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ABSTRACT 

Semantic place labels are labels like “home”, “work”, and 

“school” given to geographic locations where a person 

spends time. Such labels are important both for giving 

understandable location information to people and for 

automatically inferring activities. Deployed products often 

compute semantic labels with heuristics, which are difficult 

to program reliably. In this paper, we develop Placer, an 

algorithm to infer semantic places labels. It uses data from 

two large, government diary studies to create a principled 

algorithm for labeling places based on machine learning. Our 

labeling reduces to a classification problem, where we 

classify locations into different label categories based on 

individual demographics, the timing of visits, and nearby 

businesses. Using these government studies gives us an 

unprecedented amount of training and test data. For instance, 

one of our experiments used training data from 87,600 place 

visits (from 10,372 distinct people) evaluated on 1,135,053 

visits (from 124,517 distinct people). We show labeling 

accuracy for a number of experiments, including one that 

gives a 14 percentage point increase in accuracy when 

labeling is a function of nearby businesses in addition to 

demographic and time features. We also test on GPS data 

from 28 subjects. 
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INTRODUCTION 

Semantic place labeling is the process of giving a meaningful 

name to a location. For example, the process might give the 

label “home” to the geographic location where a person lives, 

“work” to their workplace (Figure 1), “school” to school, and 

so on. This labeling is important when we want an 

application to refer to locations in an understandable way, 

such as, “Barney has arrived safely at school.” Place labels 

have also been proposed for automatically updating a 

person’s status on social networking sites, such as the 

CenseMe project [1], and automatically annotating check-

ins, such as work by Ye et al. [2]. Friendly names for 

locations are much easier to understand than 

latitude/longitude or street addresses. Semantic location 

labels can also serve as input to automatic activity inference. 

For instance, sleep usually occurs at home rather than at work 

or school (although there are exceptions). In fact, this ability 

to infer an activity from a labeled location was shown by 

Partridge and Golle [3] using the American Time Use Survey 

[4], which is one of the two diary studies we use. 

In this paper, we develop a classifier called Placer that 

identifies place labels based on the timing of visits to that 

place, nearby businesses, and simple demographics of the 

user. For example, if a student-age person arrives at a 

location near a school on a winter weekday at 8:00 a.m. and 

stays until 3:00 p.m., our classifier would say that place is 

the person’s school. This is an example of a heuristic that 

could be written to label a place. Such heuristics have been 
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Figure 1: These are locations labeled as "work" in a diary 

study. Our goal is label them automatically based on 

features including the timing of visits, demographics of the 

visitors, and surrounding businesses. 

 



 

tested in [5] for identifying a person’s home and work place. 

For instance, a person’s home was identified as where they 

spent the most time during the hours of midnight to 6 a.m. It 

would be cumbersome and error-prone to write such 

heuristics that cover all possible cases and places. Instead, 

modern approaches, including ours and [5], use machine 

learning to build a place classifier automatically. 

Other approaches to place labeling include those that collect 

labels from other people. Loci [6] gives users a suggested list 

of labels based on labels left by other users. Similarly, 

CenceMe [1] automatically labels a user’s place based on 

labels given to the place by friends. Our approach is different 

in that it attempts to automatically label places based on how 

an individual uses them and the surrounding businesses. 

One of the feature types we use to infer a place label is nearby 

businesses and points of interest. Intuitively, a school at a 

place gives evidence that the place is either a person’s school 

or workplace. Several researchers have shown how to 

characterize places by their nearby points of interest (POI) 

[7-9]. Our work goes a step beyond characterization and 

shows how to infer an actual label from the POI, as well as 

other features. 

With straightforward machine learning, our Placer approach 

creates a mapping between features describing a visit to a 

place and the place’s label. One of the earliest attempts to do 

this was the work by Liao et al. [10], who used features 

including the timing of visits and the presence of bus stops, 

restaurants, and grocery stores. Their main innovation was a 

hierarchical conditional random field (CRF) that aided 

inference accuracy by exploiting the temporal sequence of 

place visits, e.g. “work” often follows “home”. Their system 

was tested on GPS traces of four people. Chen et al. [11] 

processed label sequences with a hidden Markov model 

rather than a CRF. Ye et al. [2] derived eight place label 

categories from Whrrl, a location-based social network. 

They used a support vector machine on features such as 

check-in frequency and time of day to label over 53,000 

places from almost 6000 users. Based on our literature 

search, this is the largest test of place labeling to date. 

