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Abstract

Head motion determination is an important problem for
many applications including face modeling and tracking.
We present a new algorithm to compute the head motion
between two views from the correspondences of five fea-
ture points (eye corners, mouth corners, and nose tip), and
zero or more additional image point matches. The algo-
rithm takes advantage of the physical properties of the fea-
ture points such as symmetry, and it significantly improves
the robustness of head motion estimation. Thisis achieved
by reducing the number of unknowns to estimate, thus in-
creasing information redundancy. This idea can be easily
extended to any number of feature point correspondences.
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1 Introduction

In this paper, we present a new algorithm to compute
the head motion between two views from the correspon-
dences of five feature points including eye corners, mouth
corners and nose tip, and zero or more additional image
point matches. Thisis useful for applications such as face
modeling and tracking systems where the feature points can
be obtained. For example, the user can mark the feature
points on the two images [5], or the user marks the fea-
ture points on one image while their correspondences are
tracked on the other image [2], or the feature points are ex-
tracted and tracked automatically [3].

If the image locations of these feature points are precise,
one could use five-point algorithm to compute camera mo-
tion. However, thisis usualy not the case in practice. A
human in general cannot mark the feature points with high
precision. A tracking algorithm may not result in perfect
matches either. When there are errors, a five-point algo-
rithm is not robust even when refined with a bundle adjust-
ment technique. The key idea of our work is to use the
physical properties of the feature points to improve the ro-
bustness. In this paper, we exploit the property that a face

is amost symmetric to reduce the number of unknowns.
Additionally, we put reasonable lower and upper bounds
on the nose height and represent the bounds as inequality
constrains. As aresult, the algorithm becomes significantly
more robust.

Even though in this paper we only describe our algo-
rithm in the case of five feature points, it is straightforward
to extend the ideato any number (less than or bigger than 5)
of feature points for robustnessimprovement. For example,
we can drop the nose tip, or add outer eye corners.

In Section 2, we describe the motion estimation algo-
rithm from five feature points only. In Section 3, we extend
the algorithm to incorporate other image point matches ob-
tained from image matching methods. The experiment re-
sults are shown in Section 4.

2 Head motion estimation from five feature
points

Figure 1. The new coordinate system €.

Although, as we said earlier, our approach can be ex-
tended to deal with different number of feature points by
taking advantage of their physical properties, we show in
this paper how to implement this by using five feature points
on aface. The feature points are the left eye corner, right
eye corner, left mouth corner, right mouth corner, and nose
tip, which are denoted by E1, E», My, M>, and N, respec-
tively (See Figure 1). Denote E as the midpoint of E, E»



and M the midpoint of M M,. Notice that human faces
exhibit some strong structural properties. For example, left
and right sides are very close to being symmetric about the
nose; eye corners and mouth corners are amost coplanar.
We therefore make the following reasonable assumptions:
NM is perpendicular to M; M,, NE is perpendicular to
E\E>, and FEE5 is parallel to M M.

Let 7 be the plane defined by E,, Fs, My and M, .
Let O denote the orthogonal projection of point N on
plane w. Let Qq denote the coordinate system which is
originated at O with ON as the Z-axis, OF as the y-
axis; the z-axis is defined according to the right hand sys-
tem (See Figure 1). In this coordinate system, based on
the assumptions mentioned earlier, we can define the co-
ordinates of E,, By, My, Ms, N as (—a,b,0)T, (a,b,0)7,
(—=d,—c,0)T (d, —¢c,0)T, (0,0,e)T, respectively. Thus, we
only need 5 parameters, {a, b, c, d, e}, to define these five
points in this local coordinate system. Thisis to be com-
pared with 9 parameters required for generic five points af -
ter choosing an appropriate local coordinate system. We
have therefore reduced the number of unknowns by four.

Let t denote the coordinates of O in the camera coordi-
nate system, and R. the rotation matrix whose three columns
arevectorsof thethree coordinateaxisof Q. For each point
p € {Ei, Es, My, My, N}, its coordinate under the camera
coordinate system is Rp + t. Wecall (R, t) the head pose
transform.

