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Abstract—In this paper we propose a routing strategy for the first middleware and platforms for sensor networks are
enabling publish-subscribe communication in a sensor network. peginning to appear (e.g., [18], [26], [29]), most of the efforts
The approach is semi-probabilistic, in that it relies partly on the are still devoted to the core OS and network functionality,

dissemination of subscription information and, in the areas where . . . . . . .
this is not available, on random rebroadcast of event messages.\Mth little attention to higher-level abstractions that simplify

We illustrate the details of our approach, concisely describe its distributed programming without sacrificing performance.
implementation in TinyOS [19] for the MICA2 platform [1], and In this context, the publish-subscribe interaction paradigm

evaluate its performance through simulation. Results show that naturally resonates with sensor networks. Publish-subscribe
our approach provides good delivery and low overhead, and is qqleware is organized as a collectionalient components,
resilient to connectivity changes in the sensor network, as induced . - . .
by the temporary standby necessary to preserve the energy of which interact bypublishing messages .and byubs.crlblng
sensor nodes. to the classes of messages they are interested in. The core
component of the middleware, tltispatcher is responsible
. INTRODUCTION for collecting subscriptions and forwarding messages from

The miniaturization of computing, sensing, and wirelegsublishers to subscribers. In a sensor network context, for
communication devices recently enabled the developmentin$tance, an actuator may be interested in receiving all the
wireless sensor network®VSN), a new form of distributed messages concerning a temperature greater than 30 degrees,
computing where sensors deployed in the environment coto-activate a fan; similarly, a node hosting a temperature sensor
municate wirelessly to gather and report information abouotay subscribe to all the messages carrying application queries
physical phenomena. Several successful applications of WSNstemperature data. The implicit and asynchronous commu-
are reported in the literature [2], [3], [5]. nication paradigm that characterize publish-subscribe fosters

A fundamental issue in realizing a WSN is how to route high degree of decoupling among the components, which is
the applicative information, i.e., the messages controlling tiheneficial since the system configuration often changes as the
operation of the various sensors and the data gathered by thdavices enter power saving mode.
Most of the existing approaches assume the existence of &learly, the difficulty is how to implement efficient routing
single data sink—usually a centralized monitoring station-strategies for a distributed dispatcher. Our research group
interested in the sensed data, and focus on optimizing mulias been recently very active in tackling this problem in
hop communication among sensors to route messages effintexts with a dynamic topology, including MANETSs (see
ciently to and from the sink. In general, however, multiple.g., [10], [25]). In particular, we recently devised a rout-
data sinks may exist in the system, potentially interested iimy strategy [11] that exploits a semi-probabilistic approach.
monitoring different phenomena whose behavior can nevétessage subscriptions are propagated deterministically only
theless be derived by analyzing the same set of raw sengethe immediate vicinity (in terms of number of hops) of the
data. This is evident in the case where multiple monitoringubscribing node. When a message is published, it is routed
stations, possibly mobile as in [12], are deployed in the systensing this deterministic information—if available. If there is
However, it is even more poignant in a variation of WSN that iso such information to determine the next hop, the decision
rapidly attracting interest among researchers and practitionasstaken probabilistically, by forwarding the message along a
namely,wireless sensor and actor network&/SAN) [4]. In  randomly selected subset of the available links. Being based
this case, the devices deployed in the environment are not oaly probabilistic decisions, our approach exhibits very low
able to sense environmental data, but also to react by affectmgrhead, but cannot guarantee 100% delivery in all situations.
the environment with their actuators. However, to do so théyevertheless, it is geared towards highly dynamic scenarios
usually play the role of data sinks, as they rely on the datehere the cost of providing full delivery guarantees, if at
sensed and disseminated by the other devices in the netwadk.possible, is prohibitive. The simulations in [11] confirm

Despite the rapid development of this research field, thieat the approach performs well (i.e., high delivery and low
state of the art shows how programming sensor netwookerhead) even in very dynamic scenarios, and better than a
applications is still done by and large in an ad hoc fashion. Asirely probabilistic (or deterministic) approach.
usual, software evolves slower than hardware, and althoughn this paper, we start from the same premises of employing



