
Publish-Subscribe Tree Maintenance over a DHT

Paolo Costa and Davide Frey
Dipartimento di Elettronica e Informazione

Politecnico di Milano, Italy
{costa,frey}@elet.polimi.it

Abstract

Content-based publish-subscribe middleware is emerg-
ing as a promising answer to the demands of modern highly
dynamic distributed computing by providing the necessary
decoupling and flexibility. The majority of currently avail-
able systems implement event dispatching on top of an over-
lay network with a tree topology. However, they fail to pro-
vide any mechanism to maintain it in the presence of fail-
ures, thus hampering their applicability in dynamic scenar-
ios.

In this paper, we present a novel approach to reconfig-
uring the overlay topology by exploiting a Distributed Hash
Table. Our algorithm supports arbitrary tree topologies and
deals very well with the dynamicity of network scenarios by
limiting the impact of reconfigurations induced by topology
changes. These results are confirmed by simulations which
validate the applicability of our approach in reconfigurable
publish-subscribe middleware. Beyond publish-subscribe,
the algorithm is applicable in a wide range of contexts and
provides a general way to maintain an overlay network with
a controlled topology in dynamic environments.

1. Introduction

The widespread availability of computing devices and
network connectivity is fostering a renewed interested in
distributed computing applications, ranging from simple
data sharing facilities to complex systems able to take de-
cisions and perform computations in a decentralized fash-
ion. More and more often, it is necessary to coordinate
devices belonging to several networks and administrative
domains, thereby making issues like unreliable communi-
cation and host disconnections more and more difficult to
mask. Within this context, middleware platforms play a
major role in allowing application programmers to abstract
from the details of distributed communication and coordi-
nation, and indeed a number of middleware solutions have
been studied and implemented in recent years. A kind of

middleware that appears well suited to this kind of sce-
nario is that based on the publish-subscribe paradigm. In
publish-subscribe middleware, applications communicate
by exchanging messages which are delivered to all the com-
ponents that have expressed an interest in receiving them.

Recent work in publish-subscribe has focused on de-
veloping scalable large-scale middleware platforms [1, 4].
Nevertheless, currently available publish-subscribe middle-
ware fails to address issues like the intermittent connectivity
that characterizes the hosts taking part in large-scale dis-
tributed applications. Our research group has recently fo-
cused on these issues and has developed solutions to enable
the deployment of publish-subscribe middleware in highly
dynamic network scenarios [9, 3, 5].

In this paper we complement these efforts by present-
ing an algorithm to maintain an overlay tree topology. Al-
tough this work is motivated by our research on content-
based publish-subscribe middleware, the algorithm is far
more general and can be applied in several forms of group
communication including multicast, topic-based publish-
subscribe and peer-to-peer applications.

The algorithm exploits a Distributed Hash Table to map
hosts onto a reference tree topology. Simulation results val-
idate the effectiveness of the approach both in controlling
the number of neighbors of the hosts in the network and
in minimizing the impact of the algorithm on the protocol
responsible for the reconfiguration of the event routing.

The paper is structured as follows. Section 2 introduces
reconfigurable publish-subscribe systems and distributed
hash tables. Section 3 describes our algorithm. Section 4
complements this description with an evaluation through
simulations. Finally, Section 5 presents some related ap-
proaches and Section 6 concludes the paper.

2. Background and Requirements

Before we delve into the details of our protocol, it is im-
portant to understand both its application domain and the
elements it relies on for its operation.

2.1. Reconfigurable Publish-Subscribe Middleware

The publish-subscribe communication paradigm has
emerged in recent years as a good means for the devel-
opment of large scale distributed applications. Applica-
tions exploiting this paradigm are organized as networks
of autonomous components, the publish-subscribe clients,
which communicate by exchanging asynchronous mes-
sages. Three primitives lie at the basis of this communi-
cation infrastructure. A client may feed events into the sys-
tem by means of apublishoperation and it may express or
revoke its interest in receiving events using thesubscribe
andunsubscribeprimitives. Content-based systems allow
clients to specify subscriptions using regular-expressions
while subject-based event classes play a role which is simi-
lar to that of groups in multicast communication.

