
Semi-probabilistic Content-Based Publish-Subscribe

Paolo Costa and Gian Pietro Picco
Dip. di Elettronica e Informazione, Politecnico di Milano

{costa,picco}@elet.polimi.it

Abstract

Mainstream approaches to content-based distributed
publish-subscribe typically route events deterministically
based on information collected from subscribers, and do so
by relying on a tree-shaped overlay network. While this so-
lution achieves scalability in fixed, large-scale settings, it is
less appealing in scenarios characterized by high dynamic-
ity, e.g., mobile ad hoc networks or peer-to-peer systems. At
the other extreme, researchers in the related fields of multi-
cast and group communication have successfully exploited
probabilistic techniques that provide increased fault toler-
ance, resilience to changes, and yet are scalable.

In this paper, we propose a novel approach where event
routing relies on deterministic decisions driven by a lim-
ited view on the subscription information and, when this is
not sufficient, resorts to probabilistic decisions performed
by selecting links at random. Simulations show that the
particular mix of deterministic and probabilistic decisions
we put forth in this work is very effective at providing high
event delivery and low overhead in highly dynamic scenar-
ios, without sacrificing scalability.

1. Introduction

Modern distributed applications are increasingly de-
signed as collections of components interacting through an
event-based communication paradigm. Some components
observe events and publish notifications, which are in turn
delivered to those components who subscribed to receive
them. In the content-based incarnation of this publish-
subscribe model, the filtering of relevant events is speci-
fied by the subscriber using predicates on the event content
(e.g., using regular expressions and logic operators), there-
fore providing additional expressiveness and flexibility.

Content-based publish-subscribe has proven useful in a
number of distributed scenarios, due to its high degree of
decoupling, asynchronicity, and versatility. Moreover, its
inherently reactive style of communication makes it partic-
ularly suited for highly dynamic scenarios like those char-

acterizing mobile ad hoc networks (MANETs), peer-to-peer
networks, and sensor networks.

The potential for the content-based publish-subscribe
model, however, can be fully unleashed in these scenar-
ios only if the underlying system is designed in a way that
is compatible with their requirements. Highly dynamic
settings like the aforementioned ones pose unprecedented
challenges, mostly determined by the fluidity of the sys-
tem’s network topology. Mainstream systems implement-
ing a distributed infrastructure for publish-subscribe are
typically geared to large-scale settings, striving for scalabil-
ity by routing events on a tree-shaped overlay network,but
with few or no mechanisms in place to deal with topological
reconfiguration.

Our research group has been particularly active in study-
ing how to design content-based publish-subscribe systems
able to efficiently tolerate frequent topological reconfigu-
rations [7, 8, 17]. Nevertheless, the approach we followed
thus far also relied on the existence of a tree-shaped overlay
network. Indeed, this provided a good starting point that en-
abled us to build up on well-established results in the field.
However, depending on the degree of dynamicity and other
parameters characterizing the scenario, maintaining a tree
overlay may bring additional overhead and complexity.

On the other hand, approaches in closely related fields,
e.g., MANET multicast and subject-based publish-subscri-
be, cope with dynamicity by routing messages probabilisti-
cally, instead of deterministically based on the collection of
subscription information. In doing so, they effectively trade
delivery guarantees for enhanced scalability, fault tolerance,
and resilience to topological changes.

In this paper, we take a different perspective and estab-
lish a clear point of departure from our previous work—and,
to the best of our knowledge, from that of other researchers’
as well. First, our solution relies on an undirected connected
graph topology. Given the dynamicity requirements of our
target scenarios, a graph structure is not only considerably
easier to maintain than a tree, but also provides opportuni-
ties for more fault-tolerant solutions by intrinsically provid-
ing multiple routes between any two dispatchers. Second,
our solution is neither entirely deterministic or probabilis-

tic. Instead, it strikes a balance between the two, since it
combines the efficiency of deterministic routing with the re-
silience to reconfiguration and inherent simplicity of prob-
abilistic approaches.

The core of our approach is very simple. Subscriptions
are propagated only in the immediate vicinity of a sub-
scriber, in contrast to most existing systems. Event routing
leverages of this subscription information, whenever avail-
able, by deterministically routing an event along the link a
matching subscription was received from. If no subscrip-
tion information exists at a given dispatcher, events are for-
warded along a randomly chosen subset of the available
links. Simulations show not only that our approach is suc-
cessful per se in providing high delivery rates with low over-
head, but also confirm that it performs better than a fully
deterministic (or probabilistic) alone. Moreover, nice by-
products of our strategy are a significant reduction of the
routing tables size, and easier development and understand-
ing of the actual implementation.

The rest of the paper is organized as follows. Section 2
provides the reader with a concise overview of content-ba-
sed publish-subscribe. Section 3 presents the details of our
approach, by illustrating the strategy for routing subscrip-
tions and events. Section 4 provides an evaluation of our
approach through simulation in several scenarios exhibit-
ing different degrees of dynamicity, including mobile ones.
Section 5 places our work in the context of related ones.
Finally, Section 6 concludes the paper and hints at opportu-
nities for further research on the topic.

2. Content-Based Publish-Subscribe

Applications exploiting publish-subscribe middleware
are organized as a collection of autonomous components,
the clients, which interact by asynchronously publishing
event notifications (or, shortly, events) and by subscribing to
the classes of events they are interested in. A component of
the architecture, the event dispatcher, is responsible for col-
lecting subscriptions and forwarding events to subscribers,
effectively decoupling the event producers and consumers.

Recently, many publish-subscribe middleware have be-
come available, which differ along several dimensions. In
this paper, we focus on systems that realize a distributed
event dispatcher and enable subscribers to filter events of
interest based on their content (e.g., by means of regular ex-
pressions), rather than their subject (i.e., a class of events,
defined a priori). Among these systems, popular choices
are the use of an unrooted tree topology for the overlay net-
work connecting dispatchers, combined with a routing strat-
egy called subscription forwarding.

