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Abstract. Based on Lloyd iteration, we present a variational method for extract-
ing general quadric surfaces from a 3D mesh surface. This work extends the pre-
vious variational methods that extract only planes or special types of quadrics,
i.e., spheres and circular cylinders. Instead of using the exact L2 error metric, we
use a new approximate L2 error metric to make our method more efficient for
computing with general quadrics. Furthermore, a method based on graph cut is
proposed to smooth irregular boundary curves between segmented regions, which
greatly improves the final results.

Keywords: variational surface approximation, quadric surface fitting, graph cut,
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1 Introduction

Polygonal mesh surfaces are an important shape representation of complex 3D models,
now readily acquired with 3D digital scanners or derived from CT/MRI volume data.
But a high level concise and faithful geometric representation of mesh data is always
desirable for geometry processing or rendering in graphics and CAD/CAM.

The Lloyd method for data clustering is employed in [1] to generate piecewise planar
approximation of mesh surfaces. Each planar facet is called a proxy representing the part
of the mesh surface approximated by the facet. This approach is extended by Wu and
Kobbelt [2] to include spheres, circular cylinders and rolling-ball surfaces as additional
types of proxies to achieve a more compact approximation. The confinement to these
special surfaces is largely due to the relative ease of computing the exact Euclidean
distance from a point to such surfaces.

There are two contributions in the present paper. Firstly, motivated by wide applica-
tion and superior approximation power of quadrics, within the same clustering frame-
work, we further extend the surface types of proxies to include general quadric surfaces,
or quadrics for short, plus planes. We show how Euclidean distance from a triangle to
a quadric can be computed in an approximate but efficient manner, while delivering
robust segmentation results.

Secondly, we propose a new method for smoothing irregular boundary curves be-
tween adjacent segmented regions through energy minimization using a graph cut ap-
proach. This step produces more regular boundary curves, resulting in significantly
improved segmentation results compared against previous results (e.g., [2]).
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1.1 Related Work

There are two areas of research that are closely related to our work: shape approxima-
tion and mesh segmentation. The main purpose of shape approximation is to compute
a simple and compact surface representation of a complex geometric shape, based on
different surface types or different computational approaches. We will mainly review
those methods that employ the clustering approach.

Shape Approximation. Cohen-Steiner et. al [1] propose a shape approximation al-
gorithm based on clustering approach to optimally approximate a mesh surface by a
specified number of planar faces. This optimization problem is solved as a discrete
partition problem using the Lloyd algorithm [3], which is commonly used for solving
the k-mean problem in data clustering. There are two iterative steps in this method:
mesh partition and fitting a plane face, called a proxy, to each partitioned region. This
method proves effective especially for extracting features and planar regions, but tends
to produce an overly large number of planar proxies for a good approximation of a free-
form surface. Because of its optimization nature, the method is often referred to as a
variational method.

(a) (b) (c) (d)

(e)

Fig. 1. (a) Original Chess piece (12K triangles); (b) Approximated by 12 hybrid proxies by the
method in [2]: 1 plane, 1 cylinder and 10 spheres; (c) Approximated by 18 hybrid proxies by the
method in [2]: 1 planes and 17 spheres; (d) Approximated by 12 quadric proxies by our method:
1 plane, 4 spheres, 4 ellipsoids, and 3 hyperboloids of one sheet; (e) Colors for different types of
quadric surfaces used in this paper

Wu and Kobbelt [2] extend the work in [1] by introducing spheres, cylinders and
rolling ball patches as additional basic proxy types, so that a complex shape can be
approximated to the same accuracy by a much fewer number of proxies, leading to a
more compact representation. However, these newly added surface types mentioned are
still rather restricted, even for CAD models and other man-made objects. For example,
the middle part of the Chess piece in Fig. 1 cannot be well approximated either by a
circular cylinder or a collection of spherical surface strips.
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Simari et al. [4] use ellipsoids as the only type of proxies for approximating mesh sur-
faces, again using the Lloyd method with the error metric being a combination of Euclid-
ean distance, angular distance and curvature distance. The segmentation boundaries are
smoothed by a constrained relaxation of the boundary vertices. They also approximate the
volume bounded by a mesh surface using a union of ellipsoids, where whole ellipsoids,
rather than ellipsoidal surface patches, are used. Julius et. al [5] segment mesh surfaces
into developable surface charts for texture mapping and pattern design. Open segmenta-
tion boundaries are straightened by a shortest path algorithm and interior segmentation
boundaries are smoothed by a graph cut method similar to that described in [6].