In large-scale systems, routing is often addressed with a
subscription forwarding strategy [1]. A single tree is used
to exchange subscriptions and events between dispatchers.
The former are delivered to all dispatchers, establishing the
paths which will be followed by the latter along the tree.

In our previous work [9, 3, 5], we tackled the problem
of reconfiguring the distributed event dispatcher as a way to
address highly dynamic network scenarios. The reconfig-
uration problem was decomposed into three subproblems.
The first is the modification of the topology of the dispatch-
ing infrastructure as a result of the appearance of new hosts,
the disappearance of others or the failure of communica-
tion links. The second consists in the reconfiguration of the
routes laid out by subscriptions to match the newly deter-
mined topology [9, 5]. The third consists in minimizing
the events which are lost during this reconfiguration pro-
cess [3].

Our tree management protocol addresses the first of
these subproblems and maintains a tree topology while at-
tempting to minimize the impact of its changes on the pro-
tocols responsible for rearranging subscription information.

2.2. Distributed Hash Tables

In recent years, research has devoted much effort to the
optimization of information lookup and retrieval in peer-to-
peer infrastructures. A number of systems have appeared
which implement the distributed version of the well know
hash-table data structure [13, 16, 12, 11]. Distributed Hash
Tables (DHT) enable efficient information lookup by means
of a simple operation: mapping keys onto network hosts.
Available DHTs employ several strategies to maintain the
interconnections between hosts and to distribute keys (and
objects) among them. This allows them to provide very effi-
cient lookup operations, with a communication complexity
on the order of the logarithm of the number of hosts, in dy-
namic scenarios characterized by host failures and discon-

nections. The algorithm we propose in this paper exploits
these characteristics to build and maintain a tree-shaped
overlay network.

3. Algorithm Description

The flexibility of distributed hash tables, combined with
their ability to withstand topological changes such as node
failures, makes them an appropriate basis for the devel-
opment of an overlay maintenance algorithm for reconfig-
urable publish-subscribe systems.

In the rest of this section, we present an algorithm that
exploits a DHT to build and maintain a tree-shaped overlay
network satisfying the requirements of publish-subscribe
middleware.

This algorithm is not tied to any specific DHT imple-
mentation, but it requires that the DHT satisfy the following
properties.

1. If k1 and k2 are mapped onto the same noden, then
either all the keys betweenk1 and k2 or all the keys
betweenk2 andk1 are also mapped onton.

2. Each key is assigned to one and only one host.

3. Each host is aware of the keys it has been assigned to.

Chord [13] is probably the DHT which most naturally sat-
isfies these requirements, but most other DHTs can be inte-
grated to support them

3.1. Overview

Our approach is based on the following simple idea. We
take a predefined tree structure and map each host partic-
ipating in the overlay onto its nodes, exploiting the dis-
tributed hash table. In the following, we will use the terms
nodeandkey to refer to the elements of the common tree
structure, and the termhost to refer to the actual members
of the overlay.

Each network host refers to a rooted tree structure like
the one depicted in Figure 1(a), in which each tree node
is tagged with a distinct value from the set of all possible
keys. The host uses the DHT to determine where it should
be placed on this tree. More precisely, it retrieves its set of
keys and explores the tree structure in breadth-first order un-
til one of them is encountered. This process associates each
host with a uniquely determined node of the tree structure,
but it does not necessarily associate each tree node to a spe-
cific network host. The number of nodes in the tree structure
is therefore an upper bound on the number of nodes in the
overlay.

Once a host has determined its position, it can discover
its neighbors in the overlay by trying to connect to the hosts

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

(a) A binary tree structure.

8

4

122

6 101 3

5

7 9 11 13

(b) A tree structure with a node degree of four.