In a subscription forwarding scheme [5], subscriptions
are delivered to all dispatchers, and are used to establish
the routes that are followed by published events. When a

Figure 1. A dispatching network with subscriptions laid
down according to a subscription forwarding scheme.

client issues a subscription, a message containing the corre-
sponding event pattern to be used for filtering is sent to the
dispatcher the client is attached to. There, the event pattern
is inserted in a subscription table, together with the identi-
fier of the subscriber. Then, the subscription is propagated
by the dispatcher, which now behaves as a subscriber with
respect to the rest of the dispatching network, to all of its
neighboring dispatchers on the overlay network. In turn,
they record the subscription and re-propagate it towards all
their neighboring dispatchers, except for the one that sent
it. This scheme is typically optimized by avoiding propaga-
tion of subscriptions for the same event pattern in the same
direction. The propagation of a subscription effectively sets
up a route for events, through the reverse path from the pub-
lisher to the subscriber. Requests to unsubscribe from a
given event pattern are handled and propagated analogously
to subscriptions, although at each hop entries in the sub-
scription table are removed rather than inserted.

Figure 1 shows a dispatching network with two dispatch-
ers subscribed1 for a “black” pattern, and one for a “gray”
pattern. (Hereafter, we ignore the presence of clients and
consider only dispatchers.) Arrows denote the routes laid
down according to these subscriptions, and reflect the con-
tent of subscription tables. As a consequence of the sub-
scription forwarding process we described, the routes for
the two separate subscriptions are laid down on the single
tree constituting the dispatching network. This choice is
typical of content-based systems and is motivated by the
fact that a single event may match multiple patterns. There-
fore, routing on multiple independent trees, as typically
done by subject-based systems, would lead to inefficient du-
plication of events along the separate trees.

3. Semi-probabilistic Content-Based Routing

Several alternatives exist to the mainstream scheme we
just described, as we discuss in Section 5. The approach
we present in this paper, however, takes a distinctly differ-
ent and novel perspective on the problem, motivated by the
requirements we address.

1Content-based systems allow rather sophisticated expressions. For
instance, the two subscriptions could be {Software* OR Appl*s}
and B {Distributed AND ?pplication?}, and events containing
"Distributed Applications" would match both.

2

In our target application scenario the connectivity con-
figuration of hosts, and therefore dispatchers, can change
freely and frequently. This requirement encompasses appli-
cation scenarios like mobile ad hoc networks, peer-to-peer
networks, and many variants of sensor networks. Our ear-
lier work on topological reconfiguration of publish-subscri-
be showed that it is possible to reconcile routing informa-
tion [17] and recover events lost during reconfiguration [7]
efficiently. However, it still assumed the availability of
an underlying tree-shaped overlay network. The manage-
ment of such an overlay network introduces considerable
complexity in the implementation and, when the setting is
highly dynamic, is a possible cause of inefficiency. More-
over, a tree provides exactly one route among any two dis-
patchers and, worse, among any two subtrees. Therefore,
when a link fails the message flow is severely disrupted.

In this paper we set out to devise a routing strategy that:

• tolerates arbitrary reconfigurations of the connectivity
among dispatchers;

• provides high, and steady, rates of event delivery with
low overhead;

• is scalable;
• makes minimal assumptions on the underlying overlay

and physical networks;
• is simple, therefore leading to small-footprint software

artifacts, easily deployable on resource-constrained
devices, possibly down to sensors.

To achieve these goals, first of all we abandon the tree-
shaped overlay network and simply assume that dispatch-
ers are able to communicate along the links of the connec-
tivity graph. On fixed networks, this graph can be easily
built as an overlay, e.g., by reusing Gnutella-like solutions.
On mobile networks, existing protocols (e.g., [2]) based on
network- or application-level beaconing can be used. A ma-
jor advantage of basing our approach on a graph is that it is
an inherently more fault-tolerant structure than a tree.

Nevertheless, the deterministic routing strategy we de-
scribed in Section 2 would not work on a graph, as it would
create plenty of loops. Therefore, some adaptation is re-
quired. Moreover, we contend that virtually any fully deter-
ministic strategy is going to experience severe drawbacks in
the highly dynamic scenario we target, where routing infor-
mation quickly becomes stale.

On the other hand, probabilistic approaches like epi-
demic (or gossip) algorithms [1, 10] are known to satisfy
many of the aforementioned requirements in the context of
multicast communication. Inspired by the spreading of dis-
eases, these algorithms forward information at random to-
wards a small subset of available nodes, and rely on the
availability of multiple routes to ensure that the “infection”
carrying the information extends to a sufficient percentage
of the receivers. Epidemic algorithms essentially trade the

absolute guarantees provided by deterministic approaches
for probabilistic ones, yielding in turn increased scalability
and resilience to change, as well as reduced complexity.

The solution we present in the following combines the
two approaches in the context of content-based publish-sub-
scribe. On one hand, we still maintain deterministic infor-
mation about subscriptions but only in the vicinity of a dis-
patcher, therefore reducing the likelyhood of loops and yet
providing accurate information for routing events. On the
other hand, in the portion of the network where this lo-
calized information is unavailable we complement it with
probabilistic routing decisions, by routing events at random
along a small subset of the available links. The remainder
of this section describes our approach in more detail. Sec-
tion 4 shows that this simple strategy is indeed successful in
meeting all of our aforementioned requirements.

Subscription Propagation. As we already mentioned, in
a highly dynamic network it may become impractical to
maintain subscription information about every node in the
network. In our approach, each dispatcher knows only a
limited portion of the interests of the other dispatchers, de-
termined by the subscription horizon φ. The value of this
parameter represents the number of hops a subscription is
propagated away from the subscriber.

Propagation occurs similarly to subscription forwarding.
When a subscription request is issued by a dispatcher, the
corresponding message is forwarded to all of its neigh-
bors, which update their subscription tables accordingly.
If φ = 1, no further action is taken. Otherwise, each
dispatcher forwards the subscription message to all of its
neighbors, except the one who sent the message. A sub-
scription is never forwarded twice along the same link, un-
less an unsubscription occurs in between the two. Differ-
ently from subscription forwarding, however, the subscrip-
tion tables maintain information not only about which sub-
scription was received on which link, but also about the dis-
tance of the subscriber, ranging between zero (for a local
subscription) and φ. Figure 2 shows the layout of subscrip-
tions for a case where φ = 1.