Attene et al. [7] propose a fast algorithm using automatic face clustering to segment
a mesh hierarchically. A binary cluster tree is created from bottom to top. At each
iteration, every pair of adjacent clusters are fitted by plane, sphere and cylinder, the pair
with the minimal fitting error is merged into one cluster. Smoothing of segmentation
boundaries is not considered.

Implicit surfaces have long been used for shape approximation and segmentation.
Based on region growing, Besl et al. [8] segment range image data by fitting implicit
surfaces of variable orders. Their algorithm works well on objects with sharp features
or curvature discontinuities, but cannot handle free-from shapes. Fitzgibbon et al. [9]
improve this work, also using region growing, to fit general quadric surfaces and planes
to the range images, and compute surface intersections to extract a B-rep from the seg-
mented image.

Since region growing relies mainly on local consideration, such as mean curvature
and Gaussian curvature estimation, the segmentation result can be poor when there is
no obvious curvature discontinuity, e.g., when two quadric patches join with near G1

continuity. In this regard the iterative variational method has a distinct advantage that
the local error in partition can be corrected by the fitting process, and the improved
partition in turn provides a more reliable basis for better fitting.

Mesh Segmentation. Besides being used as a preparatory step for surface approxima-
tion, mesh segmentation is also used to partition a surface model into meaningful parts
for various other purposes [10,11,12,13,6,14,15,7,16]. A detailed discussion of mesh
segmentation methods is out of the scope of this paper. We refer the reader to the survey
in [17].

Two recent methods for mesh segmentation are worth mentioning. Katz et al. [6] use
fuzzy clustering and graph cut to segment a mesh. The mesh is first clustered by the
geodesic distance. A fuzzy region is created between every two adjacent components.
Finally the fuzzy region is segmented by a graph cut method to yield a smooth boundary.
Lavoué et al. [16] present a mesh segmentation algorithm based on curvature tensor
analysis. The mesh is first decomposed into several patches, each patch with nearly
constant curvature. Then the segmentation boundary is rectified based on the curvature
tensor directions.

Smoothing boundaries between adjacent segmented regions is usually considered
as a post-processing step after mesh segmentation [6, 15, 16, 5]. We propose a new
graph cut based strategy to smooth the segmentation boundary, which considers both
the approximation error and the smoothness of the boundary between neighbor regions,
and delivers better results in smooth regions of a surface (e.g., see Fig. 2(d)).
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2 Preliminary

In this section we describe the variational shape approximation framework and intro-
duce a new error function for measuring the distance between a mesh surface and a
quadric surface.

2.1 Variational Framework

Let M denote an input mesh surface, and T denote the set of triangles of M. Sup-
pose that M is partitioned into n non-overlapping regions, denoted as R = {Ri}n

i=1,
each region Ri containing a set of triangles Ti = {tik}ni

k=1 such that
⋃n

i=1 Ti = T .
Each region is approximated by a quadric proxy (including the plane as a special case).
A quadric proxy, denoted as Pi, is represented by the coefficients of its associated
quadratic form. A seed face, denoted as Si, is a triangle face in Ti that has the smallest
error to the quadric proxy Pi.

In a variational framework the optimal partition R = {Ri}n
i=1 is found by minimiz-

ing the following objective function [1, 2]:

E(R, P) =
n∑

i=1

E′(Ri, Pi) =
n∑

i=1

ni∑
k=1

d(tik, Pi), (1)

where d(tik, Pi) measure the error between the triangle tik and the proxy Pi. Therefore,
E′(Ri, Pi) is the error between the partitioned region Ri and its approximating proxy
Pi. The error terms used in our method will be defined in Section 2.2.

Lloyd’s algorithm minimizes the above objective function through iterative partition
and fitting. Given a specified number n of proxies, the surface mesh M is first parti-
tioned into n non-overlapping regions. Then the two alternative steps of quadric surface
fitting and region partitioning are performed iteratively to reduce the value of the ob-
jective function until convergency or a specified number of iterations is reached. More
details about this framework can be found [1].