Figure 1.

associated to neighboring positions in the tree structure. If
any of these is not claimed by any host, it simply contin-
ues by traversing neighboring positions either ascending to-
wards the root of the tree or scanning the subtrees rooted at
the neighbors farther from the root.

3.2. Properties of the Common Tree Structure

In our approach, hosts determine the identity of their
neighbors independently of each other and reach an agree-
ment thanks to the use of a common tree structure. In other
words, if a noden determines that another nodem should
be its neighbor, thenm, in turn, determines that it should
connect ton. Among the various possible alternatives, we
will concentrate on tree structures which satisfy the follow-
ing property.
Let n be a node in the tree structure andp its parent
and let k(n) and k(p) denote their keys. Letkm =
min(k(n), k(p)) and kM = max(k(n), k(p)), then node
n has at most one child nodec whose keykc does not lie in
the interval betweenkm andkM .
Additionally, kc < k(n) if k(n) < k(p) and kc > k(n)
otherwise.

In the case of binary trees (with node degree equal to
three), the above property is satisfied by a binary search tree
like the one shown in Figure 1(a). For larger values of node
degree, it is possible to define tree structures similar to the
one in Figure 1(b). The rationale behind this choice is that

we aim to build a tree in which the number of neighbors of
each host is bounded by the maximum degree of the nodes
in the tree. The above property guarantees this fact in the
binary case and makes it highly probable in general.

3.3. Mapping hosts onto keys

In order to give a precise definition of the behaviour of
our algorithm, it is convenient to describe the mapping be-
tween hosts and the nodes of the reference tree structure.
This can be done with the following definitions.

Definition 1 Leth be a host, we define thekeysetof h, Kh,
as the set of keys assigned toh by the DHT.

Definition 2 Let K be a set of keys, thetopmostkey inK,
K, is the first key inK which is encountered in a breadth
first traversal of the reference tree structure, starting from
the root key.
We also define thetopmostkeyh of a hosth to be the top-
most key of its keysetKh, that ish = Kh.

The concept of topmost key is what enables the mapping
between hosts and the reference tree structure. Each host is
in fact associated to the node representing its topmost key.

3.4. Algorithm operation

The core of the algorithm is constituted by the opera-
tions that are carried out whenever a node joins or leaves
the network. A host joining the network determines which
other nodes should become its neighbors and establishes a
connection with them. These hosts, in turn, recompute their
own sets of neighbors and modify their connections. All the
hosts that are added to or removed from some other host’s
neighbor set are forced to recompute their own neighbor
sets and operate accordingly. Intuitively, this means that the
joining or leaving of a single node may modify significantly
the interconnections between hosts. However, our empirical
evaluation shows, as discussed in Section 4.2.2, that these
changes remain confined to a restricted area.

Each host determines its neighbor set based on the posi-
tion of its topmost key in the reference tree structure. For
the sake of clarity, we first describe the algorithm a host uses
to determine its parent and then describe the one it uses to
determine its children.

Determining the parent host The parent of a host is de-
fined according to the relationship between keys and their
parent keys in the reference tree structure. However, since
multiple neighboring keys may be assigned to the same
host, it is necessary to define a new way to associate a host’s
key with the key corresponding to the host’s parent.

Definition 3 Let k be a topmost key, we definepar(k) as
the closest key tok along the path fromk to the root
key, such thatpar(k) is the topmost key of some host and
par(k) 6= k.

The foregoing definition enables us to define the parent
of a host with topmost keyk as the owner ofpar(k).

A host can easily determinepar(k) and, hence, its par-
ent, by means of a simple iterative procedure. It first deter-
mines the parent keykp of k in the reference tree structure.
Then it queries the DHT to determine the hosthp which
ownskp, and its keyset. Ifkp = hp, thenkp = par(k) and
hp is chosen as the parent, otherwise the process is iterated
starting from the parent key ofkp.