Topological reconfigurations, i.e., the appearance of a
new link or the vanishing of an existing one, must in-
duce a proper reconfiguration of subscription informa-
tion. However, this is easily accomplished by relying on
(un)subscription operations, as discussed in [17]. When
a dispatcher detects the presence of a new link, it simply
sends a subscription message along that link. Similarly,
when a link vanishes, the dispatcher behaves as if it received
an unsubscription message for all patterns associated to that
link. These (un)subscriptions are then propagated based to
the extent determined by φ.

Event Propagation. Event propagation is where proba-
bilistic decisions may come into play. An event received on

3

0

1

4

3

5

7

9

8

6
2

Figure 2. Semi-probabilistic routing with φ = 1 and
τ = 0.5. Numbered circles represent dispatchers. A col-
ored circle around a dispatcher denotes it as a subscriber.
The short colored arrows represent subscription informa-
tion, and indicate the forwarding path for matching events.
Dispatcher 0 publishes an event that gets forwarded either
deterministically (double-headed thick arrows) or proba-
bilistically (single-headed thick arrows).

a dispatcher’s link is always forwarded only along a subset
of the remaining l − 1 links, being l the dispatcher’s degree
in the graph interconnecting dispatchers. The selected links
may change from time to time, but the overall percentage of
links exploited for forwarding is fixed, and determined by
the event propagation threshold τ . This parameter allows to
compute the number f of links to be used for forwarding as
f = �τ(l − 1)�, where the ceiling operator is necessary to
guarantee that the event is always forwarded along at least
one link.

Upon receiving an event, in principle2 the following pro-
cessing occurs. First, the subscription table is inspected for
subscriptions matching the event. If a match is found, the
event is routed along the link associated to the subscrip-
tion. Subscriptions selection is prioritized according to φ:
an event is forwarded based on a subscription at distance d
only if there is no matching subscription at distance d − 1.
As we verified through simulation, this strategy reduces the
likelihood of forwarding the event along a stale route.

This step is iterated until the number of links used for
propagation is greater than f . If the number of matching
subscriptions is not sufficient, the propagation threshold is
met by forwarding the event along as many links as needed
to reach f , randomly selected among those that have not
been used in the current forwarding step. The only excep-
tion is constituted by links associated to subscriptions at
distance d = 1; a matching event is forwarded along all
of these links, regardless of the propagation threshold. The
rationale is the fact that subscriptions at d = 1 represent
the most accurate routing information, and the most direct
route towards the corresponding subscribers. Finally, it is
important to note that, during the overall process, an event
is never forwarded twice along the same link.

Figure 2 shows an example. Let us assume that τ = 0.5
and that an event matching both subscriptions is published

2This sequence of steps serves only for illustration purposes: a number
of optimizations are possible in reality.

by dispatcher 0. This dispatcher has only one link and
no subscription information: therefore, the event gets for-
warded to dispatcher 1 as this is the only alternative. At
dispatcher 1, two links are available. Nevertheless, the link
towards 3 is associated with subscription information: it is
therefore selected for forwarding and no further action is
taken since the threshold is met. At dispatcher 3, the event
is delivered locally. Moreover, the links towards 2, 4 and
6 are all viable routing options, and the event must be for-
warded along f = 2 links. No deterministic information is
available, therefore the decision is done entirely at random.
The figure shows the case where the event is forwarded to-
wards 2, where it stops propagating, and 6. There, the same
situation occurs, with the links towards 5 and 8 as viable op-
tions. The figure shows the case where 5 is selected. At this
dispatcher, the presence of deterministic information “cap-
tures” the events and steers it towards 9, where it gets lo-
cally delivered.

It is interesting to note that, at each hop, an event may
be routed according to different criteria. As we already
mentioned, “holes” in the dissemination of subscription in-
formation are bypassed by relying on random selection of
links. However, the very nature of content-based systems is
an asset for our routing approach, because an event match-
ing multiple subscriptions may leverage of a bigger set of
subscription information during its travel. Again, this is ex-
emplified in Figure 2, where the event not only is routed by
a mixture of deterministic and non-deterministic decisions,
but deterministic ones (i.e., the hops from 1 to 3, and from
5 to 9) are generated by different subscriptions.

Dealing with loops. With reference to Figure 2, a choice of
φ = 2 would have created a routing loop among the nodes 4,
5, 7, and 9. Routing loops are easily detected by relying on a
unique identifier for every event, easily implemented using
the identifier of event publisher and the value of a counter
incremented at the publisher each time it publishes an event.
Therefore, an event received is actually propagated by a dis-
patcher only if it has never been received before.

More sophisticated loop avoidance and detection algo-
rithms are available in the literature. However, on one hand
they are likely to be impractical in the highly dynamic sce-
nario we target, while on the other hand they would intro-
duce a lot of complexity in our algorithm, which instead we
want to keep as lightweight as possible.

Avoiding unnecessary propagation. In Figure 2, we note
how event forwarding does not really stop at dispatcher 9,
since there is no way to know that no other subscriber exists
in the system. Without a way to cease forwarding, events
would be forwarded indefinitely—more precisely, until a
loop is detected. Indefinite propagation is dealt with by at-
taching a time-to-live (TTL) field to each event message,
and by decrementing its value at every hop. When an event

4

is duplicated at a dispatcher along multiple routes, all the
copies retain the same TTL value. Therefore, an event is
propagated only if its TTL is greater than zero.

A more refined mechanism consists of associating dif-
ferent TTLs to the two form of routing we exploit, there-
fore defining a deterministic TTL (TTLd) and a probabilistic
TTL (TTLp). With this scheme, propagation ceases when
either of the TTLs reaches zero. The advantage of this
scheme is that it provides a direct way to control both as-
pects of propagation, therefore enabling a more accurate
tuning of the performance of our approach.