For initialization, we randomly choose n initial seed faces. Then each seed face
determines a planar proxy which is the plane containing the seed face. Then a distortion-
minimizing flooding is performed, as described in [1], to give an initial partitioned mesh
consisting of n regions R = {Ri}n

i=1.

2.2 Error Metric for Proxies

The objective function in the variational shape approximation framework is defined in
terms of error terms. Both L2,1 and L2 metrics have been tested in [1, 2]. For planar
proxies, it is possible to derive closed formulas of L2 and L2,1 error terms, and L2,1

proves to produce better results. Wu and Kobbelt [2] use an approximate L2 error term
to measure the distance from a triangular face to a hybrid proxy, which is a sphere, a
circular cylinder or a rolling ball blending surface, expressed in terms of the exact L2

distances from the three vertices of the triangle to the proxy.
While it is easy to compute the Euclidean distance from a point to a sphere or a circu-

lar cylinder, it is not desirable to use the same error term as in [2] when extending proxy
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types to general quadric surface, because computing the exact distance from a point to
a quadric involves solving for the roots of a degree six univariate polynomial. This is a
very time consuming task, because the distance computation needs to be performed for
many vertices/triangles of a large mesh in many iterations – according to our test on an
implementation based on computation of the exact Euclidean distance, each iteration
takes about 20 seconds for a mesh of 10K vertices on a PC with a Xeon(TM) 2.66 GHz
CPU. This would render our method too inefficient. We have also tested both algebraic
distance |f | and first-order approximation |f |

‖∇f‖ in our algorithm. But they turned out
not to work well due to relatively large approximation errors.

Balancing efficiency and accuracy, we choose to use Taubin’s second order approxi-
mation of the Euclidean distance δd(p,Z(f)) [18] from the point p to the surface Z(f),
which is the zero set of the function f . The function f(x, y, z) is given as:

f(x, y, z) = C0+C1x+C2y+C3z+C4x
2+C5xy+C6xz+C7y

2+C8yz+C9z
2. (2)

This approximate distance δd(p,Z(f)) has the favorable property that it is bounded
between 0 and d(p,Z(f)). For quadric surfaces, δd(p,Z(f)) is given by the only non-
negative root of a quadratic polynomial g(t) = at2 + bt + c, where

a = −
[
‖C1+ < 2C4, C5, C6 > ·p ‖2 + ‖C2+ < C5, 2C7, C8 > ·p ‖2+

‖C3+ < C6, C8, 2C9 > ·p ‖2]1/2
,

b = −
[
(C2

5 + C2
6 + C2

8 )/2 + C2
4 + C2

7 + C2
9
]1/2

,

c = |f(p)|.

Based on this approximate distance, the approximated L2 distance for a triangle tj
with respect to a quadric surface Pi is defined as:

d(tj , Pi) =
1
m

m∑
k=1

δd(pk,Zi(f))2 · Aj , (3)

where {pk}m
k=1 are uniformly sampled points on the triangle tj , and Aj , the area of tj ,

serves as a weighting factor to account for triangles of different sizes. In implementation
we set m = 4, i.e., use the vertices and the barycenter point of ti, and have obtained
satisfactory results.

The approximated L2 distance between Ri and Pi is then defined as:

E′(Ri, Pi) =
∑

tj∈Ri

d(tj , Pi)/
∑

tj∈Ri

Aj . (4)

We use L̃2 to denote this approximation to L2 distance. To have a uniform comparison,
all mesh surfaces are scaled uniformly to fit in a rectangular box with their longest side
being 1.

2.3 Quadric Surface Fitting

Given a region Ri, we need to fit a quadric surface to Ri in L2 metric. Two common
ways of fitting implicit surfaces are the algebraic distance-based fitting and orthogonal

Errata: a and b should be exchanged here ! 
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distance-based fitting [19]; in general, the latter produces better fitting results than the
former but is computationally much more costly. Since surface fitting is performed
repeatedly in our present application, it is not necessary to take much time to compute
the best fitting result in L2 metric in each single intermediate iteration. Hence, we use
Taubin’s method [20] based on a first-order approximation of L2 metric for quadric
surface fitting.