a semi-probabilistic approach. Its characteristics of low oves going to be used for routing events. When an application
head and resilience to changes in the network topology mat@mponent running on a node issues a subscription, our mid-
it amenable to sensor networks, where in many cases (edieware broadcasts the corresponding filter. This information
continuous monitoring) probabilistic guarantees are enouds. rebroadcast by the subscriber's neighbors to an extent
Nevertheless, in this paper we tailor our original solution tdefined by thesubscription horizonp. In our original, link-
the peculiar characteristics of our new target scenario. Filsised approach [11§ was measured as the number of hops
of all, we adopt a different communication model. In [11jravelled by a subscription message along the links of the
we assumed communication to take place along the links gifaph overlay. In this paper, insteatl represents the number
a graph-shaped overlay network; here, instead, the broada#stimes the subscription message is (re)broadcast. A value
facility available on sensor nodes is our only communicatiofi = 0 means that no subscription is ever transmitted by the
media. Moreover, in [11] the overlay network completelgubscriber node, and therefore the corresponding information
masked the mechanics of the underlying network communida-only stored locally in the node’s subscription table. As we
tion; here, instead, by relying directly on wireless broadcast wiscuss next, this implies that events are routed in a purely
need to take into account packet collisions, to avoid depletipgobabilistic fashion. If¢ > 0, the subscriber broadcasts the
the sensors’ power in useless retransmissions. Finally, sensaigscription; the neighbors receiving the message update their
often operate in a duty cycle, by alternating processing asdbscription table accordingly. b = 1, no further action
communication with stand-by periods, therefore saving battes/ taken. Otherwise, the subscription is rebroadcast by the
power. This introduces a particular form of dynamicity imeighbors to the extent mandated by
the network, even in absence of mobility. To evaluate ourIn a publish-subscribe system, subscriptions can be is-
routing strategy we implemented it on Crossbow’s MICAZued and removed dynamically by using proper middleware
motesrunning TinyOS [19], and emulated its behavior witltonstructs, to reflect the changing interests of applications.
Tossim[21] in scenarios with up to 400 nodes. The researadlearly, the information held by the middleware infrastructure,
contribution of this paper is therefore twofold. First, weand in particular the content of the subscription tables, must
extend, adapt, and evaluate our semi-probabilistic approachfer updated accordingly. In [11], we exploited the standard
broadcast communication in the context of sensor networkschnique of dealing with (un)subscriptions explicitly, by using
Second, our implementation can be effectively regarded ag@ntrol messages propagated whenever a node decides to
novel publish-subscribe middleware for sensor networks. (un)subscribe. The same technique is used to deal with appear-
The paper is organized as follows. Section Il presents th®y or vanishing links, by treating the disappearing endpoint as
details of our approach, while Section Ill concisely describefit were, respectively, subscribing or unsubscribing. Here, we
its TinyOS implementation. Section IV reports about apse a different strategy that associdessesto subscriptions,
evaluation in several scenarios using tessim emulator. and require the subscriber to refresh subscriptions by re-
Section V places our work in the context of related effortgropagating the corresponding mesgagé no message is
Finally, Section VI ends the paper with brief concludingeceived before a lease expires, the corresponding subscription
remarks. is deleted.
II. APPROACH Clearlﬁ, r:he(re )areb trgdgoffs i?fyo!veli. IWithgut a !fgased
. . . . pproach the (un)subscription traffic is likely to be significant,
In this section we provide a complete, albeit lnformaﬁlge to the need to reconcile routing information whenever a

\?v(ierij(ralsgot;]rg;gggs?ﬂzr(:ﬁgh;):I] thceo:w?mrvr:ir::it\i,(\;?] a;zlé?;e JZI k appears or disappears. The leased approach remarkably
. y . . Feduces the communication overhead, by removing this need.
and that each (active) sensor takes part in routing, regardl

of whether it is currently interested in publishin and/o?ﬁ the other hand, if subscriptions are stable, bandwidth
S . y _publishing s unnecessarily wasted for refreshing leases. However, in
subscribing. Finally, we observe that a distinction is usualé/

. o ensor networks the former case is much more likely to
drawn betweesubject-basedystems, where subscriptions are y

specified by selecting a topic among many defined a priori, an ppen than the latter, since nodes typically alternate work
P y 9 P 9 y prion, ang sleep periods to save energy. Moreover, the combination of

conten_t—basedystems, where instead subscriptions are def|n% sed subscriptions and broadcast communication remarkably
using filters over the actual message content. Content—bas’i

; . . implifi he management of th ription I n
publish-subscribe systems are much more expressive, but o plifies the management of the subscription table, and

n.. . ;

: . o FAstically reduces the associated computational and memor
demand a more complex implementafiom the specific case y P y
of our approach, the difference is entirely confined in the

overhead. In [11], to properly reconcile subscription informa-
o . fion upon connectivity changes, we kept a different table for
format .Of the sub;crlpnon message, and therefore b Oth. vVanaglth value ofp, where each row contained the subscription
of publish-subscribe can be implemented equally easily.