4. Evaluation

In this section we evaluate our approach through simu-
lation. The metrics we analyze are event delivery rate and
overhead. The former is defined as the ratio between the
number of subscribers that should receive a given event and
those who actually get it. The overhead is constituted by
subscription messages and by event messages that are either
duplicated, never received by a subscriber, or routed along
unnecessarily long routes. These contributions are difficult
to separate, and in any case do not provide significant in-
sights. Therefore, we analyze overhead by simply plotting
the overall number of messages flying in the system.

After describing the simulation setting, we first focus on
a static scenario. This allows us to understand the behavior
of our solution without the bias introduced by reconfigu-
ration, and to verify that indeed it performs well when the
system is stable. Then, we move to a scenario where recon-
figuration occurs, and distinguish between a milder setting
where each network change occurs in isolation, and an ex-
treme one where reconfiguration occurs at a very high rate.
Finally, we evaluate our approach against reconfiguration
patterns determined by using ANSim [13], a generator of
mobility scenarios. All of our simulations are developed
with OMNeT++ [19], a free, open source discrete event
simulation tool.

Simulation Setting. Events are represented as randomly-
generated sequence of integers, determined using a uniform
distribution. An event pattern associated to a subscription
is represented by a single number. An event matches a sub-
scription if it contains the number specified by the event
pattern in the subscription. Each dispatcher is subscribed to
two event patterns, drawn randomly from the overall num-
ber of patterns available in the system, which in our simula-
tion is set to 512. For each event, the percentage of receivers
is about 10% of the overall number N of dispatchers in the
system as this is a commonly accepted “rule of thumb” for
content-based systems (see [6]).

Our simulations are run with dispatchers continuously
publishing events on a network with stable subscription

Parameter Default value
Network size N = 300

Graph degree l = 5 ± 1

Patterns per node 2
Available patterns 512

Percentage of receivers 10%
Published events/s per dispatcher 5

Table 1. Simulation parameters and their default values.

information, where no (un)subscriptions are being issued.
The frequency at which the events are published by each
dispatcher determines the system load in terms of event
messages to be be routed. We choose a rather high pub-
lishing load scenario with about 5 publish/s per dispatcher.
Therefore, the number of the published events grows lin-
early with the size of the system.

The graph constituting the overlay network is built with
a constant degree l, to eliminate as much as possible the
bias induced by a random shape. This requirement about a
constant degree is maintained also in the case of a dynamic
network, although the actual number of links of a dispatcher
is allowed to vary between l − 1 and l + 1.

Finally, each simulation was run 10 times with different
seeds and the values averaged. The simulation parameters
are shown in Table 1, together with their default values.

Static Network. We first analyze a static scenario, with-
out topological reconfigurations. This allows us to analyze
the behavior of the various approaches without the pertur-
bations induced by reconfiguration. Also, we initially set
TTL=∞ to first analyze the behavior of the system without
limiting event propagation.

The top chart in Figure 3 shows the event delivery rate
for a configuration with an event propagation threshold τ =
0.25 and with a subscription horizon varying between φ =
0 (purely probabilistic) and φ = 3. The chart evidences
that indeed deterministic information boosts delivery, which
doubles when moving from a purely probabilistic routing to
one with a 1-hop subscription information. Nevertheless,
the improvement clearly cannot be linear: φ = 2 brings
an additional 8% improvement, and there is no appreciable
difference against φ = 3. The reason for the overlapping
of these two curves is that, unlike φ = 1, they are subject
to the limitation on propagation set by τ . As we verified
through simulation, if we were to use all the deterministic
information, the delivery of these curve would not only be
different but also better. On the other hand, the overhead
would be also huge, due to the formation of a high number
of loops, and therefore duplicate events.

The overhead is shown in the bottom chart of Figure 3.
The various approaches are compared against an additional
“ideal” curve whose value is computed by routing events
along the shortest routes between the publisher and each re-
ceiver, derived using Dijkstra’s algorithm. This is a very

5

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 100 150 200 250 300 350 400

ev
en

t d
el

iv
er

y

network size

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 100 150 200 250 300 350 400

ov
er

he
ad

network size

τ=0.25,φ=0
τ=0.25,φ=1
τ=0.25,φ=2

τ=0.25,φ=3
ideal

Figure 3. Event delivery and overhead in a static network.

conservative measure because events are unlikely to fol-
low the shortest path and, more important, the curve does
not take into account the messages required to find out, set
up and maintain the corresponding routes. Effectively, this
ideal curve provides a lower bound for our approach. The
upper bound is instead provided by flooding (τ = 1), which
is not plotted because it generates an extremely high num-
ber of messages (e.g., 11,958,600 at N = 300). There-
fore, Figure 3 shows that our overhead is extremely far
from the upper bound, and quite close to the ideal lower
bound3. Indeed, more deterministic information (φ > 1)
enables savings up to 20% w.r.t. pure probabilistic and
φ = 1. Moreover, increasing φ further does not provide
advantages: φ = 2 generates less messages than φ = 3, due
to the increased number of routing loops in the latter. We
also verified that higher values of τ quickly bring the system
to 100% delivery. This is clearly true for flooding. Also,
τ = 0.5 already brings all the curves to full delivery except
for φ = 0, which remains at about 96%. Nevertheless, in
this latter case the overhead is an order of magnitude higher
(around 4 million messages instead of 400,000), although
the relative performance among the curves with τ = 0.5 is
unchanged, with φ > 1 providing smaller overhead.

Looking at Figure 3, one could notice how delivery drops
as the scale increases. Nevertheless, it is worth recalling that
in the charts above we assume that each dispatcher added

3Interestingly, φ = 2 generates less traffic than the ideal curve. This
behavior can be understood by looking at the upper chart in Figure 3: φ =
2 yields a rather low event delivery while the ideal approach delivers all
the events.