Let f(x, y, z) = 0 be a quadric surface (see Eqn. 2). The squared distance from
a point p to the implicit surface Z(f) = {(x, y, z)|f(x, y, z) = 0, x, y, z ∈ R} is

approximated as d(p,Z(f))2 ≈ f(p)2

‖∇f(p)‖2 . The original method proposed by Taubin

is applied to a set of data points. Given a set of points {pi, i = 1, · · · , n}, the sum of
approximated squared distance is, following [20]

1
n

n∑
i=1

d(pi,Z(f))2 ≈

1
n

n∑
i=1

f(pi)2

1
n

n∑
i=1

‖∇f(pi)‖2
=

sT Ms
sT Ns

,

where M, N are coefficient matrices and s =< C0, C1, . . . , C9 >T .
For our application, we need to treat the data points as the continuum of surface points

distributed uniformly over the mesh surface. Therefore, we adapt Taubin’s method by
defining the sum of approximated squared distance as follows:

1
A

ni∑
k=1

∫
tk

d(p,Z(f))2dp ≈

1
A

ni∑
k=1

∫
tk

f(p)2d p

1
A

ni∑
k=1

∫
tk

‖∇f(p)‖2d p
=

sT Mts
sT Nts

, (5)

where Mt, Nt are coefficient matrices, and A is the sum of the areas of all the triangles
in Ri. Hence, the fitting problem is reduced to computing the eigenvector of Mt −λNt

associated with the minimum eigenvalue [20].
Although, due to efficiency consideration, only approximations to the L2 error metric

(i.e., the true squared Euclidean distance) are used in our fitting and partitioning steps,
we find that this treatment works robustly and efficiently in practice with the variational
shape approximation framework.

3 Variational Quadric Approximation

There are two stages in our method: global optimization and post-processing. In first
stage, the surface M is partitioned into regions Ri iteratively according to the error
metric defined in the preceding section. Then the boundary curves between neighboring
regions are smoothed using a graph cut method and an approximate surface is created
by projecting mesh vertices onto their proxies. Fig. 2 illustrates some intermediate steps
of our algorithm.
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(a) (b) (c) (d)

Fig. 2. Intermediate results of our method. New proxies are inserted progressively and the final
projected result is shown in Fig. 1(d). (a) Result when the proxy number is 5; (b) Result when the
proxy number is 9; (c) Lloyd iteration finishes when proxy number is 12; (d) The boundaries in
(c) are smoothed.

3.1 Global Optimization

The main idea of Lloyd iterations and the initialization have been discussed in Section 2.
Typically we choose the number of regions n = 1 at the beginning and the new proxies
are inserted progressively. The algorithm terminates when an error threshold is met and
the Lloyd iteration has converged. Proxies are inserted or merged to achieve the optimal
approximation, as described below. Other proxy operations, such as proxy deletion or
teleportation, have also been implemented, as in [1].

Proxy Insertion. When the Lloyd iteration has converged, we need to check the valid-
ity of each quadric proxy. If the quadric surface is a pair of planes or a hyperboloid of
two sheets and the projected data points are contained in both sheets, then the proxy is
considered as invalid, because it is not an appropriate representation. If such a case oc-
curs, new proxies will be inserted in such a region. Fig. 3 gives an example of a region
fitted by one degenerate quadric consisting of two intersecting planes, which needs to
be split into two separate planar proxies.

If every proxy is valid but the fitting error is still larger than a pre-specified threshold,
we use the farthest-point criterion to add a new proxy Pnew; that is, we first find the
region with maximal fitting error and a face which has the largest L̃2 error belonging
to this region as the seed face Snew. The new proxy Pnew is then set to be the plane
containing the seed face Snew. Then the Lloyd iteration is continued.

Fig. 3. Left: The red region is fitted by a degenerate quadric consisting of two intersecting planes;
Right: Close-up view
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Proxy Merging. When the Lloyd iteration converges, we also check whether there are
redundant proxies by considering merging each pair of adjacent regions Ri and Rj . We
use a quadric surface Pt to fit the union of Ri and Rj . Let Et be the fitting error. If
|Et − (E′(Ri, Pi) + E′(Rj , Pj))| < ε (we set ε = 0.5 ∗ maxi E′(Ri, Pi), as in [1]),
and Pt is a valid proxy, then Ri and Rj are merged into one region. If there are several
pairs can be merged at the same time, the pair with the smallest fitting error is chosen
to be merged first.