filter and the link the subscription referred to. Here, instead,
A. Disseminating and Managing Subscriptions all we need is to store the subscription filter together with a

The effect of the subscriptions issued by the appIicatiJHneStamp used for managing leases. Differentiating according

components is to disseminate deterministic information that
2QOptimizations are possible, e.g., to broadcast the subscription hash, and
1see [15] for a comparison and more detailed discussion. transmit the entire one only if missing on the receiving node.



to ¢ is no longer needed, since subscriptions simply expirgimultaneously. Since the propagation of subscriptions and
and broadcast removes the need for information about linkevents both rely on wireless broadcast, it becomes crucial to
. reduce the impact of collisions by avoiding wasting precious

B. Routing Events energy on useFI)ess retransmissior):s. : P

In [11], the effectiveness of event routing is controlled by TinyOS [19] adopts a very simple scheme to recover from
means of thevent propagation threshold which is a fraction collisions where, after a broadcast message has been sent,
of the links available at a given node. For instance= 0.5 the sender waits for an acknowledgment from at least one
means that an event is always forwarded along half of tl its neighbors. If none is received before the associated
links available at each node. If SUbSCfiptiOﬂ information iﬁmeout expiresy the message is resent. The evident weakness
available, this is used first. If this deterministic information igf this solution is that it does not take into account the
not enough to satisfy the propagation threshold, the remainiggtual number of neighbors. If only one neighbor received
links are selected at random among those the event has &8d acknowledged successfully the message, the transmission
been forwarded along. Clearly, higher valuesroincrease is assumed successful, regardless of the possibly many nodes
not only delivery but also overhead. The simulations in [1%hat failed to receive the message. Moreover, it does not try to
analyze the effect of this parameter in conjunction with thegnit in any way the number of collisions. More sophisticated
subscription horizorp. MAC protocols has been proposed in literature [24] but none

In this paper we assume broadcast communication, theref@gyeurrently supported by the Crossbow MICA2 [1], our target
this strategy must be adapted slightly because there is gatform. Moreover, most of them are geared towards scenarios
concept of link. This actually leads to an even simpler strategyith a single sink, instead of the dynamic, multiple sink
If an event is receivedfor which a matching filter exists in scenario we target.
the subscription table, the event is simply rebroadcast. On therherefore, we conceived a simple yet effective solution that
other hand, if no matching subscription is found, the event iecreases significantly the number of collisions, without re-
rebroadcast with a probability. The parameter, therefore, quiring any synchronization among nodes, nor any assumption
still limits the extent of propagation, but more indirectly thampout the topology. The idea can be regarded as a sort of
in [11], as it comes into play only when no deterministigimplified TDMA protocol where each node, upon startup,
information is available. sets a timer whose value is a global configuration parameter.

The effectiveness of our approach is clearly proportional ®ending messages (i.e., subscriptions and events) takes place
the number of forwarders', i.e., the neighbors which receiveonly upon timer expiration, while receiving is in principle
and retransmit an event. Based on the procedure we descrigRghys enabled. Since each node in the network bootstraps at
so far, in absence of deterministic informatibhn= 7 -7 holds, g different time, it is highly unlikely that two nodes in range of
beingn the number of neighbors. As a consequence, a sm@iich other end up with synchronized timers. The simulations

value of7 (e.g., in sparse networks) must be compensated fay Section IV show that this trivial idea goes a long way in
increased values of, as we discuss in Section IV. drastically reducing the amount of collisions.

Moreover, while in [11] the event always got routed along
the fraction of links mandated by, here instead we have aD- Avoiding Unnecessary Propagation
non-zero probability that none of the neighbors will rebroad- Wwithout a way to limit forwarding, an event propagates until
cast the event. More precisely,sjfis the average number ofjt reaches a node that already received it, at which point it gets
neighbors, the probability of stopping the propagation of thfropped. This unconstrained propagation is likely to generate
event (in absence of deterministic information) at a given nod@necessary overhead. In [11] we addressed the problem by
is (1—7)". If no subscriber is in the immediate vicinity of thesetting a time-to-live (TTL) on each event, incremented at each
event publisher and is small, there is a significant possibilityhop. However, our simulations showed that this solution is
that event propagation immediately stops at the publish@iuch less effective with broadcast propagation. In fact, even
To ensure that a reasonable amount of event messagesw#ien an event travels for a small number of hops, the number
injected into the network, we mark event messages withof nodes it reaches is great, and therefore the impact of TTL
flag denoting whether they just have been published or instggdimited.
already travelled through the network. In the first case, theTo address this issue, we modified slightly the retransmis-
receiver behaves as if = 1 and rebroadcasts the event insion strategy described in Section 1I-C. Let us assume a node
any case. This mechanism guarantees that at 4eespies of 4 waiting to broadcast an eveathears one of its neighbors,
the event message are injected in the network and propaggig B, transmittinge before A’s timer expires. If the set
independently. of A’s neighbors partially overlaps witf’s neighbors, it is
likely that most of A’s neighbors receive the event from's

transmission, therefore making's broadcast largely useless.

