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Realizable and Unrealizable Specifications
of Reactive Systems

Mart́ın Abadi∗ Leslie Lamport∗ Pierre Wolper†

1 Introduction

A specification is useless if it cannot be realized by any concrete implementation.
There are obvious reasons why it might be unrealizable: it might require the compu-
tation of a nonrecursive function, or it might be logically inconsistent. A more subtle
danger is specifying the behavior of part of the universe outside the implementor’s
control. This source of unrealizability is most likely to infect specifications of con-
current systems or reactive systems [HP85]. It is this source of unrealizability that
concerns us.

Formally, a specification is a set of sequences of states, which represents the set
of allowed behaviors of a system. We do not distinguish between specifications and
programs; a Pascal program and a temporal logic specification are both specifications,
although one is at a lower level than the other. (Some may wonder which is the lower-
level one.) A specification S1 is said to implement a specification S2 iff (if and only
if) it allows fewer behaviors than S2.

We define a class of realizable specifications. It includes all specifications that can
be implemented by physically possible systems, but also some that have no real im-
plementations for reasons that do not concern us—for example, because they presume
the computation of nonrecursive functions.

In general, deciding whether a specification is realizable may be difficult. For a
specification that includes only safety properties, determining realizability is easy in
principle. A specification is unrealizable iff it constrains the environment. A safety
property asserts that something bad does not happen. It constrains the environment
iff there is some sequence of states in which the environment makes the bad thing
happen. However, for liveness requirements, which assert that something good must
eventually happen, it is not easy to determine if they constrain the environment.

To study realizability, we consider a specification to be a type of infinite game of
perfect information [Mar75], where the system plays against the environment and wins
if it produces a correct behavior. Under hypotheses justified by previous work [AL88],
we prove that specifications are determined games, meaning that one of the players
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2has a winning strategy. Hence, a specification is realizable iff it can be implemented
for each known, deterministic environment. This in turn implies that the realizability
problem is ∆1

2—easier than could be expected, but still harder than the consistency
problem, which is in Σ1

1.
As a special case, we consider finite-state processes linked by synchronous commu-

nication, in the style of CCS [Mil80] and CSP [Hoa85]. Specifications consist of finite-
state machines plus liveness conditions expressed by Büchi automata [Buc62, VW86a]
or temporal logic formulas [Pnu81, MW84, VW86a]. We show that the realizability
problem for these specifications is hard for pspace with respect to logspace reduc-
tions and can be solved in exptime. Our algorithm to check realizability yields a
program that satisfies the specification. By contrast, the consistency problem for such
specifications is complete in nlogspace [SVW87].

2 The General Case

In this section, we study realizability in a general model. We first present our model
and show that, under simple hypotheses, specifications in this model allow only Borel
sets in a suitable topology on the set of behaviors. We then define realizability,
meaning realizability in any arbitrary environment, and weak realizability, mean-
ing realizability in any deterministic environment. Prima facie, weak realizability is
weaker than realizability. However, we prove that the two concepts coincide for Borel
specifications and we bound the complexity of realizability.

2.1 Specifications

We now describe our model. Since it is similar to ones used in previous work [Lam86,
AL88], the description will be brief.

Informally, a specification describes the sequences of states that some object under
observation can go through. The object could be a screen, a register, or a sheet of
paper. For instance, in the specification of a factoring program, a state might consist
of the values in an input register and an output register, and the specification might
describe all sequences in which a state where the input register contains a number is
followed by a state where the output register contains that number’s largest proper
factor.

Formally, a state is an element of a set Σ, the state space. A behavior (over Σ) is
the interleaving of two equal-length sequences: a sequence of states and a sequence
of labels from the alphabet Ω = {µ, ε, λ}. We require that the first label be ε, and
that the label between two consecutive states be λ iff the two states are identical.
Intuitively, a behavior is a sequence of states, together with attributions for state
changes. The label µ means that the system modifies the state, ε means that the
environment does, and λ means that there is no change (though there may be an
invisible change “inside” the system or the environment). The environment chooses
the initial state. The empty behavior is denoted by Λ, and · denotes concatenation.

In the following definitions, σ denotes an arbitrary behavior (finite or infinite),



3with labels l0, l1, l2, . . . and states s0, s1, s2, . . ., which we write

l0→ s0
l1→ s1

l2→ s2 . . . .