Nokia’s Mobile Data Challenge (MDC) attracted several 

algorithms for inferring semantic place labels (MDC Task 1) 

[12]. The MDC supplied data sensed from mobile phones 

(time, battery state, accelerometer, Bluetooth, WiFi, call log, 

SMS log, and selected user profile) for 79 users with an 

average of 5 labeled locations each. The published solutions, 

all of which used a machine learning approach, had 

classification accuracies between 65% and 75% [5, 13-15] 

for the 10 types of places specified. 

Our approach to semantic place labeling, called Placer, 

solves the labeling task as a classification problem, similar 

to the solutions above. We train and test our approach on two 

different diary survey conducted in the U.S. These large 

datasets, one of which includes latitude/longitude data, give 

us the opportunity to move beyond existing research in the 

following ways: 

 Train/test on an order of magnitude more data than 

previously largest test. 

 Include relatively low frequency visits to places 

such as banks, post offices, and churches. 

 Include demographic features (age and gender) for 

the first time. 

 Differential testing to assess the accuracy impact of 

including an extensive set of nearby business 

features. 

 Testing across two different, large data sets to 

assess the impact of inevitable coding 

inconsistencies. 

 Apply diary survey model to real GPS data. 

We elaborate on these advantages subsequently, but next we 

describe the public datasets we used. 

DIARY DATASETS 

We used two publicly available location diaries for our 

training and testing. In both, subjects were asked to keep 

track of where they went for one or two days. The two studies 

are the American Time Use Survey (ATUS) [4] and the 

Puget Sound Regional Council Household Activity Survey 

(PSRC) [16]. These are both examples of diary surveys that 

exist in many countries. Partridge and Golle [3] give a good 

overview of these types of surveys and introduce some uses 

of them for understanding people’s activities and places. 

American Time Use Survey 

The goal of ATUS [4] is to understand how Americans spend 

their time in different activities. The survey is conducted by 

the U.S. Census Bureau. Survey subjects are randomly 

chosen, and they must be at least 15 years old. The survey is 

conducted entirely by telephone, and subjects are asked to 

recall their previous day’s activities and trips. For our 

purposes, the important questions are about the subject’s age, 

gender, and when and where they went. Each row in our 

ATUS database table corresponds to one visit to a place by 

one of the subjects, and each visit includes the visit’s date, 

start time, duration, and place category. For each visit, the 

subject chose one of the place categories shown in the first 

column of Table 1. We used ATUS data from 2003-2011, 

giving a total of 124,517 unique subjects who recorded 

1,135,053 total visits, giving an average of 9.1 recorded 

visits per user. To the best of our knowledge, this is the 

largest dataset to be used for semantic place labeling to date, 

with the next largest being the 53,432 visits by 5892 subjects 

from the Whrrl data in [2]. 

Puget Sound Regional Council Household Activity 
Survey 

The second diary study we used is the Puget Sound Regional 

Council (PSRC) Household Activity Survey [16]. The goal 

of this survey, conducted in 2006, was to discover travel 

trends for the U.S. Puget Sound region, which consists of 

four U.S. counties anchored by Seattle, Washington. The 



 

subjects of this survey filled out a travel diary, giving details 

of their trips for two consecutive days. For each trip, the 

subjects indicated the purpose of the trip from the list of 

choices shown in Table 2. From the trip data, we could easily 

derive each visit’s date, start time, and duration, as in the 

ATUS data. The PSRC survey also came with the age and 

gender of each subject, matching the demographic data 

available from ATUS. By signing a confidentiality 

agreement with PSRC, we were also able to obtain extra data 

giving the geographic coordinates of each subject’s visits. 

We explain later how we used this coordinate data to create 

a more accurate inference model of semantic place labels. 

We used PSRC data on 87,600 trips taken by 10,372 different 

people. This PSRC survey was budgeted for one million U.S. 

dollars, which is more than any research institution would 

likely spend on the problem of semantic place labeling. Thus 

we are fortunate that this data is freely available and can be 

used for purposes beyond its original intention. In the next 

section we explain how we used both the ATUS and PSRC 

data to infer place labels with machine learning. 

MACHINE LEARNING FOR SEMANTIC PLACE LABELING 

Our goal is to compute a semantic place label from data on 

visits to the place. We might reasonably assume that visits to 

a school have different patterns than visits to a restaurant, 

especially temporally. In our baseline approach to this task, 

we use demographic (age and gender) features and temporal 

features of the visit to infer a place label. Specifically, from 

both ATUS and PSRC, our baseline features for each visit 

are the following, all scalars: 

 Age of subject in integer years 

 Gender of subject 

 Arrival day of week 

 Arrival time of day 

 Visit midpoint time of day 

 Departure time of day 

 Duration of visit 

 Holiday (binary) 

 Season of year (0,1,2,3) 

Some of the nine baseline features are redundant in that they 

can be computed from each other. This was intentional to 

make machine learning easier. Each feature vector came with 

a ground truth semantic place label from either ATUS or 

PSRC. 

