored directly in the quadtree structure; the
neighbors of a given quad were determined by the algorithms given by Samet and the type of
quad was determined when the quadtree structure was created. This problem is then broken down
into two parts. The first is determining the frame if the neighboring quad is larger or equal and the
second is in this determination if the neighbor is smaller.

3.2.1 Propagating to Larger or Equal Sized Quads
To determine the frame index of a larger quad given the origin quad and the frame number

we wrote a function find_larger_or_eq. This function takes the direction in which the origin quad
is propagating, the neighboring quad in that direction, and the origin quad and returns the index of
the frame in this larger or equal sized quad. This is done with a simple loop testing the sontype of
the origin quad and incrementing the origin frame index accordingly and then setting the origin
quad equal to its parent node. For example in figure 3.1 if the frame labeled 1 is able to propagate
during this iteration of waveval, its southern neighbor is found by following its neighbors pointer
contained in the quadtree structure. Next using a Samet function, sontype, it is found that the ori-
gin quad is a southeast child. So the index is incremented by the origin quad’s size, which is four.
Then the origin quad is set to its parent quad. After this it is found that this parent quad is the same
size as the destination quad so this loop is finished. The index of the frame of the

figure 3.1

southern neighbor is then found by taking its size*3 -3 and subtracting this new index to get 16,
which is the index of this point. When moving in directions other than south a simple calculation
was performed on the frame index because the frame indexes on these sides do not run from zero
to size-1. It is an easy task to subtract the index of the lower corner from the given index to get a
value from zero to size -1. From there all cases are parallel to the one given above.

3.2.2 Propagating to Smaller Quads
To determine the frame index of a smaller quad is a bit more difficult. The first problem is

that the neighbors stored in the quadtree structure are greater than or equal in size to the origin
quad. Therefore it is possible that the destination quad returned by the neighbor pointer is of
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to have definite steps and user interface between parts of the program no variables may be passed
to these functions as they must be called from the mouse or keyboard function. As a result we
needed to define several global variables which made the program somewhat space inefficient.
2.3 The Bitmap

Having tackled the problems in learning OpenGL and GLUT the next task was to read in
the bitmap. This bitmap was not a standard bitmap but was one output by a program written by
Kristin Neustadt. We soon found that the image she output was turned sideways and flipped diag-
onally. Once we realized this the reading in and plotting of the bitmap was a simple task.

3 IMPLEMENTING THE ALGORITHM

3.1 Dividing Environment into Quadtrees
The quadtree is an approach to image representation based on repeatedly dividing the

environment (or image) into quadrants. The process of subdividing a quadrant is repeated so long
as the minimum resolution (in this case determined by the size of the robot) is not reached and
there are both obstacle and free space in the quadrant being considered. Theoretically, this is a
simple procedure, however, programming implementation was a little more difficult.

The environment used in this project was generated using Kristin Neustadt’s program
“robot” and saved as a bitmap file. A global pointer to a pointer of integers was assigned to point
to the two dimensional array which was calloc’ed and used to store the scanned bitmap. Several
methods for dividing the quadtree from this bitmap were tried and found to be inefficient and
sometimes inaccurate.

The first method we attempted involved reading in the bitmap in a pseudo-random fash-
ion, with flags keeping track of what object existed in a particular quad. A quad would be divided
every time an obstacle and free space were detected in it. This method was very inefficient and
lacked much insight. It was soon realized that every bit had to be eventually scanned (for a resolu-
tion of one bit, which we used throughout this project). Next, we tried creating an entire quadtree
structure into which we read the bitmap and eliminated leaf nodes as required. This however,
proved to be a strain on space and time.   We proceeded to try to scan and create the quadtree
structure from bottom up, scanning each node and then merging it. This too proved too great a
task even for recursion.

The final method used seems to be that which provide for greatest efficiency as well as
accuracy. In this method, we start at the head node and create Northwest nodes till the minimum
resolution is reached. We then scan the bitmap and determine if the leafs are needed. If they are of
the same kind, then they may be eliminated and their parent assigned the appropriate type. We
then move up the structure into a quad which has children which have not been scanned, and pro-
ceed in the same way as before. This method lends itself well to recursion and improves on prior
methods which are either inaccurate, slow, or space consuming.

3.2 Propagation to Other Quads
In using framed quadtrees to propagate the path planning wave, several problems arise in

determining which other quads a particular frame is able to propagate into. This appears a simple
task in theory, however, there are many subtle peculiarities to deal with in programming. The first
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   double enter_time[4];
}wft_t;

The Wave Frontier Table is a linked list of quads that are able to propagate at a given time.
It contains a pointer to the head of a list of entry points for each side, *entry[4]. It also contains
the enter_time for each side which is the value of waveval at the time the first entry point came
into a side. This time is needed in side 4 propagation. A quad is first put into the wft when the first
entry point arrives. It is removed when none of its frames are able to propagate any further.

2.1.4 Entry Points
The entry point structure was simply:
typedef struct entry_s {
   int index;
   int interval1[2];
   int interval2[2];
   int interval3[2];
   int interval4[2];
   struct entry_s *next;
   struct entry_s *prev;
} entry_t;

This linked list of entry points store all available entry points on a given side of a quad.
Index refers to the index of the cell in which the robot may potentially enter a quad. The intervals
are used in the internal side propagation to keep track of what intervals the point may propagate to
and are not dominated on. These are initially assigned a value of -88 and later assigned index val-
ues as necessary.