3.2 Post-processing

Boundary Smoothing. After the global optimization stage, the surface mesh M has
been partitioned into non-overlapping regions Ri, each being fitted by a quadric proxy
Pi. Triangle faces next to region boundary curves always have nearly equal L̃2 errors,
often leading to zigzag boundary curves. The graph cut method has already been used
in [6, 15, 5] to segment mesh in the fuzzy region and boundary regularization, but
only dihedral angle and edge length are used in their approach, so it works well mainly
in regions with salient features or curvature discontinuity. We propose a new graph
cut based strategy which is particularly effective for smoothing boundary curves in a
smooth region of the mesh.

Consider the dual graph of the original mesh, each triangle face is corresponding
to a dual vertex. Given two neighboring regions R0 and R1, the faces belonging to
the neighbor of their common boundary are marked as belonging to the fuzzy region
(Fig. 4(a) illustrates the fuzzy region. The size of neighbor can be set by the user.). Let
Vf denote the set of the dual vertices of the fuzzy region. Suppose that the faces in
the fuzzy region are removed from R0 and R1. Then the dual vertices of faces in the
regions R0 and R1 that are adjacent to Vf are denoted as V0 and V1, respectively.

The goal of boundary smoothing is to label the vertices in Vf with 0 or 1 by min-
imizing a cost function E(X), this is similar to the binary labeling problem for edge
detection widely used in image segmentation. The solution X is a binary vector X =
(x0, x1, . . .), xi ∈ {0, 1}. If vi ∈ Vf is labeled with 0, i.e., set xi = 0, then its corre-
sponding face is assigned to the region R0; otherwise, if xi = 1, the face is assigned to
the region R1.

Let G = {V , E} be an undirected sub-graph of the dual graph of the mesh M, where
V = Vf ∪ V0 ∪ V1 is the set of nodes. Here E is the set of undirected edges, with each
dual edge e = (vi, vj), (vi, vj ∈ V , i �= j) corresponding to an edge shared by two
adjacent faces in V . In Fig. 4 the background is composed of two regions R0 and R1.
The set V0 consists of the green triangles in R0, the set V1 consists of the red triangles

(a) (b)

Fig. 4. Boundary smoothing. (a) Un-smoothed boundary; (b) Smoothed boundary.
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in R1, and the set Vf consists of those triangles between V0 and V1. Here V0 and V1
are hard constraints to R0 and R1 in the sense that the triangles in both sets will keep
their labels; only the triangles in Vf may be re-labeled.

The energy function E(X) is defined in a similar way to [21] used for image seg-
mentation:

E(X) = E1(X) + λE2(X) =
∑
vi∈V

Ê1(xi) + λ
∑

(vi,vj)∈E
Ê2(xi, xj).

In order to keep the triangle faces in the fuzzy region from deviating too much from their
quadric proxies and improve boundary smoothness, we consider both the distance from
the boundary faces to their proxies and the edge length along the boundary. The region
energy term E1 is determined by how the nodes vi in Vf are labeled. Let d0

i = d(vi, P0)
and d1

i = d(vi, P1) be the L̃2 distance of vi to proxies P0 and P1. Then we define

Ê1(xi = 0) =

⎧⎪⎪⎨
⎪⎪⎩

0, vi ∈ V0
∞, vi ∈ V1
d0

i

d0
i + d1

i

, vi ∈ Vf

; Ê1(xi = 1) =

⎧⎪⎪⎨
⎪⎪⎩

∞, vi ∈ V0
0, vi ∈ V1
d1

i

d0
i + d1

i

, vi ∈ Vf

The term Ê2 is the cost of a dual edge connecting two adjacent face nodes {vi, vj},
and defined by

Ê2(xi, xj) =
length(i, j)

length(i, j) + ave length
|xi − xj |,

where length(i, j) is the length of the common edge shared by vi and vj , and ave length
is the average edge length of the mesh M. Clearly, E2(X) becomes larger when the edge
length of the cut boundary resulting from re-labeling is longer. The cost function E(X)
is minimized using the max-flow/min-cut algorithm described in [22]. Fig. 4(b) shows
the result after running the max-flow algorithm.

For different mesh models, two parameters in the above smoothing algorithm can
be set by the user in order to obtain satisfactory results. For the CAD models with
clear structure, such as the Fandisk and the Chess piece, the one ring neighborhood of
the boundary usually suffices; and we use λ = 1.0 for this type of models in all the
examples presented in this paper. For the free-form objects like the Bunny, Homer, the
two- or three-ring neighbor of the boundary works well in our experiments; and the
value of λ is selected by the user in the interval [1, 10].