Determining child hosts Children are determined in a
similar way. Let us consider a hosth. The host carries out
a depth first traversal of the subtree rooted ath, and locates
each topmost key,t, such that the path fromt to h contains
no topmost keys other thant andh.

Managing neighborhood changes As soon as a host has
computed its new set of neighbors, it compares it with its
old set. This allows it to notify a neighborhood change to
the hosts which are in the symmetric difference of the two
sets, triggering the execution of the algorithm at each of
these hosts.

3.5. Example

With reference to the binary tree in Figure 1(a) let us con-
sider as an example the set of hosts{h5, h9, h11, h13, h15}1.

Exploiting the service offered by the DHT, each host is
able to determine its own position in the overlay network
autonomously without further communication with other
hosts. In Figure 2(a) the final network configuration is
sketched together with the keyset of each host and its top-
most key, shown with a bar on top. Hosth9 discovers it is
designated to act as the root since its topmost keyh9 is equal
to 8, which is the root key in the reference tree structure. It
then determines its children by querying the DHT for the
owners of keys 4 and 12 (hostsh5 andh13) and creates a
link with them.

Analogously,h5 andh13 realize their topmost keys are,
respectively, 4 and 12 and that their parenthp is h9, since
par(k) = 8 for both. Besides,h5 tries to detect its children,
starting from its left child. It does not find any topmost key
exploring its left subtree (keys 1, 2 and 3 belong toh5’s

1For the sake of clarity we adopt the key distribution scheme of
Chord[13] according to which each host is responsible for all the keys
ranging from its predecessor (excluded) to itself (included). Nevertheless,
as mentioned above, all the schemes satisfying the aforementioned proper-
ties can also be used.

keyset) and continues by checking whether a right child is
available. The first key it encounters is 6, which falls inside
Kh9 , but is noth9’s topmost key. Therefore,h5 considers
the next keys occurring in depth-first order, namely 5 and 7.
Again, these keys are not topmost keys (key 5 is owned by
h5 itself and key 7 is inKh9 but, as described above,h9 =
8) and so they are discarded. As no other key is available
in this sub-tree,h5 terminates its procedure by connecting
only to its parenth9.

Exploring its sub-tree,h13 discovers that keys 10 and 14
are the topmost keys ofh11 andh15 and establishes a con-
nection with them. Similarly,h11 andh15 connect toh13,
the owner of theirpar(k). None of them connects to other
nodes as no topmost keys are present in their sub-trees.

Now suppose thath4 decides to join the network: it
notifies the DHT of its presence and retrieves its keyset
Kh4 = {1, 2, 3, 4} (note thatKh5 changes accordingly and
now contains only key 5). Its topmost key is 4 and its par-
ent is the owner of key 8, i.e.h9. As for its children, it
cannot find any left child since keys 1, 2, 3 belong toKh4 ,
while it usesh5 as right child, sinceh5’s topmost key is now
6. When contacted,h9 andh5 realize that the topology has
changed and consequently check whether they have to mod-
ify their neighbor sets. In this case, no further modifications
are needed (other than the connection toh4), so no action is
performed. The final result is depicted in Figure 2(b). Note
that hostsh11, h13 andh15 are unaffected by the reconfigu-
ration and no computation or message exchange is required
by them.

As a last example, let us see what happens ifh13 fails.
Host h9 detects a disconnection and updates its neighbor-
hood adopting the usual strategy, finally connecting toh15

(whose topmost key is now 12). In turn,h15 is notified of
the topology change and initiates an update procedure that
will eventually connect it toh9 as its parent and toh11 as its
child. Hosth11 is also made aware of the topology change
and updates its neighbors analogously (see Figure 2(c)).

3.6. Algorithm correctness and properties

The requirements we pose on the DHT, together with the
properties of the common tree structure, guarantee that, in
a stable network, the algorithm terminates and the proce-
dures which determine parent and child hosts agree on their
results.