If the length of σ is greater than m, then σ|m denotes the prefix

l0→ s0
l1→ s1

l2→ . . .
lm−1→ sm−1

σ@m denotes the state sm, and whom(σ) denotes the label lm.
When σ is a finite behavior, we say that σ is stutter-free iff li �= λ for all i. When

σ is an infinite behavior, we say that σ is stutter-free iff, for all i, either li �= λ or
lj = λ for all j ≥ i. We let �σ be the stutter-free sequence obtained by replacing
every maximal finite subsequence

si
λ→ si

λ→ . . .
λ→ si

with the single element si. We define σ 
 τ to mean that �σ = �τ , and Γσ to be the
set {τ : τ 
 σ}. If P is a set of behaviors, Γ(P ) is the set {τ ∈ Γσ : σ ∈ P}. A set
of behaviors P is closed under stuttering iff P = Γ(P ). A property (over Σ) is a set
of infinite behaviors closed under stuttering. Closure under stuttering is essential for
relating specifications at different levels of abstraction [Lam83]. An infinite behavior
is terminating iff at most finitely many of its labels differ from λ.

For the set of labels Ω = {µ, ε, λ} and any state space Σ, let (Ω,Σ)∗, (Ω,Σ)+,
and (Ω,Σ)ω denote the sets of all finite, finite nonempty, and infinite behaviors over
Σ, respectively. An infinite sequence σ0, σ1, σ2, . . . of behaviors in (Ω,Σ)ω is said to
converge to the behavior σ in (Ω,Σ)ω iff for all m ≥ 0 there exists an n ≥ 0 such that
σi|m = σ|m for all i ≥ n. In this case, we let lim σi be σ. The definition of convergence
determines a topology on (Ω,Σ)ω.

We use the following standard topological notions [Mar77]. Let σ be a behavior in
(Ω,Σ)ω and let P be a subset of (Ω,Σ)ω. We say that σ is a limit point of P iff there
exist elements σi in P such that limσi = σ. The set P is closed iff P contains all its
limit points. The closure of P , denoted P , consists of all limit points of P . A set is
open iff its complement is closed. The class of Borel sets is the smallest class that
contains the open sets and is closed under complementation and countable union. The
Σ1

1 sets are the projections of Borel sets (these Borel sets are taken in a state space
“of higher dimension,” with additional state components, which projection deletes);
the Π1

1 sets are the complements of Σ1
1 sets; the Σ1

2 sets are the projections of Π1
1

sets; the Π1
2 sets are the complements of Σ1

2 sets; ∆1
2 is the intersection of Σ1

2 and
Π1

2. With each topological class, we associate a class of problems—for example, a Σ1
1

problem is one that can be reduced to the membership problem for a Σ1
1 set.

A specification consists of a state space together with a property over the state
space. We consider a general method of writing specifications that uses internal,
auxiliary variables. To describe a property O over the state space Σ, we first choose
a new state space ΣI and define a property P over Σ × ΣI . We call P the complete
property of the specification. Let Π[ΣI ] be the projection function that erases the
ΣI components of the states. We then define the property O to be the closure under
stuttering of the projection of P—that is, the set Γ(Π[ΣI ](P )) of behaviors. We denote

Γ(Π[ΣI ](P )) by Π̃(P ) and call it the external part of the complete property P .



4The set ΣI of internal states is used to simplify the specification. For example,
in a queue specification, an element of Σ would describe the state of the input and
output devices, while an element of ΣI might be a list of values describing the con-
tents of the queue. However, all specifications that prescribe the same input/output
behavior should be considered equivalent, even if they mention different internal data
structures.

A convenient way of expressing the complete property P is as the conjunction of
a safety property M [AS86] and a supplementary property L. The supplementary
property can be arbitrary and typically expresses liveness requirements [AS85]. We
advocate the use of transition axioms or state machines for expressing safety prop-
erties, and the use of suitable logics, such as various temporal logics [Pnu81], for
expressing supplementary properties. Topologically, a safety property is a closed set.
In most formalisms, such as temporal logics, it is either impossible or unnatural to ex-
press properties that are not Borel sets. We therefore assume that the supplementary
properties are Borel sets. This implies that the complete property is also Borel.

Note that even if the complete property is a Borel set, the external part of the
complete property is not always a Borel set—it is a Σ1

1 set. However, we will show
that under reasonable and useful restrictions on its specification (from [AL88]), the
external part of a property is also a Borel set.