Wireless broadcast is subject to packet collisions, whiglyme of A’s neighbors may not hear aboutfrom B but
occur when two or more nodes in the same area send d@i%n the epidemic nature of our algorithm, they are very

SClearly, events that have already been processed and that are recelliggly t0 g_et it throu_gh other routes. Based O_n 'fhis _Observation'
again because of routing loops are easily discarded based on their identii@ir technique (which we catlelay-drop to distinguish from

C. Dealing with Collisions



configuration MHopRoutePubSub { typedef struct MultiHopMsgSub {

provides { uintl6_t srcaddr; //source address
interface StdControl; uint8_t msgid,; /Imessage identifier
interface Receive[uint8_t id]; uint8_t subject; //subject identifier
interface Send as SendSub[uint8_t id]; uint8_t hopcount; //subscription hopcount
interface Send as SendUnsub[uint8_t id]; uint8_t lease; /Isubscription lease
interface Send as SendPub[uint8_t id]; } __attribute__ ((packed)) TOS_MHopMsgSub;
}
uses { typedef struct MultiHopMsgPub {
interface ReceiveMsg as ReceiveMsgPub[uint8_t id]; uintl6_t srcaddr; //source address
interface ReceiveMsg as ReceiveMsgSub[uint8_t id]; uint8_t msgid; /Imessage identifier
} uint8_t subject; //subject identifier
} uintl6_t data; /levent data
implementation { } __attribute__ ((packed)) TOS_MHopMsgPub;
components
MHopRoutePubSubM,
GenericCommPromiscuous as Comm, Fig. 2. Subscription and event messages.

QueuedSend, TimerC, RandomLFSR;

SendSub = MHopRoutePubSubM;
SendUnsub = MHopRoutePubSubM;

SendPUb = MHOpROUtePUDSUM; scription, and an unsubscription, respectively. By “remapping

Receive = MHopRoutePubSubM:; these interfaces oBend we are able to reuse a significant part
StdControl = MHopRoutePubSubM; i _ i P ; i
ReceiveMsgSub = MHopRoutePubSUbM:; of t'he TlnyO.S Iovy level code dealing @rectly with communi
ReceiveMsgPub = MHopRoutePubSubM; cation.Receive is also a standard TinyOS interface, and in
MHopRoutePubSubM.SubControl -> QueuedSend.StdControl; : : ;
MHopRoutePubSUbM CommstdControl - Comm: our case prqwdes a way for the routing component to s_|gr_1al
MHopRoutePubSubM.CommControl -> Comm; the application whenever an event matching a subscription
MHopRoutePubSubM.Random -> RandomLFSR; : . . R ;
MHopRoutePUbSUbM SendMsg > QueuedSend SendMsg: has been received. TheeceiveMsg interface, instead, is
MHopRoutePubSubM.Timer -> TimerC.Timer{unique("Timer")]; provided by the underlying communication component, and is

used to signal the routing component that a new message has
been received from the network. As in the caseSeand,

we “remap” this (TinyOS event) interface onto two differ-
ent onesReceiveMsgPub andReceiveMsgSub . Finally,

. . . . . StdControl is a common interface used to initialize and
the delay technique discussed in Section II-C) simply lets start all TinyOS modules.

safely removee from its transmission queue. In doing this, The last block of th f i ifies the list

not only we limit propagation—our initial rationale for this rr? dals oc do b ethci:on |g:ra Ionndsp(hecifxl/esth i? ilr?

modification—but also reduce communication and therefoé odules —use y S one, and ho € i
rfaces are wired together. The main component is

save battery power. A downside of this approach is a potel}- . ) .
tially higher latency, as the event may go through longer rout opRoute_(I:udbSl;Jbl\l;/lH Wr;';:ht |antljesm§ntsThall me Inter-
before reaching its recipients. Nevertheless, in principle thflces provided byMHOpRouteFubsUb. € ofhers are

delay-drop mechanism could be only one of many alternativ 5/08 blé'g"ndmc’du'ef: GenerlcCommPrqm|t§;gousC
specified at the application or middleware layer, therefo QueuedSend support message communicatigimer

. i he timer functionality necessary for leases and
enabling to tradeoff latency for overhead as needed. prowdes' t ; . .
g y communication, andRandomLFSR provides the ability to

1. | MPLEMENTATION generate random numbers.