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 100 150 200 250 300 350 400

ev
en

t d
el

iv
er

y

network size

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 100 150 200 250 300 350 400

ov
er

he
ad

network size

τ=0.25,φ=0
τ=0.25,φ=1
τ=0.25,φ=2

τ=0.25,φ=3
ideal

Figure 4. Effect of a higher fanout (f = 2).

to the system is also a publisher emitting 5 events per sec-
ond, and that the fraction of receivers for each event is al-
ways 10% of the dispatchers in the system. Instead, both
the dispatcher’s degree l and the event propagation thresh-
old τ remain constant: the fanout f (i.e., the number of
links along which events are forwarded) therefore remains
constant as well. As a consequence, while the number of
dispatchers and receivers increases the ability of the sys-
tem to spread messages decreases. In a real deployment
setting, the increase in scale should be compensated by in-
creasing f , i.e., by intervening either on τ or l. In Figure 4
we show the effect of increasing the degree to l = 9 while
retaining τ = 0.25, yielding f = 2. The ability to spread
messages over more links boosts delivery which becomes
close to (and for φ = 1 exactly) 100%, except for the purely
probabilistic routing that is stuck at around 90%. The big-
ger fanout augments the likelihood of routing loops, which
explains why φ > 1 does not reach 100%. On the other
hand, the overhead is also largely increased and reaches the
same order of magnitude of the configuration with l = 5
and τ = 0.5. This is not surprising, since the product τ · l,
which defines the number f of links available for routing
and therefore ultimately constrains the effectiveness of rout-
ing, is roughly the same in both scenarios.

The impact of the event propagation threshold can be ap-
preciated in Figure 5, where we plotted event delivery and
overhead against increasing values of τ . We chose a graph
with l = 11, to increase the number of links available and
therefore increase the number of meaningful values of τ .
In this scenario, a small value of τ = 0.1 (i.e., routing on

6

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

ev
en

t d
el

iv
er

y

τ

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

ov
er

he
ad

τ

φ=0
φ=1

φ=2
φ=3

Figure 5. Impact of the event propagation threshold τ .

1-2 links) is not sufficient to guarantee a decent delivery in
a purely probabilistic approach, while the use of some de-
terministic information already yields a delivery of about
90%. This fact has a huge impact on overhead. A deliv-
ery rate of 100% can be achieved with 1-hop information
φ = 1 using τ = 0.2. To match the same performance,
a purely probabilistic approach must raise the propagation
threshold to τ = 0.5, which leads to an overhead that is
almost 4 times higher. Also, an increase in the amount of
deterministic information (φ = 2) by keeping τ = 0.2 gen-
erates a very small decrease in delivery (which remains over
99%) but enables an additional reduction of the overhead,
which becomes 60% less than the case with φ = 1, and a
remarkable 90% reduction—an order of magnitude—over
the purely probabilistic one.

These considerations confirm that complementing a
probabilistic approach with small amounts of deterministic
information enables high delivery rates with low overhead.

Route Characteristics. An interesting insight on the be-
havior of our approach and an additional validation of our
previous considerations are provided by the analysis of the
routes followed by events. The top chart of Figure 6 reports
the average length of these routes4, in number of hops, us-
ing the parameters of Table 1 and τ = 0.25. Flooding yields
the shorter routes, due to the high probability of generating
loops, but at the cost of huge overhead, as we mentioned
earlier. Instead, pure probabilistic routing generates longer
routes, immediately followed by the case with φ = 1. This

4An event route is the sequence of hops crossed by a given event until
its propagation is halted by a dispatcher that received it twice.

 3

 4

 5

 6

 7

 8

 9

 10

 100 150 200 250 300 350 400

nu
m

be
r

of
 h

op
s

network size

τ=0.25,φ=0
τ=0.25,φ=1

τ=0.25,φ=2
τ=0.25,φ=3

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 100 150 200 250 300 350 400

%
 o

f d
et

er
m

in
is

tic
 h

op
s

network size

τ=0.25,φ=1
τ=0.25,φ=2

τ=0.25,φ=3

Figure 6. Average length of event routes and percentage
of deterministic hops.

is consistent with the fact that events are largely forwarded
at random. In turn, φ > 1 generates routes that are about
half as long as the previous ones, due to the ability to “steer”
events quicker towards their recipients.

This is confirmed by the bottom chart of Figure 6,
which plots the percentage of deterministic hops travelled
by events in the various cases. As one would expect, this
increases with φ, albeit not proportionally. Also, as the sys-
tem scale increases, the percentage of deterministic hops in-
creases for φ > 1 since more routes become available, but
decreases for φ = 1, because the average distance between
two dispatchers (and therefore also between subscribers) in-
creases while τ · l—and therefore f—remains constant.

Dynamic Network. We now analyze the performance of
our approach in a setting where the network topology un-
dergoes reconfiguration, and show that indeed it tolerates
very well high degrees of dynamicity. The simulation pa-
rameters and the notion of reconfiguration we use here are
similar to what defined in [7, 17].

A topological reconfiguration consists of a link break-
age, followed by the appearance of a new link. Graph re-
pair is performed after a time interval (that we arbitrarily
set to 0.1s) modeling the delay necessary to the underly-
ing layers to find the replacement link. When a link break-
age occurs, our simulator looks for two nodes with a degree
lesser than or equal to l, to maintain the average degree as
steady as possible. Likewise, a link is selected for removal
only if its endpoints’ degree is greater than or equal to l.
As in [7, 17], we simulated two scenarios, one where the

7

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 150 200 250 300 350 400

ev
en

t d
el

iv
er

y

network size

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 100 150 200 250 300 350 400

ov
er

he
ad

network size

τ=0.25,φ=0
τ=0.25,φ=1

τ=0.25,φ=2
τ=0.25,φ=3

Figure 7. Event delivery and overhead in a dynamic net-
work with reconfigurations every ρ = 0.03s.

time between two reconfigurations is ρ = 0.3s and another
with ρ = 0.03s. In the first scenario, reconfigurations effec-
tively occur in isolation, since a link is always replaced after
0.1s, i.e., before a new reconfiguration occurs. In the sec-
ond scenario, instead, the system is undergoing continuous
and frequent reconfiguration5.