The first restriction requires that the external part Π̃(P ) of the closure of the
complete property, P , is closed. In particular, if the complete property P is a safety
property, then so is Π̃(P ). This requirement follows from a stronger finite-invisible-
nondeterminism condition, which states that, given any finite number of steps of a
behavior allowed by Π̃(P ), there are only a finite number of possible choices for its
internal state component.

The second restriction, which has been called internal continuity , requires that if
a behavior is allowed by P and its external part is allowed by O, then the behavior is
allowed by P as well. In particular, internal continuity holds when the supplementary
property L mentions only the state space Σ and does not depend on the ΣI state
component.

A specification satisfying these two restrictions is said to be regular.

Definition 1 The specification S, with property O and complete property P , is reg-
ular iff Π̃(P ) is closed and P ∩ Π̃−1(O) ⊆ P .

Theorem 1 All regular specifications define Borel properties.

This theorem provides a partial answer to questions on the expressive power of regular
specifications that were left open in previous work [AL88]. Its proof is omitted.

In the rest of Section 2, we assume that the state space Σ is fixed once and for all.
We make no assumptions about how specifications are written and simply identify a
specification with the property that it specifies.

2.2 Realizable Specifications

Intuitively, a specification is realizable if there exists a physical device that implements
it. We start by defining an abstract computing device, which we call a computer for
short.



5Definition 2 A computer f is a partial function from (Ω,Σ)+ to Σ such that, for
all s, σ, τ , i, and j, if f(σ|i) = s and σ|i 
 τ |j then f(τ |j) = s as well, and
f(σ|i+1) �= σ@i.

A computer is a function that decides state changes, on the basis of a finite initial
fragment of a behavior. The first condition requires the function to be invariant under
stuttering. The second condition requires that it introduce no stutters.

Definition 3 A run of a computer f is an infinite behavior σ such that, for all i,
if whoi(σ) = µ then f(σ|i) is defined and equals σ@i, and if f(σ|i) is defined then
whoj(σ) �= λ for some j ≥ i. The set of runs of f is denoted by R(f).

This definition guarantees that the computer causes all changes that are attributed to
it, and that infinite stuttering is impossible when the computer can cause a change.
An additional condition, asserting that the computer always gets a chance to take a
move, is considered below.

We say that a realization is the set of behaviors that can be generated with a com-
puter, and a realizable specification is one that is implemented by some realization.

Definition 4 A realization is a specification with property R(f), for some com-
puter f .

Definition 5 Specification S1 implements specification S2 if S1 ⊆ S2.

Definition 6 A specification is realizable iff there exists a realization that imple-
ments it.

The definition of realizability might seem overly restrictive because it requires im-
plementation by a deterministic computing device. However, it is easy to check that
permitting our computers to be nondeterministic would yield an equivalent definition.
Our definition is actually quite liberal—for example, our computers may compute
nonrecursive functions. Realizability, as we have defined it, is a necessary but not
sufficient condition for the existence of a real implementation.

Realizability has many expected properties. For example, we can define a parallel-
composition operation and prove that it preserves realizability.

2.3 Realizability Under Fairness

In our definition of realizability, there is no fairness condition to insure that the
computer gets a chance to do anything. Thus, a specification requiring that a register
eventually equals 1 is unrealizable because a continual stream of environment actions
can prevent the system from ever setting the register. This specification might be
realizable if only “fair runs” were allowed. One possible definition of “fair” is:

Definition 7 A fair run of a computer f is a run of f such that if, for some i, f(σ|j)
is defined for all j ≥ i, then whoj(σ) = µ for some j ≥ i. The set of fair runs of f is
denoted by RF (f).



6Realizability under fairness is then defined in the obvious way. It is a weaker require-
ment than realizability.

Proposition 1 All realizable specifications are realizable under fairness, but not con-
versely.

The concept of realizability under fairness can be reduced to the usual concept of
realizability. A specification S is realizable under fairness iff a certain specification
S∗ is realizable; S∗ is obtained from S simply by adding some behaviors where the
environment shuts out the system.

Theorem 2 Let S be a specification, and let S∗ = S ∪ {R(f)|RF (f) ⊆ S}. Then S
is realizable under fairness iff S∗ is realizable.