Fig. 1. NesC configuration for our specialized routing component.

We implemented our approach for the Crosshow MICA2 [1}lessage structureThe two message types we defined, for
platform, using the NesC [14] language provided by subscriptions and events, are shown in Figure 2. They both
TinyOS [19]. A TinyOS application is composed wfodules include the message source and a unique message identifier,
containing the actual code, antbnfigurations which are which together enable duplicate detection. Also, our current
essentially module containers (components) describing hawplementation is subject-based, and therefore both messages
modules are wired together, and exporting interfaces thatlude a subject identifier: an extension to content-based
provides access to the overall component functionality. Aa straightforward. In addition to these common fields, each
interface contains function signatures, dividedciommands subscription message includeshapcount field, initialized
(implemented by the interface provider) aeslents(imple- with the chosen value of the horizop and decremented
mented by the interface user). at each hop, and kase field, contains the time interval
in seconds during which a subscription is considered valid.

Architecture. Our implementation essentially provides a re . i )
P y P pstead, event message contains an additidatd field.

placement of the standard TinyOS routing componed
MultiHopRouter . ThenesCconfiguration of the new mod- Handling subscriptions and eventd/henever the application
ule, calledMHopRoutePubSub, is shown in Figure 1. issues a subscription, the corresponding subject is stored in a
The first two blocks define the interfaces provided and usémtal subscription table. Moreover, a subscription message is
by this component. The commanfisndPub, SendSub, and broadcast to all the neighbors, with thepcount initialized
SendUnsub are instances of the built-in gene@end inter- to ¢. Subscriptions are kept alive by using a timer. When
face defined by TinyOS, and deal with sending an event, a siitbfires, a new subscription message is sent for each subject



Network Size N =200
Number of Neighbors | 7 =5 025
Percentage of Receiverlsp = 10% ' gﬁ;;l‘; """"
Publish Rate 2 event/s 003G
Transmission Interval 1s *
TABLE | 06

DEFAULT VALUES USED IN SIMULATIONS.

event delivery

in the local subscription table. An unsubscription simply SN S N S S S
consists of removing the corresponding subject from the local
subscription table.

Non-local subscriptions are managed in a different subscrip-
tion table. When a subscription message for a given subject is
received, it is inserted in the table, possibly overwriting obso-
lete information for that subject with the new one containing e
a more recent lease. Moreover, if thepcount is not zero, o N T oo v )
the subscription is enqueued, waiting to be rebroadcast ac-
cording to the strategy discussed in Section II-C. Periodically,
subscriptions whose lease expired are removed.

As for events, our routing module maintains a list of the o
most recently received. When an event message is received,
this list is checked to see whether the event is a duplicate.
In this case, the message is simply dropped. Otherwise, it is

(@) T =025

event delivery

50 100 150 200 250 300 350 400 450 500

first inserted in the list, and its subject checked against the
local subscriptions to determine whether its receipt must be

signaled to the application through tiiReceive interface. (b) =05
Then, it is checked against the non-local subscription table. If

a subscription is found, the event message is inserted in the

sending queue. Otherwise, a random number is drawn and, i TR e
according tor, either the event message is inserted in the tooding -
sending queue or it is simply dropped.

IV. EVALUATION

vent delivery

In this section we evaluate several aspects of our approach 5 o4
usingTossiM[21], the simulation tool provided with TinyOS.
TossiMmemulates all the operating system layers and therefore
works by reusing directly the code deployed on the motes and
described in the previous section. oo e

Simulation settingTable | shows the most relevant parameters
of our simulations, and their default values. Each simulation
run lasted 60 simulated seconds, with an extra second devoted
to “booting” the network, as done automatically Bypssim.
Transmission occurs by using our simple delay technique to
avoid collisions. The impact of this technique, as well as of

|tsteIay-drh0p variant, 'ls anﬁlyzed Iatzr :n this §ect|oﬂ, .ande¢ to estimate their impact. Our upper and lower bounds are
b or each run we plot t ed evenF dewe(;y é"e" the r‘l”llt'ﬁooding (r = 1) and a purely probabilistic approach £ 0).
etween the events expected received and those actua yI'—'rl‘?)'oding delivers all the events but with very high overhead,

ceived) and_ the o_verhead (ie., the collective_ n!meer of s ile a fully probabilistic approach exhibits low overhead but
messages, including both events and subscriptions). To fociS; o cost of poor event delivery

on these two performance metrics and reduce further bias, we

ran our simulations with a stable set of subscriptions (i.e., MNetwork sizeThe first parameter we analyze is the size of the
refresh needed) and a stable network connectivity (apart fravatwork, which we ranged from 100 to 400. To maintain a
the changes induced by duty cycle). Moreover, we analyzettady publishing load and receiver density, we increased them
the behavior of our algorithms with different combinationrof proportionally by ranging the former from 1 to 4 evt/s, and