The mapping between the feature vector and place label is 

computed with a learned multiclass classifier in the form of 

a forest of boosted decision trees [17]. This learning process 

begins with learning a conventional decision tree. Using the 

classification results from this tree, a second tree is learned 

with increased importance given to the training samples that 

were misclassified by the first tree. More trees are added in 

this way to create the forest. Given a feature vector, the forest 

gives a probability for each class, and we take the highest 

probability class as the inference. 

For our particular learner, the parameters were: 

 Maximum branching factor: 20 

 Minimum instances per leaf: 10 

 Learning rate: 0.2 

 Number of trees: 100 

We felt some of the labels given by ATUS and PSRC were 

unnecessarily precise for many applications, such as PSRC’s 

separate labels “Everyday shopping” and “Major shopping”. 

We combined these into one label category called “Store for 

Shopping”. Similarly, we combined ATUS’s 11 different 

transportation labels into one “Transportation” category. We 

also ignored all ATUS records labeled with “Unspecified 

place”. These changes are highlighted in the second columns 

of Table 1 (ATUS) and Table 2 (PSRC). With these changes, 

we had 14 different place labels for ATUS and 13 for PSRC. 

ATUS Place Label Inferences 

We tested our inferences on the ATUS data using 10-fold 

cross validation. The results, given as a confusion matrix, are 

 

Table 1: These are the place categories from ATUS and the 

translations we made for Placer. 

 

ATUS Where AUTS Where for Placer Generic Where for Placer

Respondent's home or yard Home Other

Respondent's workplace Work Work

Someone else's home Someone else's home Other

Restaurant or bar Restaurant or Bar Restaurant or Bar

Place of worship Place of Worship Place of worship

Grocery store Store for Shopping Store for Shopping

Other store/mall Store for Shopping Store for Shopping

School School School

Outdoors away from home Outdoors Other

Library Library Other

Other place Other Other

Car, truck, or motorcycle (driver) Transportation Other

Car, truck, or motorcycle (passenger) Transportation Other

Walking Transportation Other

Bus Transportation Other

Subway/train Transportation Other

Bicycle Transportation Other

Boat/ferry Transportation Other

Taxi/limousine service Transportation Other

Airplane Transportation Other

Other mode of transportation Transportation Other

Bank Bank Other

Gym/health club Gym Other

Post Office Post Office Other

Unspecified place IGNORED IGNORED

Unspecified mode of transportation Transportation Other

 

Table 2: These are the place categories from PSRC and the 

translations we made for Placer, analogous to the ATUS 

place categories in Table 1. 

 

PSRC Activities PSRC Where for Placer Generic Where for Placer

Home - Paid Work Work Work

Home - Other Home Home

Work Work Work

Attend Childcare School School

Attend School School School

Attend College School School

Eat Out Restaurant or Bar Restaurant or Bar

Personal Business Personal Business Other

Everyday Shopping Store for Shopping Store for Shopping

Major Shopping Store for Shopping Store for Shopping

Religious/Community Religious/Community Place of Worship

Social Social Other

Recreation - Participate Recreation Other

Recreation - Watch Recreation Other

Accompany Another Person Accompany Another Person Other

Pick-Up/Drop-Off Passsenger Pick-Up/Drop-Off Passsenger Other

Turn Around Turn Around Other



 

shown in Table 3. Here we see that “Home” and “Work” 

stand out as the most accurate inferences. “Other’s Home” 

has fair accuracy at 0.68, while all other places are mistaken 

for the wrong place over half the time. But, since people 

spend much time at home and work, the overall accuracy for 

ATUS is 0.73. We computed this accuracy number by simply 

dividing the number of correct classifications by the total 

number of classification attempts, so it naturally accounts for 

the fact that there are many more visits to home and work 

than to other places. 

PSRC Place Label Inferences 

The PSRC data has a different set of place labels, so we 

cannot compare it directly with the ATUS data. The other 

major difference between the ATUS data and the PSRC data 

is that the PSRC data comes with geographic coordinates 

giving the location of each visit. This gave us the opportunity 

to add classification features pertaining to the characteristics 

of the actual place, in addition to the demographic and 

temporal features that we used for the ATUS data. 

We used data from a local search engine 

to find businesses and points of interest 

(POI) near every visit in the PSRC data. 

Our intuition was that geographic features 

like this would help distinguish place 

types. For instance, the presence of a 

school is indicative of the place type. 

