Research in Information Retrieval and Management

Susan Dumais Microsoft Research

Library of Congress Feb 8, 1999

- #Microsoft Research (http://research.microsoft.com)
 - Decision Theory and Adaptive Systems

 - User Interface
 - Database

 - Paperless Office
- # Microsoft Product Groups ... many IR-related

IR Themes & Directions

- ***Improvements in representation and content-matching**
 - Probabilistic/Bayesian models
- **#Beyond content-matching**
 - User/Task modeling
 - Domain/Object modeling
 - Advances in presentation and manipulation

Improvements: Using Probabilistic Model

- **#MSR-Cambridge** (Steve Robertson)
- #Probabilistic Retrieval (e.g., Okapi)
 - Theory-driven derivation of matching function
 - \triangle Estimate: $P_Q(r_i=Rel \text{ or NotRel } | \mathbf{d}=document)$

$$P_{\mathcal{Q}}(r_i \mid \mathbf{d}) = P(r_i)P(\mathbf{d} \mid r_i)/P(\mathbf{d})$$

$$P_{\mathcal{Q}}(r_i \mid \mathbf{d}) = P(r_i) \prod_{i=1}^{r} P(x_i \mid r_i) / P(\mathbf{d})$$

Improvements: Using Probabilistic Model

- #Good performance for uniform length document surrogates (e.g., abstracts)
- #Enhanced to take into account term frequency and document
 - "BM25" one of the best ranking function at TREC
- **#Easy to incorporate relevance feedback**
- ****Now looking at adaptive filtering/routing**

Improvements: Using NLP

#Current search techniques use word forms

- **#Improvements in content-matching will come from:**
 - -> Identifying relations between words
 - -> Identifying word meanings
- ******Advanced NLP can provide these
- #http:/research.microspft.com/nlp

NLP System Architecture

"Truffle": Word Relations

% Relevant In Top Ten Docs

Result:

2-3 times as many relevant documents in the top 10 with Microsoft NLP

"MindNet": Word Meanings

- ****A** huge knowledge base
- ****Automatically** created from dictionaries
- **Words (nodes) linked by relationships
- **#7** million links and growing

MindNet

Beyond Content Matching

- **#Domain/Object modeling**
 - Text classification and clustering
- **#User/Task modeling**
- ****Advances in presentation and manipulation**
 - Combining structure and search (e.g., DM)

Broader View of IR

Beyond Content Matching

- **#Domain/Object modeling**
 - Text classification and clustering
- **XUser/Task modeling**
- ****Advances in presentation and manipulation**
 - Combining structure and search (e.g., DM)

Text Classification

- # Text Classification: assign objects to one or more of a predefined set of categories using text features
 - E.g., News feeds, Web data, OHSUMED, Email spam/no-spam

****Approaches:**

- Human classification (e.g., LCSH, MeSH, Yahoo!, CyberPatrol)

Classifiers

- #A classifier is a function: $f(\mathbf{x}) = conf(class)$
 - \triangle from attribute vectors, $\mathbf{x} = (x_1, x_2, ... x_d)$
 - to target values, confidence(class)
- ***Example classifiers**

 - \triangle confidence(*interest*) = 0.3*interest + 0.4*rate + 0.1*quarterly

Inductive Learning Methods

- **#**Supervised learning from *examples*
 - Examples are easy for domain experts to provide
- ***Example learning algorithms**
 - □ Relevance Feedback, Decision Trees, Naïve Bayes, Bayes Nets, Support Vector Machines (SVMs)
- **#** Text representation
 - △Large vector of features (words, phrases, hand-crafted)

Text Classification Process

Support Vector Machine

****Optimization Problem**

- Find hyperplane, h, separating positive and negative examples
- Optimization for maximum margin: $\min \|\vec{w}\|^2, \vec{w} \cdot \vec{x} b \ge 1, \vec{w} \cdot \vec{x} b \le -1$
- \triangle Classify new items using: $f(\vec{w} \cdot \vec{x})$

Support Vector Machines

Extendable to:

- Non-separable problems (Cortes & Vapnik, 1995)
- Non-linear classifiers (Boser et al., 1992)

#Good generalization performance

- △ Handwriting recognition (LeCun et al.)
- □ Face detection (Osuna et al.)
- ☐ Text classification (Joachims, Dumais et al.)
- #Platt's Sequential Minimal Optimization algorithm very efficient

Reuters Data Set (21578 - ModApte split)

- #9603 training articles; 3299 test articles
- ***Example** "interest" article

2-APR-1987 06:35:19.50

west-germany

b f BC-BUNDESBANK-LEAVES-CRE 04-02 0052

FRANKFURT, March 2

The Bundesbank left credit policies unchanged after today's regular meeting of its council, a spokesman said in answer to enquiries. The West German discount rate remains at 3.0 pct, and the Lombard emergency financing rate at 5.0 pct.