In addition, the proposed approach provides the ability
to control the number of connections that each host estab-
lishes in the overlay network. This property helps guarantee
the scalability of the middleware by preventing resource-
constrained hosts from having too many neighbors. In par-
ticular, it can be shown that in the case of a binary tree the
number of neighbors of each host is at most as large as the
degree of the nodes in the reference tree structure. Con-

(a) Initial state. (b) Host 4 joins the network. (c) Host 13 disappears.

Figure 2. Sample reconfigurations with nodes being added and removed.

sidering larger values of node degree, we argue that this
property still holds with high probability if a uniform key
distribution is adopted.

Finally, the evaluation presented in Section 4 highlights
the limited impact of our algorithm on the reconfiguration
of routing information. Obviously, the actual costs for this
reconfiguration and for the delivery of event and subscrip-
tion messages depend on the protocols used on top of our
overlay manager.

4. Evaluation

We implemented the algorithm described in Section 3 us-
ing OMNet++[15], a discrete event simulation system. The
purpose of our simulations is twofold. Firstly, they serve as
a test to verify that the algorithm is indeed able to maintain
the desired overlay in a network with hosts that join and/or
leave at arbitrary times. Secondly, they provide a measure
of its impact on the reconfiguration of routing information
in a distributed publish-subscribe system.

4.1. Setting

The scenario we adopted in our simulations consists of
a network of hosts which connect and disconnect at ran-
dom intervals. The number of hosts in the network,N , is
kept approximately constant by equating the rates at which
connections and disconnections occur. This setting is built
incrementally, starting from an empty network and having
new hosts join the existing overlay using the protocol de-
scribed in Section 3. As soon as the network reaches a size
of N hosts, the system evolves to a state in which each con-
nection is followed by a disconnection after a specified in-
tervalTadd,remove. Measurements are taken for a time in-
tervalTmeas from the moment in which the network reaches
its size.

The DHT is simulated as an abstract component with the
ability to map keys onto hosts and conversely. In particular,
we assume that the DHT offers the same consistent view
to all the hosts in our algorithm. This corresponds to our

algorithm being invoked only after the DHT has stabilized
subsequently to the connection or disconnection of a host.
Simulations were carried out with a key-space of256 iden-
tifiers, which also determines the size of the reference tree
structure, and an actual number of hosts ranging from10 to
120. In the following, we present results obtained with a bi-
nary reference tree. We conjecture that similar conclusions
hold for trees with larger values of node degree.

4.2. Results

Our experiments suggest that our approach is a valu-
able candidate when choosing a topology maintenance al-
gorithm for a distributed publish-subscribe system. Our re-
sults are presented as follows. In Section 4.2.1 we evaluate
the characteristics of the topology maintained by the algo-
rithm, while in Section 4.2.2 we analyze the impact of our
approach on a publish-subscribe system built on top of it.

4.2.1 Correctness and overlay properties

In order to asses the algorithm’s ability to maintain the
desired overlay network, we let the algorithm run for a
timeTmeas and evaluated the characteristics of the resulting
overlay after a period of reconfigurations. More precisely,
we first checked that the desired topology was indeed a tree,
that is an acyclic and connected graph, and then evaluated
the number of neighbors of each host to verify that the re-
sulting node degree was bounded by that of the reference
tree structure.

Figure 3 shows the distribution of node-degree obtained
after theTmeas period. The graph clearly shows that the
resulting tree is very close to an ideal balanced tree, with the
majority of the hosts either being leaves or having a degree
of three, and with none having a larger degree.

4.2.2 Impact on publish-subscribe routing

While controlling the number of neighbors may help in
building scalable publish-subscribe middleware on top of
an overlay management algorithm, controlling the impact

Degree Distribution

0

5

10

15

20

25

30

35

40

45

Leaves 2-degree 3-degree

n
u

m
b

er
 o

f
n

o
d

es

Figure 3. Degree distribution in the case of a
binary reference tree

of failures, and more in general of topology changes, is
of paramount importance when building middleware for
highly dynamic environments.