The results we show in Figure 7 refer to this second case,
with the parameters in Table 1. In the figure, one can eas-
ily see that the performance of our algorithms is not reduced
by dynamicity, whose perturbation is easily absorbed by the
probabilistic component of routing, and by the redundancy
of the graph. As a matter of fact, event delivery even im-
proves. This apparently counterintuitive result can be inter-
preted in the light of well-known results on probabilistic al-
gorithms, which suggest that for “infection” to be effective,
random propagation should not occur only locally, but also
infect far away nodes. Therefore, dynamicity, by continu-
ously restructuring the connectivity among dispatchers, ef-
fectively helps spreading information, by allowing nodes to
suddenly becoming in contact with a different set of neigh-
bors, and spread messages from another point. Indeed, the
cases that experience the biggest improvements are those
that rely most on probabilistic information, i.e., the purely
probabilistic and the one with φ = 1. Another contribu-
tion to this increase is given by the way we reconfigure the
graph, which causes the degree to become l = 5 ± 1. Since

5Each reconfiguration involves two dispatchers, the link endpoints. At
300 reconfigurations per second, with a network size of N = 300 each
dispatcher changes two neighbors per second. Since our simulations are
run for over two seconds, at least 4 neighbors out of 5 get replaced.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 4 6 8 10 12 14

ev
en

t d
el

iv
er

y

TTL value

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 4 6 8 10 12 14

ov
er

he
ad

TTL value

τ=0.25,φ=0
τ=0.25,φ=1

τ=0.25,φ=2
τ=0.25,φ=3

Figure 8. Impact of TTL on a dynamic network.

f = �τ(l − 1)�, the dispatchers who got an additional link
end up having f = 2 links available, while those who lost a
link remain at f = 1 as in the static case, by virtue of round-
ing. The combined effect of the two phenomena is the key
to interpreted also the overhead.

Finally, the performance of the milder scenario with
ρ = 0.3s, whose charts are omitted here, is somewhere in
between Figure 3 and 7.

Limiting Propagation. Thus far, we never restrained prop-
agation and assumed a TTL= ∞ for the sake of analyzing
the behavior of our approach. In practice, however, intro-
ducing a TTL enables considerable savings in overhead, as
we discussed in Section 3. Figure 8 shows the impact of
TTL on a dynamic network with the parameters of Table 1
and ρ = 0.03s. Clearly, low values of the TTL may con-
strain propagation too much, and negatively impact event
delivery. For instance, Figure 8 shows that in order to match
the event delivery we showed in Figure 7 for N = 300 and
TTL=∞, we need to set TTL=14. Interestingly, with this
value the curves with φ > 0 remain at about the same de-
livery rate, except for a small reduction with φ = 1, while
the purely probabilistic routing gets worse, with a reduction
in delivery of about 20%. This is not surprising, given that
the deterministic approaches lead to routes that are signifi-
cantly shorter, as we discussed earlier, and therefore are not
significantly affected by the TTL limitation. Moreover, the
overhead drops significantly, as we expected. For φ > 1,
overhead is reduced of about 8%, while for the others re-
duction is more significant, around 30%.

In Section 3 we mentioned the possibility of using two

8

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

ev
en

t d
el

iv
er

y

s

τ=0.25,φ=0
τ=0.25,φ=1

τ=0.25,φ=2
τ=0.25,φ=3

Figure 9. TTLd =10 and TTLp =8 on a dynamic network.

different values TTLd and TTLp to impose different limits
to propagation, with the benefit of enabling a more accu-
rate performance tuning. The impact of such a scheme is
shown in Figure 9, where we used TTLd =10 and TTLp

=8, with the rest of the parameters unchanged w.r.t. Fig-
ure 8. Note that, differently from those we showed thus far,
this chart represents a single run plotted against (simulated)
time. The values we chose for TTLd and TTLp enable, for
φ > 0, delivery rates a little bit higher than those obtained
with the single TTL=14 in Figure 8. However, the trade-
offs in terms of overhead among the various solutions are
profoundly different. The overhead of φ > 1 is slightly in-
creased, although justified by the small increase in the deliv-
ery rate. On the other hand, the overhead of φ = 1 is greatly
improved, dropping from about 820,000 messages to about
640,000 (more than 20% less), while φ = 2 and φ = 3 are
at about 680,000 and 730,000, respectively. This configu-
ration makes routing with φ = 1 more appealing than in
earlier scenarios, making it a valid alternative to φ = 2. A
different choice for TTLd and TTLp, e.g., further increasing
the gap between the two, would favor routing with φ > 1.

Stability of Event Delivery. Plotting the chart in Figure 9
against time enables us to evidence also another interest-
ing phenomenon whose generality goes beyond the use of
TTL, that is, the event delivery is quite stable over time.
This is particularly relevant especially if compared against
similar results obtained by approaches that rely on a tree,
e.g., [17]. There, event delivery has wide and very frequent
excursions, ranging from 100% down to 40%. The reason
for the remarkable improvement of our approach can be at-
tributed to its use of a graph and its ability to exploit alter-
native routes thanks to the probabilistic component.

Density of Receivers vs. System Scale. In Figure 3 and 7
we analyzed event delivery and overhead when the scale
is increased by adding new publishers and receivers to the
system and showed that, despite the resulting heavy load,
our approach still yields good performance. As a final di-
mension of evaluation, it is worth investigating here how
the properties of our approach are affected by the density
of receivers in the network. We setup a scenario where the

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50 100 150 200 250 300 350 400

ev
en

t d
el

iv
er

y

network size

τ=0.5,φ=0
τ=0.5,φ=1
τ=0.5,φ=2
τ=0.5,φ=3

τ=0.25,φ=0
τ=0.25,φ=1
τ=0.25,φ=2
τ=0.25,φ=3

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 50 100 150 200 250 300 350 400

fo
rw

ar
de

d
ev

en
ts

 p
er

 p
ub

lis
he

d
ev

en
t

network size

τ=0.5,φ=0
τ=0.5,φ=1
τ=0.5,φ=2
τ=0.5,φ=3

τ=0.25,φ=0
τ=0.25,φ=1
τ=0.25,φ=2
τ=0.25,φ=3

Figure 10. Event delivery and overhead in a dynamic
network with a fixed number of receivers.

number of dispatchers (still all publishing at 5 event/s) is in-
creased while the number of receivers per event (10 in our
case) remains constant. The density of receivers therefore
decreases linearly, from 20% for N = 50 down to 2.5%
for N = 400. This scenario elicits new issues w.r.t. the
one we examined previously. With a constant density of re-
ceivers and a growing scale, we need to increment the num-
ber of forwarded events to reach a larger set of receivers,
and therefore increasing the fanout is a viable solution. In-
stead, here the number of receivers does not change: there-
fore, what we are assessing is how “selective” is our routing
towards the receivers.