(©) T =0.75

Fig. 3. Delivery vs. network size.



delivering the events. Notably, in some cases event delivery

tau=0.25

P p— is even increased as more routes become available. On the
Wt other hand, as shown in Figure 4 the overhead increases
too, since the number of receivers and the publishing load
augments linearly, i.e., there are more events to deliver to
g o more recipients. Nevertheless, the two increments share the
same trend, that is, no additional overhead is introduced by the
- size. This, again, stems from the fact the the effort imposed
on each node by our algorithm is constant.
As the charts showr is tightly related to event delivery,
Tw w w m o w w W w w since it controls the degree of propagation in the system. With
values close to 1 (see Figure 3(c)), the system is able to
@r=0.25 improve event delivery up to 100% with the downside of an

increase in network traffic (Figure 4(c)). In the extreme case of
7 =1 (flooding no event gets lost, but the network becomes

tau=0.50

e overwhelmed by messages, since each node rebroadcasts all
the events. Besides, with high values ofcollisions may

70000 drastically grow, thus hampering delivery. Therefore, the right
value for 7 is a tradeoff among delivery, overhead, and

g collisions.

) - On the other hand, the reason of the low performance
" achieved witht = 0.25 lies in the fact that, as discussed
in Section 1I-B, the probability that no neighbor broadcasts an
WO g event is(1 — 7)" = 0.75° = 0.23, i.e., one in four events is

dropped byall neighbors. Figure 4(a) reflects this, by showing
= that the overhead is less than 20% of the flooding one.
() r=05 As for ¢, itis interesting to see that= 1 and¢ = 2 exhibit

a different behavior. Whev = 100, ¢ = 2 performs worse
than ¢ = 1, most likely due to the fact that the smaller size

o increases the likelihood of creating loops. A& increases,
however, the additional deterministic information provided
by ¢ = 2 becomes precious in steering events towards the
receivers in a sparser network.

3 som Finally, the comparison with flooding is also worth com-

40000

menting. Indeed, the delivery with equal to 0.5 and 0.75 is

essentially comparable, but overhead is sensibly lower. This

is particularly evident forr = 0.5, which in this scenario

represents the best tradeoff between cost and performance,

being able to deliver about the 90% of events with about 25%
o of the overhead introduced by flooding.

30000

20000

() 7=0.75 Number of receiverdAnother interesting view on our approach
is the impact ofp, the percentage of receivers. As shown
Fig. 4. Overhead vs. network size. in Figure 5, delivery with¢p = 0 is nearly unaffected by

and is about constant despite the increasing receivers. This is
reasonable, since purely probabilistic routing makes essentially
)“_blind" decisions, regardless of the presence of receivers.
Conversely, withy > 0, delivery improves significantly with
showing that event delivery is only marginally dependent froﬁl{Ie ”‘%mber of receivers, as more deterministic |nformat|or_1
the network size—at least for — 0.5 andr — 0.75. This 1S available to each host. Figure 5(c) shows that indeed this
ili)formation is increasingly exploited to steer events towards

is not surprising, since the probabilistic component of our . i M it sh h 9
approach tends to distribute the load equally on each nd§gelvers ag increases. Moreover, it shows that, W.hﬁﬁ: Lo
= 20% of receivers is enough to obtain a routing that is

and, therefore, the more the network grows (and the mdfe”. : L
receivers need to be reached), the more nodes participaté)"iﬁ'ca”y entirely deterministic.
Number of neighborsAnother key factor that greatly impacts
“We use Bezier interpolation to better evidence the trends. the performance of our approach is the network density, de-

keeping the latter at 10% (yielding from 10 to 40 receivers
The results depictédn Figure 3 confirm our expectations,



tau=0.50

.- BT < ks
% e A flodaing L)
08 . Kt 08
> 06 > 06
% 04 § 04
OO 5 10 15 20 25 00 5 10 15 20
Percentage of receivers Neighbors
(a) Delivery. (a) Delivery.
20000 tau=0.50 ‘ R 20000 tau=0.25 R
R R
25000 flooding 25000 flooding
o - o & v
20000 20000
] * 3 *
£ 15000 £ 15000 :
g X e
10000 Lr) 10000 }[,
J—
(b) Overhead. (b) Overhead.
7 Fig. 6. Number of neighborsr(= 0.25).
' * ph\UjQi
o
08
3 to the number of forwarderg', which in turn depends directly
g o SIS - on n and 7. Therefore, low values of are sufficient in a
B dense network. Moreover, the curves with> 0 converge
b4 ¥ . . C .
A much faster to a 100% delivery, showing that deterministic
2| X X information definitely improves delivery. At the same time,
e Figure 6(b) shows how this is achieved by keeping overhead
R ! ! reasonably low.