Given two images of the head under two different
poses (assume the camera is static), let (R, t) and (R, t')
be their head pose transforms. For each point p; €
{E\, E2, M1, M, N}, if we denote its image point in the
first view by m; and that in the second view by m}, we
have the following equations:

proj(Rp; +t) = m; @)

and
proj(R'p; + t') = m] 2

where proj isthe perspective projection. Noticethat we can
fix oneof thea, b, ¢, d, e since the scale of the head size can-
not be determined from the images. Asiswell known, each
pose has 6 degrees of freedom. Therefore the total num-
ber of unknownsis 16, and the total number of equationsis
20. If we instead use their 3D coordinates as unknowns as
in any typical bundle adjustment algorithms, we would end
up with 20 unknowns and have the same number of equa-
tions. By using the generic properties of the face structure,
the system becomes over-constrained, making the pose de-
termination more robust.

To make the system even more robust, we add an in-
equality constraint on e. Theideaistoforcee to be positive
and not too large compared to a, b, c,d. This is obvious
since the nose is aways out of plane . In particular, we

use the following inequality:
0<e<3a ©)]

We chose 3 as the upper bound of e/a simply because it
seems reasonable to us and it works well. The inequality
constraint isfinally convertedto equality constraint by using
penalty function.

exe ife<O;
Prose = 0 if0<e<3aq; 4
(e —3a) x (e — 3a) ife> 3a.

In summary, based on equations (1), (2) and (4), we es-
timatea, b, ¢, d, e, (R,t) and (R, t") by minimizing

5
Foprs = »_ wi([lm; — proj(Rp; + t)||”
i=1

—|—||m; - proj(R'pi + tl)||2) + wp Prose (5

where w;’s and w,, are the weighting factors, reflecting the
contribution of each term. In our case, w; = 1 except for
the nose term which has a weight of 0.5 because it is usu-
ally more difficult to locate the nose tip than other feature
points. The weight for penalty, w,, is set to 10. The objec-
tivefunction (5) is minimized using a L evenberg-Marquardt
method [4]. More precisely, as mentioned earlier, we set a
to a constant during minimization since the global head size
cannot be determined from images. The initia values of
{a, b, c,d, e} are computed from an average face. The ini-
tial rotationmatricesR = R’ = I, and theinitial trandation
vectorst = t' = [0,0,2]7; that is, we assume the head is
in front of the camera and roughly facing toward it.

3 Incorporating image point matches

If we estimate camera motion using only the five user-
marked points, the result is sometimes not very accurate be-
cause the markers contain human errors. In this section, we
describe how to incorporate the image point matches (ob-
tained by any feature matching algorithm such as the one
described in [8]) to improve accuracy.

Let (m;, mj}) (j = 1,..., K) be the K point matches,
each corresponding to the projections of a3D point p ; ac-
cording to the perspective projection (1) and (2). Obvi-
ously, we have to estimate p;'s which are unknown. As-
suming that each image point is extracted with the same
accuracy, we can estimate a, b, ¢, d, e, (R, t), (R',t') and
{p;} G =1,..., K) by minimizing

K
F = Fopts + wp Z(”m] — proj(Rp; + t)|°

j=1
+[m] — proj(R'p; +t)[I*)  (6)



where Fsps is given by (5), and w), is the weighting fac-
tor. We set w, = 1 by assuming that the extracted points
have the same accuracy as those of eye corners and mouth
corners. The minimization can again be performed using a
L evenberg-Marquardt method.

Thisis quite alarge minimization problem since we need
to estimate 16 + 3 K unknowns, and thereforeit is computa-
tionally quite expensive especially for large K. Fortunately,
asshown in [7], we can eliminate the 3D pointsusing afirst
order approximation. The following term

lm; — proj(Rp; + t)|I” + [lm] — proj(R'p; + t')|”

can be shown to be equal, under the first order approxima:
tion, to
(m}"Em,)’

!/ ET7ZZTEm; + m EZZ"E )/

1 0
where m; = [m],1]7, m} = [m[",1]", Z = {0 1

0 OJ
and E isthe essential matrix to be defined below.
Let (R,,t,) be the relative motion between two views.
Itis easy to see that

R, =R'R"
t, =t —R'R”¢t
Furthermore, let’sdefinea3 x 3 antisymmetric matrix [t ]«

suchthat [t,]«x = t,. xx for any 3D vector x. The essential
matrix is then given by

E= [tr]XRT (7)

which describes the epipolar geometry between two
views[1].
In summary, the objective function (6) becomes

F= -7:5pts
K = rTE ~ \2
+w (m}” Em;) (8)
P E : m] ETZZTEm;+m/TEZZTET )
Jj=1

Notice that this is a much smaller minimization problem.
We only need to estimate 16 parameters, the same as in the
five-point problem (5), instead of 16 + 3K unknowns.