The simulation parameters are those of Figure 7. Results
are in Figure 10, where we plot both the event delivery and
the number of forwarded events divided by the number of
published events. This latter metric characterizes the effort,
in terms of forwarded events, required to deliver a single
event to a fixed set of receivers in a growing network6.

Figure 10 shows that a high fanout (τ = 0.5) always
achieves high delivery but basically saturates the network
by reaching almost every dispatcher, thus increasing the
traffic linearly with scale. However, even in this case de-
terministic information (φ = 3) achieves some savings, as
it enables a more selective routing. Instead, a lower fanout
(τ = 0.25) yields a very different behaviour. Event delivery
is a lower than with τ = 0.5, since the probability to reach
a receiver depends on the product of the probabilities to se-

6We do not consider the traffic generated by (un)subscriptions since in
our heavy publishing scenario it is negligible w.r.t. the number of events.

9

τ, φ 0 1 2 3
0.25 2,480,085 2,805,589 1,858,628 5,890,292
0.5 6,383,210 6,944,038 6,516,774 10,246,982

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

ev
en

t d
el

iv
er

y

s x 1000

τ=0.5,φ=0
τ=0.5,φ=1
τ=0.5,φ=2
τ=0.5,φ=3

τ=0.25,φ=0
τ=0.25,φ=1
τ=0.25,φ=2
τ=0.25,φ=3

Figure 11. Event delivery in a MANET.

lect the right neighbour at each hop—which in turn depends
on fanout, f = 1 in this case—and therefore decreases as
the routes connecting publishers to receivers become longer.
However, while this negative effect is evident for pure prob-
abilistic routing, it is almost entirely compensated in terms
of delivery by the deterministic information available when
φ > 0, which reduces the reliance on random forwarding
by “steering” forwarded events more efficiently through the
network. This increased efficiency is mirrored in the over-
head chart, where the number of forwarded events per pub-
lished event still increases, due to the longer routes towards
receivers, but this time remains well below a linear trend.

A Mobility Scenario. To validate our approach in a less
controlled simulation environment, we evaluate it in a mo-
bile scenario generated with ANSim [13], a scenario gener-
ator for MANETs. The sequence of topological reconfigu-
rations caused by mobility is recorded and fed into our sim-
ulator, removing the limitation on the degree. The mobil-
ity model we chose is Random Direction model [4], where
nodes move along a direction until they reach one of the
edges. Since in this scenario the degree is no longer con-
stant, we optimize our algorithm by forwarding an event to
a “leaf” dispatcher (i.e., one connected to the rest of the
graph by a single link) only if it is a subscriber.

The chart in Figure 11 shows the event delivery and over-
head for N = 200 nodes confined in a square area with
a side of 2 Km, with a wireless communication range of
250 m, each moving at a velocity of 2 m/s. These values,
which are common in the research field, keep our graph con-
nected. Moreover, after having analyzed the performance
with TTL=∞ we set TTLd =12 and TTLp =8. To provide a
more general validation, we plotted the results with τ = 0.5
and τ = 0.25.

In this setting, pure probabilistic routing with τ = 0.5
provides a reasonable event delivery of a little less than
90%. This is comparable to the one obtained with τ = 0.25
and φ = 1, which however has a much smaller overhead—
about 66% less. All the other variants with τ = 0.25 per-

form poorly in terms of delivery: the number of links used
for forwarding is too low, and the dynamicity is too high
for deterministic information at more than one hop to pro-
vide reliable support for routing. In this case, the variant
with φ = 1 bears the double advantage of being allowed
to exploit deterministic information regardless of τ , and of
exploiting more reliable routing information. On the other
hand, all the other variants with τ = 0.5 improve delivery
over their purely probabilistic variant, with φ = 3 being the
most expensive in terms of overhead.

5. Related Work

The majority of content-based publish-subscribe systems
are built upon a tree-shaped overlay, with some of them ad-
dressing the easier problem of supporting client mobility.
Recent work by the authors [7, 8, 17] deals instead with re-
configurations affecting the dispatchers in the tree. Other
recent approaches [6, 18] exploit a graph-based topology
upon which a set of dispatching trees are superimposed.
However, these papers do not provide any detail about if and
how dynamicity is taken into account, and at which cost.
To our knowledge, only CBM [20] and STEAM [16] ex-
plicitly address content-based publish-subscribe in wireless
networks, although they focus on combining it with loca-
tion information. CBM exploits position-based routing to
constrain the propagation of matching events along a spec-
ified direction, while STEAM limits the event propagation
to a proximity area, inside which events are broadcast and
locally matched against subscriptions. Instead, our work fo-
cuses on the provision of a general-purpose content-based
publish-subscribe. In the related area of content dissemi-
nation over MANETs, autonomous gossiping [9] provides
the ability to push content towards potential receivers, by
exploiting epidemic dissemination of data and user profiles.

In the context of MANET routing, none of the approaces
is directly reusable because of the peculiar challenges posed
by content-based routing, but some rely on similar ideas. In
the Zone Routing Protocol (ZRP) [12] for unicast, a node
proactively maintains routing information about its neigh-
borhood, and reactively requests information about destina-
tions outside of it. In our approach, long distance propaga-
tion is instead achieved in a probabilistic way. On the other
hand, route driven gossip [15] exploits epidemic algorithms
to maintain and disseminate a localized view of the system,
enhanced with routing information.

Finally, we believe our work can be adapted to content
dissemination in sensor networks. Current approaches (e.g.,
[3, 14]) spread nodes’ interests across the whole network
to create a reverse path from a publisher to receivers, but
no details are provided about how to deal with a dynamic
network, which indeed is relevant in many applications.