2.4 Weakly Realizable Specifications

A specification is realizable iff there exists a single computer that implements the spec-
ification in a totally unpredictable environment. One might think that this definition
is too strong because it does not take into account knowledge that the implementor
might have of what the environment can actually do. We therefore introduce a weaker
notion of realizability, in which the implementor knows exactly how the environment
will behave. Knowledge of the environment is expressed formally by describing it as
a (deterministic) computer.

Definition 8 An environment computer h is a partial function from (Ω,Σ)∗ to Σ
such that, for all s, σ, τ , i, and j, if h(σ|i) = s and σ|i 
 τ |j then h(τ |j) = s as well,
h(σ|i+1) �= σ@i, and h(Λ) is defined.

Definition 9 An environment run of an environment computer h is a behavior σ
such that, for all i, if whoi(σ) = ε then h(σ|i) is defined and equals σ@i, and if h(σ|i)
is defined then whoj(σ) = ε for some j ≥ i and whok(σ) = λ for all k such that
i ≤ k ≤ j. The set of environment runs of h is denoted by ER(h).

Definitions 2 and 8 differ in that environment computers are defined on the
empty behavior while “ordinary” computers are not—in other words, the environ-
ment chooses the initial state, not the system. Definition 9 guarantees that the
environment computer is the first one to cause a change when it decides to. In other
words, the environment has priority over the system.

Given the environment computer, an implementor needs to implement only a sin-
gle behavior. Thus, a specification is realizable for a particular environment computer
iff it allows some run of that computer.

Definition 10 The specification S is weakly realizable if ER(h) ∩ S �= ∅ for all envi-
ronment computers h.

Realizability implies weak realizability. On the other hand, it is conceivable that
some specification can be implemented in each deterministic environment, with full
information about the environment, but cannot be implemented in a totally un-
predictable, arbitrary environment. We show below that, for Borel specifications,
realizability and weak realizability are actually equivalent.



72.5 Games and Specifications

A specification can be viewed as the rules for a two-player game, where the system,
playing against the environment, must cause a correct behavior to be produced. We
now make this correspondence between games and specifications precise and reap a
few results from known theorems on infinite games.

Infinite games of perfect information have been considered in mathematics, start-
ing in Polish taverns in the 1930’s [Mau81, GS53]. Recently, infinite games of perfect
information have received much attention in descriptive set theory [Mar77]. In one
of the typical scenarios, players I and II alternately produce moves; if the sequence of
moves belongs to a certain payoff set A, then player II wins, otherwise player I wins.
A strategy is a function that tells either player what its next move should be on the
basis of previous moves. A winning strategy for player II (or I) is one that guarantees
that the sequence obtained is in A (or not in A).

There are obvious differences between the course of a game between two players
and the running of a concurrent system in an environment. Most noticeably, the
system and the environment do not take turns as politely as the players in a game. On
the contrary, the environment is free to act as it pleases and when it pleases. At best,
that the environment acts only at particular times can be proved as a lemma, or stated
as an explicit assumption. (For synchronous systems, where such an assumption
is justified, the games we discuss can be simplified.) The possibility of stuttering
introduces a second difference between specifications and games. The repetition of a
state in a behavior does not matter for the purposes of correctness, but the presence
of an idle turn in the course of a game might matter in naming a winner.

In view of these differences, it may seem reasonable to introduce a new class of
games, perhaps similar to the Davis-Dubins games, where player I has freedom in
choosing when to act [Dav64]. We find it more convenient to define the games that
correspond to specifications as a special case of the basic scenario we have outlined.

For a specification S, we define a game G(S) as follows. The two players, ε and µ,
alternately produce elements of Σ, with player ε starting. A move is a stutter if the
element played is identical to the previous one played; a move is proper otherwise.
An idle turn is a pair of consecutive stutters, one by ε and then one by µ. To each
sequence of moves, we associate the behavior obtained by labeling the proper moves
with either ε or µ, depending on who made them, and labeling all stutters with λ.
Given a sequence of moves, player µ wins iff the behavior associated with the sequence
is allowed by S and no proper move of µ immediately follows a proper move of ε.

Intuitively, the environment plays whenever it wishes. A stutter indicates that it
would let the system play. The system is not allowed to make proper moves at any
other time. The system wins if it has never violated this rule and if the specification
allows the sequence of moves.