Characterizing the impact of topology changes An
ideal overlay manager should handle the disconnection or
the connection of a host by minimizing the number of hosts
affected by the event. Previous work [5] has precisely char-
acterized the hosts in the overlay network that may be af-
fected by a topology change in cases when a link is replaced
by another. The characterization may be extended to the
case of host connections and disconnections in the follow-
ing way. We consider areconfiguration areaconsisting of
the subtree interconnecting the endpoints of the links that
are removed or created as a result of a topology change,
once the algorithm has stabilized. This characterization,
albeit independent of the specific reconfiguration protocol,
provides us with an estimate of the overhead associated with
the reconfiguration of subscription information.

Impact evaluation The definition of reconfiguration area
allows us to assess the goodness of our algorithm with re-
spect to its application in reconfigurable publish-subscribe
middleware. The results obtained in our simulations, de-
picted in Figure 4, show that the size of the reconfiguration
area remains very low even when the number of hosts be-
comes large.

The size of the reconfiguration area can be compared
with the number of hosts which are directly involved in the
topology change. In the ideal case, the reconfiguration area
should only consists of the appearing or disappearing host
and its neighbors. Our algorithm is very close to this ideal
case with the average number of hosts contacted during a
reconfiguration being between two and three.

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100 120

nu
m

be
r

of
 li

nk
s

number of hosts

Size of the reconfiguration area

average
average + std-dev
min
max

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100 120

nu
m

be
r

of
 li

nk
s

number of hosts

Size of the reconfiguration area

average
average + std-dev
min
max

Figure 4. Size of the reconfiguration area in
the case of host connections (top) and dis-
connections (bottom).

5. Related Work

The vast majority of systems targeted to multipoint com-
munication rely on a tree-shaped overlay network to deliver
events but only very few of them provide details on how the
tree is rearranged when a topological reconfiguration oc-
curs [7, 6].

Some systems [17, 2, 10] leverage a DHT service to
maintain the tree in presence of faults. By and large all
of them adopt arendezvous-basedscheme: a specific key
identifies the root and the host responsible for that key is
universally recognized as the root. To join the network each
host asks the DHT for a valid route to the root and then for-
wards a join request to the next host towards the root. When
a host receives a join request, it records its originator as its
child and checks whether it is already member of the tree. In
this case, it simply drops the request, otherwise it forwards
the request towards the root, acting as the originator.

When a host detects a failure in the path leading to the
root, it initiates a new join procedure and eventually, after
DHT reconfigures itself, it is provided with a new host to
attach to. If the root fails, a new host becomes responsible

for the root key and all the other hosts have to start a new
join procedure.

Though this approach exploits the reconfigurability of
DHTs, both the techniques they use and the results they
achieve are quite different from ours. First, such approaches
do not enable the definition of the desired topology as we
do: this implies that the resulting topology is predefined,
dependending on the specific DHT they rely on. Second,
they give no hints about the impact that a disappearing host
has on the rest of the network. However, it seems likely that
the closer the host is to the root, the more hosts need to mod-
ify their routing tables. The extreme case in which the root
disconnects forces all the hosts in the network to initiate a
join procedure, thus flooding the network with requests.

Another related approach is Willow [14]. This system
adopts a strategy similar to that of Kademlia [8]: it treats
hosts as leaves in a binary tree, with each hosts’s position
being determined by the sequence of bits in its ID.

6. Conclusions

The maintenance of a tree of interconnected dispatchers
is a key issue in reconfigurable publish-subscribe middle-
ware that has not been thoroughly investigated by current
research. In this work we presented an algorithm which
maintains the topology at the basis of a distributed publish-
subscribe system, exploiting the potentialities of distributed
hash tables. The algorithm exhibits some interesting proper-
ties, including the ability to control the number of neighbors
of the hosts in the resulting overlay network, and a very low
impact on the reconfiguration process dictated by topology
changes. These properties were validated through simula-
tions which confirm the validity and the potentiality of the
proposed approach. Finally, although we described the pro-
tocol in the context of publish-subscribe middleware, our
work can be applied to other instances of group communi-
cation as well as to any system which requires the mainte-
nance of an application-level tree-based overlay network.