10

6. Conclusions and Research Opportunities

The solution we presented and its evaluation confirm that
we meet the goals stated in Section 3. The combination of
deterministic information and probabilistic forwarding en-
ables us to rejoin the conflicting goals of providing high
event delivery and low overhead, without sacrificing scala-
bility, and for scenarios with very high degrees of dynam-
icity. The choice of a graph not only gives us a more re-
silient communication infrastructure but also one that can
be more easily maintained. Finally, the resulting algorithm
is very simple, easing understanding and simplifying de-
ployment. We contend that the very concept of content-ba-
sed routing concurs to these significant results, because a
single event may match multiple subscriptions and there-
fore may be routed by different deterministic information.

Nevertheless, our ultimate goal is to devise a mechanism
that adapts to network conditions, for which the results in
this paper provide the foundation. When a perturbation is
observed in the network, the parameters of our solution are
automatically adjusted to guarantee a good tradeoff between
delivery and overhead, e.g., by reducing the amount of de-
terministic information. When the network is instead stable,
deterministic information is propagated to a greater extent,
with mechanisms to disseminate it efficiently (e.g., to avoid
loops) that may even end up relying on a backbone tree and
subscription forwarding. We are currently studying mecha-
nisms to achieve this goal.

Another subject of ongoing research is the optimization
or customization of the solution presented here to specific
application domains. For instance, use in MANET environ-
ments would probably benefit from an alternative scheme
(reminiscent of [11]) where events and subscriptions rely
on the inexpensive one-hop broadcast and where proba-
bility does not determine the likelihood to route along a
link, rather the probability of a node to rebroadcast a mes-
sage. Similar opportunities may exist for other environ-
ments, e.g., content dissemination in sensor networks.

Finally, our immediate goal is the implementation of our
solution and its validation in real applications.

Acknowledgements The work described in this paper
was partially supported by the Italian Ministry of Educa-
tion, University, and Research (MIUR) under the VICOM
project, and by the European Community under the IST-
004536 RUNES project.

References

[1] K. P. Birman et al. Bimodal multicast. ACM Trans. on Com-
puter Systems, 17(2):41–88, 1999.

[2] D. Blough et al. The k-neigh protocol for symmetric topol-
ogy control in ad hoc networks. In MobiHoc’03: Proc. of

the 4th ACM Int. Symp. on Mobile ad hoc networking and
computing, pages 141–152, 2003.

[3] D. Braginsky and D. Estrin. Rumor routing algorithm for
sensor networks. In Proc. of the 1st Int. Wkshp. on Wireless
Sensor Networks and Applications, pages 22–31, 2002.

[4] T. Camp, J. Boleng, and V. Davies. A Survey of Mobil-
ity Models for Ad Hoc Network Research. Wireless Com-
munications & Mobile Computing (WCMC), 2(5):483–502,
2002.

[5] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and Eval-
uation of a Wide-Area Event Notification Service. ACM
Trans. on Computer Systems, 19(3):332–383, Aug. 2001.

[6] A. Carzaniga, M. Rutherford, and A. Wolf. A routing
scheme for content-based networking. In Proc. of INFO-
COM, Mar. 2004.

[7] P. Costa, M. Migliavacca, G. Picco, and G. Cugola. Epi-
demic Algorithms for Reliable Content-Based Publish-
Subscribe: An Evaluation. In Proc. of the 24th Int. Conf.
on Distributed Computing Systems (ICDCS04), pages 552–
561, Mar. 2004.

[8] G. Cugola, D. Frey, A. L. Murphy, and G. P. Picco. Min-
imizing the Reconfiguration Overhead in Content-Based
Publish-Subscribe. In Proc. of the 19th ACM Symp. on Ap-
plied Computing (SAC04), pages 1134–1140, Mar. 2004.

[9] A. Datta, S. Quarteroni, and K. Aberer. Autonomous Gos-
siping: A self-organizing epidemic algorithm for selective
information dissemination in mobile ad-hoc networks. In
Proc. of , Int. Conf. on Semantics of a Networked World,
June 2004.

[10] A. Demers et al. Epidemic algorithms for replicated
database maintenance. Operating Systems Review, 22(1):8–
32, 1988.

[11] Z. Haas, J. Halpern, and L. Li. Gossip-Based Ad Hoc Rout-
ing. In Proc. of INFOCOM, pages 23–27, June 2002.

[12] Z. Haas and M. Pearlman. The Zone Routing Protocol
(ZRP) for Ad Hoc Networks. IETF draft, June 1999.

[13] H. Hellbrück. ANSim Web page. www.i-u.de/
schools/hellbrueck/ansim.

[14] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
diffusion: a scalable and robust communication paradigm
for sensor networks. In Proc. of MobiCom, 2000.

[15] J. Luo, P. Eugster, and J. Hubaux. Route Driven Gossip:
Probabilistic Reliable Multicast in Ad Hoc Networks. In
Proc. of INFOCOM’03, April 2003.

[16] R. Meier and V. Cahill. STEAM: Event-Based Middleware
for Wireless Ad Hoc Networks. In Proc. of the 1st Int. Wk-
shp. on Distributed Event-Based Systems, July 2002.

[17] G. P. Picco, G. Cugola, and A. L. Murphy. Efficient Content-
Based Event Dispatching in the Presence of Topological Re-
configurations. In Proc. of the 23rd Int. Conf. on Distributed
Computing System s (ICDCS03), pages 234–243, 2003.

[18] P. Pietzuch and J. Bacon. Hermes: A Distributed Event-
Based Middleware Architecture. In Proc. of the 1st Int. Wk-
shp on Distributed Event-Based Systems, July 2002.

[19] A. Varga. OMNeT++ Web page. www.omnetpp.org.
[20] H. Zhou and S. Singh. Content based multicast (CBM) in ad

hoc networks. In Proc. of the Workshop on Mobile Ad Hoc
Networking and Computing (MOBIHOC), Aug. 2000.

11