Despite some technical difficulties related to stuttering, the notions of realizability
and weak realizability find simple expressions in terms of games.

Theorem 3 The specification S is realizable iff player µ has a winning strategy in
the game G(S). The specification S is weakly realizable iff player ε does not have a
winning strategy in the game G(S).



8This correspondence leads to new insights on realizability. First, using the Axiom
of Choice, Gale and Stewart have constructed games which are not determined—that
is, where neither of the players has a winning strategy [GS53]. From this result, one
derives the existence of weakly realizable but not realizable specifications.

Theorem 4 Some specifications are weakly realizable but not realizable.

All the examples we know of specifications that are weakly realizable but not
realizable seem artificial. For more common specifications, realizability coincides with
weak realizability, and thus appears as a robust notion. Martin has proved that all
Borel games are determined [Mar75], which implies:

Theorem 5 Weak realizability and realizability are equivalent conditions on Borel
specifications.

Martin’s theorem involves extremely complex strategies [Fri71]. However, the
strategies for safety properties are much simpler than those for arbitrary properties.
Moreover, in important “finite cases”, the result can be refined to provide finite-state
strategies [BL69, GH82]. Thus, issues of realizability are relatively simple for safety
specifications and propositional specifications, and become more complex as intricate
liveness requirements are introduced.

From Theorem 5, we derive the following complexity result.

Corollary 1 For Borel specifications, the realizability problem is ∆1
2.

This complexity upper bound is smaller than could be expected in general, thanks to
determinacy, and it is the best possible—obviously, realizability of Borel specifications
is hard for both Σ1

1 and Π1
1. However, even for Borel specifications, the complexity of

the realizability problem remains higher than that of the consistency problem, which
is Σ1

1.

3 The Finite Case

A common method of writing specifications is to use finite-state transition systems or
finite automata. This method makes possible the automatic verification of a specifica-
tion by exploring the state space. Unfortunately, whereas transition systems are well
suited for specifying safety properties, they are not adequate for specifying liveness
properties. This is because transition systems can specify which transitions are or
are not possible (a safety property) but, as such, are incapable of stating that some
transition should eventually be taken (a liveness property).

One way to express liveness properties is to add to the transition system a re-
striction on its infinite behaviors. For instance, one could state that in all infinite
behaviors some action should be taken infinitely often. This can be done either by
using an automaton on infinite words—such as a Büchi automaton [Buc62]—or by
using a propositional temporal logic formula [Pnu81, MW84], which can be converted
to a Büchi automaton [WVS83, VW88]. The specification of a process is then the
combination of a finite automaton describing the allowed transitions of the system



9and a Büchi automaton restricting the infinite behaviors of the system. As one would
expect, a finite automaton is a realizable specification. However, once the infinite
behaviors of a finite automaton are restricted, the realizability question is much more
delicate.

In this section, we define what a finite-state process is and give a semantics for
processes that is the basis of our definition of realizability. We then describe an
algorithm for deciding realizability and discuss the implications of realizability for
finite-state verification.

3.1 Process Definition

We explore a framework suitable for the verification of finite-state processes. Our
framework is in the tradition of CCS [Mil80] and TCSP [Hoa85] in that we use
handshaking as a communication mechanism. However, we only use a simple process
description language. Basic processes are finite automata, and parallel composition
is the only operation on processes. This is not really a restriction, since finite-state
CCS or TCSP programs can be systematically transformed into transition systems
[Mil80, Mil84, Old85]. One substantial difference between our framework and more
usual ones is that we consider the infinite behaviors of the processes and allow a
restriction on these behaviors as part of the specification of processes. The syntax
and semantics we use are closer to those of TCSP than to those of CCS.

Processes are defined over an alphabet of communication actions Σ. In addition to
transitions corresponding to actions, processes can take silent transitions labeled by
the silent (internal) action τ . A process specification is a pair P = (Pt, Pi) consisting of
a finite-state transition system Pt and an infinitary restriction Pi limiting the infinite
sequences of communication actions of the process. The finite-state transition system
Pt is a quadruple (Σ, St, ρt, s0t), where

• Σ is the alphabet of communication actions,

• St is a finite set of states,

• ρt : St × (Σ ∪ {τ}) → 2St is a transition relation that for each state and action
gives the possible next states,

• s0t ∈ St is the initial state of the process.