The effect is still observable, although less marked, with
greater values of, not reported here. In this case, even with
a sparse network the number of forwardétss sufficient to
achieve a satisfactory event delivery. Indeed, we verified that
the performance withr = 0.25 andn = 10 is about the same
of the one obtained withr = 0.5 andn = 5. Given this
analysis, it should be noted how our choicerof= 5 as the

fined by the average numbgof neighbors for each node. Notdefault value in our simulations is rather conservative.
surprisingly, our approach performs worse in a sparse netwo@gllisions and rebroadcasin Section 1I-C and II-D we de-

as fewer nodes participate in the event routing. Figure s8ribed the delay and delay-drop techniques for, respectively,
analyzes the performance by ranging frgm= 5 to n = 15, reducing collisions and avoiding useless rebroadcasts.

for 7 = 0.25. This value ofr is particularly interesting, since The effect of these techniques on the system is shown in
in Figure 3 it led to the worst performance. Instead, Figure 6(B)gure 7 forr = 0.5 andn = 10. Figure 7(a) shows that
show how the increase in boosts performance remarkablythe delivery is largely unaffected, with a small decrease in
The bottomline is represented by the purely probabilistibe case of delay-drop. On the other hand, Figure 7(c) shows
approach, which experiences a linear increase in delivery. Tthat our simple mechanism for avoiding collisions is very
reason is that, as stated earlier, delivery is directly proportioreffective, since it more than halves the number of collisions.

Percentage of receivers

(c) Percentage of deterministic hops.

Fig. 5.  Number of receiversr(= 0.5).
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Duty cycle. A prominent feature of our approach is the
resilience to changes in the underlying topology and connec-
tivity. Most approaches for content dissemination and group
communication for sensor networks rely on exact routes that
must be recalculated each time the topology is modified. This
is an important limitation, since sensors are often supposed to
regularly switch from active to sleeping, to preserve battery
and extend the system lifetime. Therefore, unless some kind
of synchronization is in place, routes become invalid and must
be recomputed, with consequent overhead. Conversely, our
approach does not make any assumption on the underlying
topology, as it “explores” it semi-probabilistically. Therefore,
it can tolerate sleeping nodes (or even crashed, or moving)
nodes, without any particular mechanism.

In the simulations in Figure 8, we used a simple model
The delay-drop mechanism does not improve much in terméere each node is active for a perid@y, followed by a
of collisions. Instead, by avoiding useless rebroadcasts, telseping periodl’;. All nodes are initially active: after a ran-
latter technique drastically reduces overhead, as showndiom time (which temporally scatters them) they are regularly
Figure 7(b). Although we do not have simulations linkingwitched off and reactivated aftéf;. To obtain meaningful
directly these results to the power consumption, it is evidergsults, sleeping nodes are not considered in the event delivery,
how the combination of these two simple techniques not onlyhich is then computed by taking into account only the
improves the performance of our approach, but also yieldstive subscribers. Also, since the temporal scattering among
remarkable savings in communication, therefore enablingnades is completely random, it may happen that under certain
longer life of the overall sensor network. combination off,, T, andn, the network becomes partitioned.

0.6

04

percentage of packet collisions

normal with delay with delay and drop
Propagation

(c) Number of collisions.

Fig. 7. Collisions and delay-drop-(= 0.5, n = 10).