Instead of specific businesses (e.g. 

Starbucks) and POI (e.g. Benjamin Rush 

Elementary School), we instead looked at 

15 types of geographic entities: 

 Arts & Entertainment 

 Automotive & Vehicles 

 Business to Business 

 Computers & Technology 

 Education 

 Food & Dining 

 Government & Community 

 Health & Beauty 

 Home & Family 

 Legal & Finance 

 Professionals & Services 

 Real Estate & Construction 

 Shopping 

 Sports & Recreation 

 Travel 

For each of these 15 types, we created 4 

different features for classification: 

 Count of each type with 50 

meters 

 Count of each type within 100 

meters 

 Count of each type within 200 

meters 

 Distance to nearest instance of 

each type 

This created 60 additional features for classification to 

supplement the 9 baseline features we used for the ATUS 

data. We used the same machine learning model and 

parameters as for the ATUS data. 

The results are shown in Table 4 as a confusion matrix. The 

overall accuracy is 0.74, which is essentially the same as the 

overall accuracy for the ATUS result. While both ATUS and 

PSRC do fairly well on “Home”, “Work”, and “School”, the 

confusion matrix shows that PSRC is also doing fairly well 

on less frequently visited locations such as “Personal 

Business”, “Shopping”, and “Religious/Community”. 

We suspect this improved performance is due to the extra 

geographic features that PSRC lets us use. We tested this by 

rerunning our test on the PSRC data without the geographic 

features, using just the nine baseline demographic and 

temporal features we used for the ATUS data. Without the 

 

Table 3: This is the confusion matrix from a 10-fold cross validation with the 

ATUS data. The overall accuracy was 0.73. “Home” and “Work” stand out as the 

easiest-to-label places. 
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Home 0.92 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.92

Work 0.05 0.87 0.02 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.87

Other's Home 0.15 0.07 0.68 0.03 0.01 0.02 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.68

Restaurant or Bar 0.19 0.11 0.08 0.30 0.03 0.08 0.06 0.05 0.02 0.01 0.00 0.01 0.00 0.06 0.30

Place of Worship 0.25 0.03 0.04 0.05 0.33 0.05 0.12 0.04 0.03 0.00 0.00 0.01 0.00 0.05 0.33

Store for Shopping 0.16 0.06 0.02 0.07 0.03 0.40 0.05 0.10 0.06 0.00 0.00 0.01 0.01 0.04 0.40

School 0.19 0.05 0.01 0.03 0.05 0.04 0.44 0.04 0.07 0.02 0.00 0.00 0.01 0.04 0.44

Outdoors 0.17 0.05 0.02 0.02 0.02 0.09 0.05 0.45 0.02 0.04 0.00 0.01 0.00 0.05 0.45

Library 0.17 0.06 0.03 0.03 0.02 0.05 0.09 0.03 0.45 0.01 0.00 0.00 0.01 0.04 0.45

Other Place 0.20 0.08 0.05 0.04 0.02 0.03 0.05 0.07 0.03 0.36 0.00 0.00 0.01 0.06 0.36

Transportation 0.19 0.16 0.05 0.04 0.03 0.05 0.07 0.07 0.10 0.02 0.15 0.00 0.01 0.06 0.15

Bank 0.34 0.08 0.11 0.05 0.05 0.11 0.05 0.05 0.02 0.03 0.01 0.08 0.00 0.03 0.08

Gym 0.35 0.10 0.01 0.00 0.00 0.13 0.06 0.06 0.15 0.02 0.01 0.00 0.10 0.01 0.10

Post Office 0.26 0.11 0.07 0.08 0.05 0.05 0.09 0.08 0.05 0.03 0.00 0.00 0.00 0.12 0.12

Precision 0.85 0.81 0.67 0.38 0.38 0.38 0.41 0.40 0.41 0.47 0.54 0.26 0.26 0.27
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Table 4: This is the confusion matrix from a 10-fold cross validation with the 

PSRC data that includes business features. The overall accuracy was 0.74. 