The infinitary restriction Pi is a finite automaton on infinite words (a Büchi au-
tomaton) on the alphabet Σ—i.e., the alphabet of communication actions of the
process, not including the silent action. This automaton defines a subset of Σω. We
require that all infinite behaviors of the process are in this subset.

Formally, the infinitary restriction Pi is a quintuple (Σ, Si, ρi, s0i, Fi), where

• Σ is the communication alphabet of the process,

• Si is a finite set of states,

• ρi : Si × Σ → 2Si is a nondeterministic transition function,



10• s0i ∈ Si is a starting state,

• Fi ⊆ Si is a set of designated states.

A run of Pi over an infinite word w = a1a2 . . . is an infinite sequence s0, s1, . . ., where
s0 = s0i and sj ∈ ρ(sj−1, aj), for all j ≥ 1. A run s0, s1, . . . is accepting iff there is
some designated state that repeats infinitely often—that is, iff for some s ∈ Fi there
are infinitely many j’s such that sj = s. The infinite word w is accepted by Pi iff
there is an accepting run of A over w. The set of denumerable words accepted by Pi

is denoted Lω(Pi).
We now define a parallel composition operation on processes that corresponds to

the concurrent execution of two processes with handshaking on events common to
both. Let P1 = (Pt1, Pi1) and P2 = (Pt2, Pi2) be two finite-state processes, where
Pt1 = (Σ1, St1, ρt1, s0t1), Pt2 = (Σ2, St2, ρt2, s0t2), and Pi1 and Pi2 are Büchi automata.
The process P1 ‖ P2 is the process ((Pt1 ‖ Pt2), (Pi1 ‖ Pi2)). The finite-state transition
system (Pt1 ‖ Pt2) is obtained as usual by taking the product of the transition systems
Pt1 and Pt2, synchronizing on actions common to both processes. The infinitary
restriction (Pi1 ‖ Pi2) is the Büchi automaton that accepts all infinite words over
the alphabet Σ1 ∪ Σ2 whose projections on the alphabets of P1 and P2 are in the
sets accepted by Pi1 and Pi2, respectively. In other words, the parallel composition
of the infinitary restrictions is a Büchi automaton that accepts all infinite sequences
compatible with both component processes.

3.2 Semantics

To define realizability, we need to interpret processes in an abstract semantic domain.
To choose the semantic domain, we take into account the three properties of processes
that we want to observe:

• their infinite behaviors,

• their terminating finite behaviors (whether they are intended to terminate or
result in deadlock),

• their possibility of diverging (producing an infinite sequence of internal actions).

To simplify our discussion, we consider only nondiverging processes. Note that parallel
composition preserves nondivergence, since it does not introduce any hiding of actions.

We want our semantics to be fully abstract with respect to parallel composition.
That is, we want to be able to determine the semantics of a composed process from
its parts, and we want our semantics to be the weakest one compatible with this
requirement.

Main [Mai86] and Hennessy [Hen87] have shown that if we restrict attention only
to finite behaviors, then the process semantics satisfying our requirement are essen-
tially failure semantics [Hoa85]. The failures of a process are the pairs (s,X), where s
is a sequence of external actions of the process and X is a set of actions the process can
refuse after executing s. Because we also care about the infinite behaviors of processes,
our semantic domain for a process defined on the alphabet Σ is 2FAILURESΣ ×2Σω

. In
other words, the semantics of a process is a set of failures and a set of infinite words.



11Now, we associate an element (F, I) of the semantic domain with a process P =
(Pt, Pi). We use the usual definitions [BHR84, Hoa85] to associate a set F of failures
with the transition system Pt. We denote by Lω(Pt) the set of infinite behaviors
allowed by Pt. These are the infinite sequences of visible actions that can be generated
by the transition system Pt viewed as a Büchi automaton whose set of accepting
states is the whole set of states. The set I of infinite sequences is defined to be the
intersection of Lω(Pt) and Lω(Pi).

Finally, an order on the semantic domain represents the implementation relation.

Definition 11 Let P1 and P2 be processes whose semantics are respectively (F1, I1)
and (F2, I2). Then we have that P1 ≤ P2 (P1 implements P2) iff F1 ⊆ F2 and I1 ⊆ I2.

1

Note that the fewer failures a process has, the fewer possible behaviors it has. An
example is given in the next section.