Our plan is to investigate to a further extent the charac-
teristics of this algorithm both from an empirical and from a
theoretical point of view, and to test it in a prototype imple-
mentation of a publish-subscribe platform that is currently
under development.

References

[1] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and eval-
uation of a wide-area event notification service.ACM Trans.
on Computer Systems, 19(3):332–383, Aug. 2001.

[2] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron.
SCRIBE: A large-scale and decentralized application-level
multicast infrastructure.IEEE Journal on Selected Areas in
communications (JSAC), 2002.

[3] P. Costa, M. Migliavacca, G. P. Picco, and G. Cugola.
Epidemic Algorithms for Reliable Content-Based Publish-
Subscribe: An Evaluation. InProc. of the 24th Int. Conf. on
Distributed Computing Systems, 2004.

[4] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-
based infrastructure and its application to the development
of the OPSS WFMS.IEEE Trans. on Software Engineering,
27(9):827–850, Sept. 2001.

[5] G. Cugola, D. Frey, A. Murphy, and G. Picco. Minimiz-
ing the reconfiguration overhead in content-based publish-
subscribe. In19th Annual ACM Symp. on Applied Comput-
ing (SAC’04), 2004.

[6] P. Francis.Yoid Tree Management Protocol (YTMP) Speci-
fication. ACIRI, April 2000. http://www.icir.org/
yoid/docs/ytmp.pdf .

[7] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek,
and J. W. O’Toole, Jr. Overcast: Reliable multicasting with
an overlay network. InProceedings of the Fourth Sym-
posium on Operating System Design and Implementation
(OSDI), pages 197–212, October 2000.

[8] P. Maymounkov and D. Mazires. Kademlia: A peer-to-peer
information system based on the xor metric. InProceedings
of the First International Workshop on Peer-to-Peer Systems,
pages 53–65, 2002.

[9] G. Picco, G. Cugola, and A. Murphy. Efficient Content-
Based Event Dispatching in Presence of Topological Recon-
figuration. InProc. of the 23rd Int. Conf. on Distributed
Computing Systems, May 2003.

[10] P. Pietzuch and J. Bacon. Hermes: A Distributed Event-
Based Middleware Architecture. InProc. of the 1st Int. Wk-
shp on Distributed Event-Based Systems, July 2002.

[11] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content addressable network. InPro-
ceedings of ACM SIGCOMM 2001, 2001.

[12] A. Rowstron and P. Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer
systems. InIFIP/ACM International Conference on Dis-
tributed Systems Platforms (Middleware), pages 329–350,
2001.

[13] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable Peer-To-Peer lookup service
for internet applications. InProc. of the ACM Conference
on Applications, Technologies, Architectures, and Protocols
for Computer Communication (SIGCOMM’01), 2001.

[14] R. van Renesse and A. Bozdog. Willow: Dht, aggregation,
and publish/subscribe in one protocol. InProceedings of
the Third International Workshop on Peer-to-Peer Systems,
pages 173–183, 2004.

[15] A. Varga. OMNeT++ Web page.www.omnetpp.org .
[16] B. Y. Zhao, L. Huang, S. C. Rhea, J. Stribling, A. D. Joseph,

and J. D. Kubiatowicz. Tapestry: A global-scale overlay for
rapid service deployment.IEEE Journal on Selected Areas
in Communications, 22(1):41–53, January 2004.

[17] S. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. Ku-
biatowicz. Bayeux: an architecture for scalable and fault-
tolerant wide-area data dissemination. InNetwork and Op-
erating System Support for Digital Audio and Video, 11th In-
ternational Workshop, NOSSDAV 2001, Port Jefferson, NY,
USA, June 25-26, 2001, Proceeding, pages 11–20.