REUTER

****Average article 200 words long**

Example: Reuters news

#118 categories (article can be in more than one category)

#Most common categories (#train, #test)

- Earn (2877, 1087)
- Acquisitions (1650, 179)
- Money-fx (538, 179)
- Grain (433, 149)
- Crude (389, 189)

- Trade (369,119)
- Interest (347, 131)
- Ship (197, 89)
- Wheat (212, 71)
- Corn (182, 56)

#Overall Results

Reuters ROC - Category Grain

Recall: % labeled in category among those stories that are really in category

Precision: % really in category among those stories labeled in category

Text Categ Summary

- ** Accurate classifiers can be learned automatically from training examples
- # Linear SVMs are efficient and provide very good classification accuracy
- **Widely applicable, flexible, and adaptable representations

Text Clustering

- **#**Discovering structure
 - Vector-based document representation
- **#**Interactive user interface

Text Clustering

Beyond Content Matching

- ***Domain/Object modeling**
- **#User/Task modeling**
 - Implicit queries and Lumiere
- ****Advances in presentation and manipulation**
 - Combining structure and search (e.g., DM)

Implicit Queries (IQ)

#Explicit queries:

- User types query, Gets results, Tries again ...

#Implicit queries:

- Search as part of normal information flow
- Ongoing query formulation based on user activities, and non-intrusive results display
- Can include explicit query or push profile, but doesn't require either

User Modeling for IQ/IR

- #IQ: Model of user interests based on actions
 - Explicit search activity (query or profile)
 - □ Patterns of scroll / dwell on text
 - Copying and pasting actions

Implicit Query Highlights

- **#IQ** built by tracking user's reading behavior
 - No explicit search required
 - Good matches returned
- **#IQ** user model:
 - Combines present context + previous interests
- **New interfaces for tightly coupling search results with structure -- user study

Data Mountain with 100 web pages.

Data Mountain with Implicit Query results shown (highlighted pages to left of selected page).

IQ Study: Experimental Details

#Store 100 Web pages

****Retrieve 100 Web pages**

- ☐ Title given as retrieval cue -- e.g., "CNN Home Page"
- No implicit query highlighting at retrieval

Find: "CNN Home Page"

Results: Information Storage

#Filing strategies

	Filing Strategy		
IQ Condition	Semantic	Alphabetic	No Org
IQ0: No IQ	11	3	1
IQ1: Co-occur based	8	1	0
IQ2: Content-based	10	1	0

****Number of categories**

IQ Condition	Average Number of Categories (std in parens)		
IQ0: No IQ	9.3 (3.6)		
IQ1: Co-occur based	15.6 (5.8)		
IQ2: Content-based	12.8 (4.9)		

Results: Retrieval Time

Figure 3. Average web page retrieval time, including standard error of the mean, for each Implicit Query condition.

Example Web Searches

user = A1D6F19DB06BD694

			exerce rog
150052	lion	161858	lion lions
152004	lions	163041	lion facts
152036	lions lion	163919	picher of lions
152219	lion facts	164040	lion picher
153747	roaring	165002	lion pictures
153848	lions roaring	165100	pictures of lions
160232	africa lion	165211	pictures of big cats
160642	lions, tigers, leopards and cheetahs	165311	lion photos
161042	lions, tigers, leopards and cheetahs cats	170013	video in lion
161144	wild cats of africa	172131	pictureof a lioness
161414	africa cat	172207	picture of a lioness
161602	africa lions	172241	lion pictures
161308	africa wild cats	172334	lion pictures cat
161823	mane	172443	lions
161840	lion	172450	lions

date = 970916

excite log

Summary

- **#Rich IR research tapestry**
- **#Improving content-matching**
- ₩And, beyond ...
 - Domain/Object Models
 - User/Task Models
 - ☑ Information Presentation and Use

#http://research.microsoft.com/~sdumais