Then, a delivery of 100% is not meaningful because, if no pat®2]; our idea of controlling the probability of reforwarding a
exists among two nodes, there is no way to correctly deliveressage is inspired by the work on gossip for ad hoc routing
the event. Consequently, our upper bound is representedd®gcribed in [17]. Nevertheless, these algorithms essentially
the delivery of flooding. trade the absolute guarantees provided by deterministic ap-
By comparing Figure 8(a) df, = 375 and Figure 6(a), it proaches for probabilistic ones, yielding in turn increased
can be noted how the event delivery is quite similar, althoughsaalability and resilience to change, as well as reduced com-
significant fraction of the nodes is unable to receive or forwagexity. Unfortunately, these algorithms are well-versed for
events. Clearly, if too many nodes are sleeping at the sanggoup communication or broadcast, where a message must be
time, delivery falls abruptly since the number of forwarders isent toall the members of a predetermined set of intended
too low. However, the delivery of flooding also falls abruptlyrecipients. In our scenario, where subscribers may be a small
and some of our solutions remain comparable to it. fraction of the network and each subscriber may be subscribed
These results are not surprising, since what we stateda different set of subscriptions, purely epidemic approach
earlier about density holds here as well. Indeed, the effegnerates unnecessary overhead, since it proceeds by “blindly”
of sleeping nodes is to reduce the density, expressed in teinfecting all the network. A recent work [6] exploits proba-
of the numbem of neighbors. Therefore, since our algorithnbilistic forwarding combined with knowledge of the network
tolerates low densities up to a given extent, it is resilient topology to route messages from sensors to a special node
sleeping nodes as well. The validity of this statement is showeting as collector. The forwarding probability depends on
by observing that 50% of the nodes sleeping in a network witkarious parameters, in particular the current distance from the
n = 10 is roughly equivalent to a network where all nodes areollector. The probabilistic component allows to tolerate stale
active andn = 5. information on the global topology. Despite the different aim
of the work, targetting at single sink application, this approach
V. RELATED WORK differs from ours in that we require a much smaller knowledge
Although sensor networks have now been studied for sorkthe network, namely, only the subscriberdiops away.
years, only recently research has focused on the developThe possibility of temporarily switching off nodes is partic-
ment of reusable middleware platforms as opposed to all-inkarly amenable in sensor networks as the battery is not easily
one solutions. As a consequence, most of existing researeplaceable. At the same time, however, the network must
(e.g., [18], [26], [29]) focus more on architecture design anaintain its functionality through a connected sub-network,
run-time language support rather than directly routing issué., it should be able to correctly deliver events despite the
A more meaningful comparison is with research addressiagsence of some nodes. Some works [9], [28] address this
multicast or group communication in sensor networks. Uiissue by introducing synchronization of the sleeping patterns
fortunately, the scenario targeted by this research is usudityminimize the energy spent without affecting network con-
characterized by sensors cooperating to deliver the sensegtivity. The weakness of this solution, however, is that other
data to a fixed node acting as base station or, alternativedifyds of topological reconfiguration (e.g., mobility or failures)
to enable communication from the base station towards alie not tolerated. In these cases, the (expensive) synchroniza-
the sensors (e.g to perform a query or to force a network t#n procedure must be restarted, with increased overhead.
programming). This hampers successful exploitation of the€@nversely, our approach does not require any synchronization
solutions in situations where sensors need to communicat@tocol and yet tolerates arbitrary reconfigurations.
among themselves, or there are multiple sinks, as in the
aforementioned WSAN networks. VI. CONCLUSIONS AND FUTURE WORK
Traditional approaches (e.g., [23], [27]) rely on a tree-based
structure to deliver messages. This approach minimizes datdn this paper we proposed a routing approach enabling
traffic, but tree maintenance and updates require many conffgplish-subscribe on sensor networks. The routing strategy is
messages and, more importanﬂy’ a stable network. A|ternatﬁ@ﬂi-pr0babi|iStiC, in that it relies on deterministic SUbSCfiption
approaches (e.g., [8], [20]) spread the nodes’ interests acrtbdgrmation being disseminated close to the subscriber and,
the whole network to create a reverse path from a publisherere this is absent, resorts to random rebroadcast. The
receivers. However, again, no details are provided about h@RProach described in this paper is inspired by our earlier
to deal with a dynamic network, as in the case of mobile #fork [11], which we adapted and extended here to better suit
sleeping sensors, and failures. the peculiarity of the wireless sensor network environment.
Epidemic (or gossip algorithms have been applied inThe results show that our approach provides good performance
different contexts ranging from distributed database mainté-terms of high delivery and low overhead, and is resilient to

nance [13] to broadcast and multicast operation [7], [163hanges in connectivity, therefore making it amenable to our
target deployment scenario.

5Inhmost s?er;arios found in literature, sensor nodes sleep for most time andOngoing work on this topic is investigating the ability to

switch on only for a short amount of time. However, in our scenario, sens, ; ;

nodes are essential not only to acquire data from the environment but a|s§§6”am'c"?‘”.y tune theb and.T parameter, to prqwde a degrge

participate in their propagation. Hence it seems reasonable that thelratio O adaptivity to changes in the network or in the physical
is greater than (or at least equal to) 1. " context, as well as the integration of our approach with

s



more sophisticated MAC strategies enabling further overhepd]
reduction and power savings.
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