Quadric Surface Classification. To simplify the final representation, we would like
to identify some commonly used types of special quadrics, such as spheres and circu-
lar cylinders, which have occurred as approximating proxies. Given the coefficients of
proxy Pi, we detect whether the quadric is nearly a cylinder or a sphere by analyzing
the eigenvalues of the corresponding quadratic form [9]. After type identification, the
region is fitted by a quadric of the special type that has been identified. Only circular
cylinders and spheres are considered as special types in our current implementation.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Fandisk (13K triangle faces): Two views of observation. (a)&(e) The original model;
(b)&(f) Partitioned by 22 quadric proxies; (c)&(g) Result after boundary smoothing (λ = 1.0);
(d)&(h) Vertices projected onto proxies.

(a) (b) (c) (d)

Fig. 6. Tesa [23] (22K triangle faces): (a) The original model; (b) Partitioned by 12 quadric prox-
ies; (c) Result after boundary smoothing (λ = 1.0); (d) Vertices projected onto proxies

(a) (b) (c) (d)

Fig. 7. CSG model (21K triangle faces): (a) The original model; (b) Partitioned by 10 quadric
proxies; (c) Result after boundary smoothing (λ = 1.0); (d) Mesh vertices projected onto proxies
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Proxy Projection. As the final step of post-processing, the vertices of each region Ri

of the partitioned mesh M are projected onto the corresponding proxy Pi of Ri. The
computation of foot points on a plane, sphere or cylinder is straightforward. If the quadric
surface belongs to some other types, we compute the exact foot point by solving a degree
six univariate equation [9]. For an interior vertex of a region Ri, its projected position is
the foot point on the proxy of Ri; if a mesh vertex is shared by two or more regions, the
final position is the average of its foot points on all the proxies the vertex belongs to.

4 Results

In this section we present some test examples to show the effectiveness of our method
and to compare it with some previous methods that are also based on variational shape
approximation. These examples are shown in Fig. 5, 6, 7 and 9. The meaning of colors

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m)
Fig. 8. Comparison with previous methods (from top to bottom). Column 1: Findisk model ap-
proximated by 80 planar proxies [1], 24 hybrid proxies [2] and 22 quadric proxies by our method;
Column 2: Color coding of local errors between the approximated model and the original model.
The RMS Hausdorff errors are 4.2 × 10−2, 3.9 × 10−2 and 2.1 × 10−2, respectively; Column 3:
Tesa model approximated by 100 planar proxies [1], 14 hybrid proxies [2] and 12 quadric prox-
ies by our method; Column 4: Color coding of the local errors. The RMS Hausdorff errors are
3.4 × 10−2, 4.8 × 10−2 and 4.0 × 10−3, respectively; (m) Color error bar.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 9. Four free-form models. From left to right, the four figures on each row are the original
model, final partitioned result, result after boundary smoothing, and result after vertex projection.
(a)-(d) Homer (40K triangle faces): Approximated by 61 quadric proxies (λ = 6.92); (e)-(h)
Bunny (40K triangle faces): Approximated by 28 quadric proxies (λ = 5.49); (i)-(l) Mask (62K
triangle faces): Approximated by 6 quadric proxies (λ = 4.06); (m)-(p) Bone (30K triangle
faces): Approximated by 5 quadric proxies (λ = 6.2).
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Table 1. Timing Statistics

Mesh No. of faces No. of proxies Lloyd iteration (sec.) Post-processing (sec.)

Fandisk 13K 22 11 0.017
Tesa 22K 12 18 0.042
CSG 21K 10 16 0.031
Chess 24K 12 15 0.100
Bunny 40K 28 103 0.352
Homer 40K 61 148 0.393
Mask 62K 6 203 0.115
Bone 30K 5 14 0.067

of the projected results is given in Fig. 1(e). All the examples were run on a PC with a
Xeon (TM) 2.66GHz CPU. Table 1 gives the running time and other statistics of all the
examples.

It can be seen that our method works well for free-form geometry (cf. Fig. 9) as
well as for CAD models or CSG objects with salient features (Fig. 5, 6, 7). The
RMS Hausdorff errors (divided by the bounding box diagonal) by our method and the
methods in [1] and [2] are presented in Fig. 8. It can be seen that the new method gives
a more compact or more accurate approximation.
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