3.3 Realizability

In the context of finite-state automata, we take transition systems without infinitary
restrictions to be directly implementable.

Definition 12 A process specification (Pt, Pi) is a realization iff Lω(Pt) ⊆ Lω(Pi).

In other words, realizations are processes whose infinitary restrictions do not actually
constrain the behavior of the process.

Definition 13 A process specification P is realizable iff there exists a realization P ′

such that P ′ ≤ P .

It is natural for a process with a vacuous infinitary restriction to be a realization.
We allow only these realizations because an infinitary restriction, given as a Büchi
automaton, is not directly implementable. It is not enough to say that something
should happen infinitely often to have a program; a program should choose one or
more specific ways of realizing this condition.

One might think that our notion of realizable process is too restrictive because
we allow only finite-state transition systems as realizations. It is conceivable that
a process described by a finite-state transition automaton and a Büchi automaton
would be realizable by an infinite-state transition system, but not by a finite-state
one. We show in Section 3.4 that this situation cannot arise.

Intuitively, a specification is realizable iff there exists a program that guarantees
that all infinite behaviors are in the required set without introducing any new fail-
ures. The fact that we cannot introduce new failures reflects the requirement that a
realizable specification can be implemented without constraining the environment. In
other words, a process specification is realizable iff its infinitary requirement can be
implemented by making choices within the internal nondeterminism of the finite-state
transition system.

Let us examine some examples. In the system of Figure 1, the failure set consists

1Most orders that have been defined on semantic domains similar to ours are in the opposite
direction, which is more natural when dealing with semantic issues. We choose the direction that
corresponds to implementation (less nondeterminism).
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Figure 3: A realization.

of all failures of the form ({a, b}�, ∅). The set of infinite behaviors generated by the
transition system is {a, b}ω. This set of failures has no well defined (i.e., corresponding
to a process) subset of failures. Thus, if we add to this transition system an infinitary
requirement in the form of a Büchi automaton, then the specification is realizable
only if the Büchi automaton accepts all words in {a, b}ω (is universal).

On the other hand, the transition system of Figure 2 has as its set of failures all
elements of the form ({a, b}�, ∅), ({a, b}�, {a}), and ({a, b}�, {b}). Consequently, it
forms a realizable specification in conjunction with any nonempty infinitary restric-
tion. A typical example of such an infinitary restriction is the requirement that a and
b appear infinitely often in all infinite behaviors. This is realized by the transition
system of Figure 3.

As a final remark, note that the parallel composition of realizable processes is a re-
alizable process. Indeed, the parallel composition of the realizations of the component
processes is a realization of the composed process.

3.4 Deciding Realizability

We now address the problem of deciding whether a process specified by a finite-state
transition system and a Büchi automaton is realizable. First, notice that this is a
different problem than deciding whether the specification is consistent. Consistency
simply means that the set of infinite behaviors of the process is nonempty. As the
examples of the previous section show, this can be the case even if the specification
is unrealizable. To solve the consistency problem, one can check that the product of
the transition system and the Büchi automaton is nonempty, which can be done in
polynomial time—in fact, the problem is complete for nlogspace [SVW87].

The realizability problem is much harder, but it is decidable in exptime:



13Theorem 6 Given a process specification P = (Pt, Pi), where Pt is a finite-state
transition system and Pi is a Büchi automaton, it is possible to decide in exponential
time whether the specification P is realizable.

The idea of the proof is, following the ideas in [VW86b], to build a tree automaton
on infinite trees that accepts an infinite tree iff it is a realization of the specification
P . The automaton checks on the one hand that all failures appearing in the infinite
tree are failures of Pt, and on the other hand that all infinite paths through the
tree are accepted by the Büchi automaton Pi. For the latter step, we use a result of
Safra [Saf88] to construct a deterministic version of the Büchi automaton. This yields
a Rabin automaton [Rab69] with a number of states exponential in the size of the
Büchi automaton, but with a linear number of accepting pairs. The tree automaton
is thus a Rabin tree automaton with a number of states exponential in the size of
(Pt, Pi) and a linear number of accepting pairs.

One then checks whether this tree automaton is nonempty. Using results of Emer-
son and Jutla [EJ88], this can done in time polynomial in the size of the tree automa-
ton. Our algorithm for checking realizability is thus in exptime.