To obtain a good initia estimate, we first use only the
five feature points to estimate the head motion by using the
algorithm described in Section 2. Thus we have the follow-
ing two step algorithm:

Stepl. Set w, = 0. Solve minimization problem 8.

Step2. Set w, = 1. Use the results of stepl astheinitial
estimates. Solve minimization problem 8.

Notice that we can apply this idea to the more genera
cases where the number of feature points is not five. For

example, if there are only two eye corners and mouth cor-
ners, we'll end up with 14 unknowns and 16 + 3K equa
tions. Other symmetric feature points (such as the outside
eye corners, nostrils, etc) can be added into equation 8 in a
similar way by using local coordinate system Q.

4 Results

In this section, we show sometest results to compare our
new algorithm with the traditional algorithms. Since there
are multiple traditional agorithms, we chose to implement
the algorithm as described in [6]. It works by first comput-
ing an initial estimate of the head motion from the essential
matrix [1], and then re-estimate the motion with a nonlinear
|east-squares technique.

We have run both the traditional algorithm and our new
algorithm on many real examples. We found many cases
where the traditional agorithm fails while our new algo-
rithm successfully results in reasonable camera motions.
Figure 2 is such an example. The top row shows a pair
of images with five markers each. The middle row shows
the image matching points which are obtained by using a
feature-based image matching algorithm [8]. The green
lines are the motion vectors of the matches. The motion
computed by the traditional algorithm is completely bogus,
and the 3D reconstructions give meaningless results. But
our new algorithm gives a reasonable result. We generate
3D reconstructions based on the estimated motion, and per-
form Delauney triangulation. The left image at the bottom
row shows the texture mapped triangles at a new pose (the
top left image is used as the texture map), and theimage on
the right shows its wire frame.

In order to know the ground truth, we have aso per-
formed experiments on artificially generated data. We ar-
bitrarily select 80 vertices from a 3D face model (Figure 4)
and project these vertices on two views (the head motion is
eight degrees apart). The image size is 640 by 480 pixels.
We a so project the five 3D feature points (eye corners, nose
tip, and mouth corners) to generate the image coordinates
of the markers. We then add random noises to the coordi-
nates (u,v) of both the image points and the markers. The
noises are generated by a pseudo-random generator subject
to Gaussian distribution with zero mean and standard de-
viation ranging from 0.4 to 1.2 pixels. Notice that we add
noise to the marker’s coordinates as well. The results are
plotted in Figure 3. The blue curve shows the results of
thetraditional algorithm and the red curve shows the results
of our new agorithm. The horizontal axis is the standard
deviation of the noise distribution. The vertical axisisthe
difference between the estimated motion and the actual mo-
tion. Both estimated and actual trandlation vectors are nor-
malized, and the difference is measured as their Euclidean
distance. The difference between two rotationsis measured
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Figure 2. Top row: a pair of images with five markers. Middle row: image matching points. Bottom
row: a novel view of the 3D reconstruction of the image matching points with the head motion
computed by our new algorithm.
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Figure 3. Comparison of the new algorithm
with the traditional algorithm. The blue curve
shows the results of the traditional algorithm
and the red curve shows the results of our
new algorithm. The horizontal axis is the
standard deviation of the added noise (in pix-
els). Thevertical axisis the error of computed
head motion.

as the Euclidean distance between the two rotational matri-
ces. Figure 3 shows the average of combined motion errors
from 20 random trials for each noise level. We can see that
as the noise increases, the error of the traditional algorithm
has a sudden jump at certain point, indicating algorithmic
instability with respect to large noise. But the error with
our new algorithm grows much more slowly.

5 Conclusion

We have developed a new head motion estimation algo-
rithm which takes advantage of the physical properties, in
particular the symmetry, of five human face features. The
algorithm significantly improvesthe robustnessover thetra-
ditional method. Thisisachieved by reducing the number of
unknowns to estimate, thus increasing information redun-
dancy. It can be applied to human face modeling and head
tracking systems where the markers can be obtained either
through user intervention or by using automatic feature de-
tection algorithms. Thisalgorithm can be easily extended to
general cases where the number of feature pointsis not nec-
essarily five. Furthermore, we have shown how to make full
use of any additional image point matches, which do not
have any particular semantic meaning, to further improve
the accuracy.

Figure 4. The face model used for experi-
ments.
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