2.1 Graphics Packages: OpenGL and GLUT

2.2.1 OpenGL
The graphics package used for this project was openGL. We found it no harder or easier to

program than other graphics packages we have used. However, it seems that it will make things
simpler when this project is implemented in three dimensions and also seems to work a bit faster
than SRGP.

2.2.2 GLUT
The biggest problem with using OpenGL is that it does not come with its own windowing

system. GLUT (OpenGL Utility Toolkit) is a windowing package that was designed to interface
with OpenGL. However, we found it had some rather annoying quirks that lead to inefficiency
and failure. GLUT will not execute any drawing functions until glutMainLoop is called. Once this
function is called it calls all the callback functions that have been defined. These callback func-
tions include such things as a mouse function, keyboard function, normal display functions, etc...
However the variables that these functions receive are predetermined. So if a programmer wishes
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   frame_t *frames;
   int ulx, uly;
}quadr_t;
Where size holds the length of one edge of the quad and type holds the type of the quad.

Valid types are FREE, OBS, or MIXED, to define all free, all obstacles, or some of both respec-
tively. Mother and children point to the quad’s parent and four children as defined by the quadtree.
We used the algorithms given by Samet to find the neighbors and the mother and children were
assigned as the quadtree structure was built. *frames is later allocated space as a one dimensional
array for quads of type FREE and ulx and uly are the coordinates of the upper left corner of the
quad.   We defined the directions and index values for the frames in this manner:

figure 2.1

When dealing with children, northwest was 0, northeast was 1, southeast was 2, and south-
west was 3.

2.1.2 Frames
Our structure for the frames held these values:
typedef struct frame_s {
   int index;
   struct frame_s *origin;
   struct quadr_s *owner;
   double value;
} frame_t;

The index was defined as above. Origin is a pointer to the frame that this frame got its
value from. Owner is a pointer to the quad the frame is in. Value is the distance assigned to this
frame from the robot and index is the index of this frame in the array of frames in the owner quad.
This was necessary to compute its location when tracing the path back from the goal to the robot.

2.1.3 Wave Frontier Table
The wave frontier table was:
typedef struct wft_s {
   quadr_t *quad;
   entry_t *entry[4];
   struct wft_s *next;
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1 INTRODUCTION

1.1 An Overview
Planning collision free paths of shortest distances through known obstacle-scattered envi-

ronments has been studied intensively. As a result, the algorithms which exist to find shortest
paths have evolved considerably recently. This project is an attempt to implement a relatively new
algorithm based on a framed-quadtree in order to find the conditional shortest path through a
known 2D environment. The framed-quadtree method utilizes a combination of regular grid-
based as well as quadtree methods. This algorithm may be expanded to deal with 3D and eventu-
ally with unknown environments.

1.2 Path Planning
The main loop to the path planning part of our program is relatively simple. It simply

takes the first entry on the wave frontier table or wft (which initially contains only the robot quad)
and calls the function which deals with propagating within a quad (if the entry is the robot quad,
these values are pre-assigned). It then calls the function to propagate to other quads. This function
adds and removes quads from the wave frontier table as need be and assigns entry points. The cur-
rent wave table entry is then incremented and it returns to the inner loop. This continues until the
end of the wft is reached. At this point the current wft entry is set to point back to the head entry
and the loop repeats with an incremented iteration number or waveval. This goes on either until
the wft is empty, which signifies that the goal could not be reached from the robots current posi-
tion, or until the goal quad has been on and removed from the wave frontier table. In the former
case a message is displayed defining the futility of the robot’s quest. In the latter case the index in
the robot quad is found which contains the shortest path back to the robot and this path is drawn.
If the robot and goal are in the same quad, a line is simply drawn from the robot straight to the
goal and the path planning loop is never entered.

2 PRELIMINARIES

2.1 Basic structures
The structures set up to store the information seem to define a large part of the program

and algorithm and as such must be noted and understood. The following are the important struc-
tures used:

2.1.1 The Quad
Each quad structure was defined as thus:
typedef struct quadr_s{
 int size, type;

   struct quadr_s *mother, *children[4];
   struct quadr_s *neighbors[4];
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Abstract

The motion planning problem is of central importance to the fields of robotics, spatial
planning, and automated design. In robotics, we are concerned in the automatic synthesis of robot
motions, given specifications of tasks and geometric models of the robot and the obstacles. The
Mover’s problem is to find a continuous, collision free path for a moving object through an envi-
ronment containing obstacles.

In this project, we implement an algorithm which finds the conditional shortest path, a col-
lision-free path of shortest distance based on known information on an obstacle-scattered environ-
ment at a given time. This method utilizes a circular path planning wave and is based on a
revolutionary data structure, the framed quadtree, which improves upon existing square-grid and
quadtree-based techniques. This algorithm works in linear time and guarantees a conditional
shortest path in any known 2-D environment.

Keywords: Framed-quadtrees, Quadtrees, Shortest Paths, Voronoi Domain, Wave Frontier Table



0

 Simulation of Euclidean Shortest Path Planning Algorithms
Based on the Framed-Quadtree Data Structure

Desney  S.  Tan        James  T.  Herro III        Robert  J.  Szczerba

Technical  Report: #95-26

October 1995

Department of Computer Science and Engineering

University of Notre Dame

Notre Dame, Indiana 46556

Corresponding  Authors:

Desney S. Tan and James T. Herro

Department of Computer Science and Engineering

Fitzpatrick Hall of Engineering

University of Notre Dame

Notre Dame, Indiana 46556