If the tree automaton is indeed nonempty, it follows by the results of Hossley and
Rackoff [HR72] that there is a finitely generated tree accepted by the automaton.
This implies that if a process has an infinite realization, then it also has a finite-state
realization.

Theorem 7 Given a process specification P = (Pt, Pi), where Pt is a finite-state
transition system and Pi is a Büchi automaton, the problem of deciding whether P is
realizable is logspace hard for polynomial space.

This follows from the example of Figure 1, which shows that the universality prob-
lem for Büchi automata, which is pspace-complete [SVW87], can be reduced to the
realizability problem.

3.5 Realizability and Verification

One can verify that a set of finite-state processes operating concurrently satisfies a
requirement by verifying that their parallel composition satisfies it. Such a verifica-
tion can tell us that we have a correct abstract representation of the processes to
be implemented. But, doing this with no regard for realizability can lead to one of
two unpleasant consequences. The first is that, during the implementation, someone
notices that the specified processes are not implementable. The abstract description
should then be revised and the verification redone. The second, and more dangerous,
possible consequence is that the implementation corresponds to a different abstract
description—for example, that of Figure 2 instead of Figure 1. In this case, of course,
the verification of the abstract descriptions is meaningless, and the implemented sys-
tem may exhibit unexpected behaviors such as deadlocks.

Parrow [Par85] has introduced an interesting “infinitary process algebra”. It is
essentially an extension of CCS with restrictions on infinite behaviors expressed by
temporal logic formulas or Büchi automata. The theory of this algebra is quite well
developed and is used for verification. However, the concept of realizable specifications



14is not considered, which makes the verifications done in this framework potentially
meaningless.

4 Conclusion

Realizability has only recently received attention. One might think that the realizabil-
ity problem would have been addressed by work on synthesizing concurrent programs
from temporal logic specifications—for example, by Emerson and Clarke [EC82] or
Manna and Wolper [MW84]. However, these approaches avoid the issue of realizabil-
ity by dealing only with closed systems, in which there is no environment.

The work of Pnueli and Rosner [PR89a, PR89b] probably comes the closest to
describing the realizability problem as we understand it. There, one finds an elegant
approach for synthesizing reactive modules from finite-state specifications. Their
synthesis method uses automata on trees and is similar to our method for checking
realizability in the finite-state case. However, our method is a little more general
because we check realizability with respect to a transition system, so we can check
realizability in an environment whose behavior is restricted, not just in an arbitrary
environment.

Even if one is not interested in automatic synthesis (which rarely produces usable
results), it is important to know that not all specifications are realizable and to be
able to distinguish between realizable and unrealizable specifications. How easy it
is to avoid writing unrealizable specifications provides a new criterion for judging
specification styles.
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[Mil80] R. Milner. A Calculus of Communicating Systems. Volume 92 of Lecture
Notes in Computer Science, Springer Verlag, Berlin, 1980.

[Mil84] R. Milner. A complete inference system for a class of regular behaviours.
Journal of Compututer and System Science, 28:439–466, 1984.

[MW84] Z. Manna and P. Wolper. Synthesis of communicating processes from tem-
poral logic specifications. ACM Transactions on Programming Languages
and Systems, 6(1):68–93, January 1984.

[Old85] E. R. Olderog. Process theory: semantics, specification and verification. In
Proc. Advanced School on Current Trends in Concurrency, pages 442–509,
Volume 224, LNCS, Springer-Verlag, Berlin, 1985.

[Par85] J. Parrow. Fairness Properties in Process Algebra. PhD thesis, University
of Uppsala, Sweden, 1985.

[Pnu81] A. Pnueli. The temporal semantics of concurrent programs. Theoretical
Computer Science, 13:45–60, 1981.

[PR89a] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In
Proceedings of the Sixteenth ACM Symposium on Principles of Program-
ming Languages, Austin, January 1989.

[PR89b] Amir Pnueli and Roni Rosner. On the synthesis of an asynchronous reactive
module. In Proceedings of ICALP 89, Stresa, July 1989.

[Rab69] M. O. Rabin. Decidability of second order theories and automata on infinite
trees. Transaction of the AMS, 141:1–35, 1969.

[Saf88] Shmuel Safra. On the complexity of omega-automata. In Proceedings of the
29th IEEE Symposium on Foundations of Computer Science, White Plains,
October 1988.

[SVW87] A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for
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