“Home”, “Work”, and “School” stand out as the easiest-to-label places. 
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Home 0.91 0.02 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.91

Work 0.07 0.83 0.01 0.01 0.03 0.02 0.01 0.01 0.00 0.01 0.01 0.00 0.83

School 0.04 0.02 0.88 0.00 0.01 0.00 0.02 0.01 0.00 0.01 0.01 0.00 0.88

Eat Out 0.02 0.02 0.01 0.66 0.07 0.12 0.00 0.03 0.01 0.03 0.02 0.01 0.66

Personal Business 0.14 0.04 0.01 0.02 0.58 0.10 0.03 0.02 0.01 0.03 0.02 0.01 0.58

Store for Shopping 0.10 0.03 0.01 0.03 0.07 0.62 0.05 0.05 0.01 0.01 0.02 0.02 0.62

Religious/Community 0.14 0.02 0.02 0.00 0.04 0.06 0.57 0.09 0.00 0.02 0.02 0.02 0.57

Social 0.06 0.02 0.01 0.02 0.02 0.06 0.08 0.68 0.00 0.02 0.01 0.02 0.68

Recreation 0.26 0.06 0.02 0.03 0.06 0.06 0.02 0.01 0.34 0.06 0.07 0.01 0.34

Accompany Person 0.21 0.05 0.01 0.03 0.05 0.04 0.04 0.03 0.02 0.46 0.05 0.01 0.46

Pick-Up/Drop-Off 0.14 0.03 0.02 0.01 0.05 0.05 0.03 0.03 0.01 0.04 0.57 0.02 0.57

Turn Around 0.19 0.01 0.01 0.00 0.04 0.09 0.08 0.04 0.01 0.02 0.04 0.47 0.47

Precision 0.82 0.83 0.89 0.70 0.64 0.64 0.62 0.64 0.50 0.57 0.64 0.60
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geographic features, the overall PSRC accuracy was 0.60, 

meaning that geographic features improved accuracy by 14 

percentage points. The F-Measures for each place category 

are shown in Figure 2. (The F-Measure is the harmonic mean 

of precision and recall.) The addition of geographic features 

substantially improves the F-Measure for every place 

category except “Eat Out”, where it has essentially no effect. 

While the geographic features may seem like a simple 

solution to labeling places like schools, stores, and 

restaurants, these places may instead be labeled by some 

users as a workplace, which can be distinguished by the 

baseline features pertaining to demographics and timing. 

ATUS and PSRC on Common Place Categories 

It is instructive to train a model based on the ATUS data and 

test on the PSRC data, and vice-versa. This helps reveal the 

effects of the inevitable coding inconsistencies between the 

two surveys. We know, for instance, that subjects in the 

ATUS survey filled their diaries from memory over the 

phone the day after their survey day, while PSRC subjects 

had a diary form to fill out themselves at any point during or 

after the survey. Such a cross test also gives us an idea of 

how effective it would be to use a learned ATUS or PSRC 

model on sensed location data, since diary data is likely 

cleaner than sensed data. 

We can test across ATUS and PSRC if we match both their 

feature types and their place categories. Matching their 

feature types is easy, because we can just use the nine 

baseline demographic and temporal features that both 

surveys support. We cannot use geographic features, because 

ATUS does not come with coordinate data. 

Matching place categories is slightly more complicated. We 

are forced to find commonalities between the two surveys’ 

categories based on the category names. We can confidently 

match ATUS’s “Respondent’s home or yard” to PSRC’s 

“Home – other” category. Other categories are just as clear, 

but there are exceptions. We took a fairly conservative 

approach: instead of guessing on ambiguous matches, we 

grouped uncertain matches into an “Other” category. Perhaps 

the most questionable match we made was ATUS’s “Place 

of worship” to PSRC’s “Religious/community”. The 

matches we chose are shown in the third columns of Table 1 

(ATUS) and Table 2 (PSRC). 

With matches between features and place categories, we can 

test and train on ATUS and PSRC. Figure 3 shows the results 

for the common place categories in terms of the F-measure 

as well as overall accuracy. Note that these tests are different 

than those in the previous sections, because here we used the 

common set of place categories instead of those that are 

specific to ATUS or PSRC. 

For comparison, the first three tests show ATUS and PSRC 

trained and tested on themselves, not mixed with each other, 

with 10-fold cross validation. There are two versions of the 

purely PSRC test: one using just the nine demographic and 

temporal features and one using those plus the business 

features. In terms of overall accuracy between these three, 

the pure ATUS test has the best result, with PSRC with 

business features close behind. PSRC without business 

features lags behind these three non-mixed results in terms 

of overall accuracy, although it trades places with the others 

in terms of F-measures on the place categories. Looking at 

the categories, we see that PSRC with business features is 

most often the winner, supporting our earlier finding that 

geographic features are important. These features appear 

especially helpful on the less frequent categories of “Eat 

Out”, “Religious/Community” and “Shopping”. 

The right-most columns of each cluster in Figure 3 show the 

results of training on ATUS and testing on PSRC, and vice-

versa. This gives our most data-intensive tests, with 

1,135,053 ATUS visits and 87,600 PSRC visits. We see that 

these cross tests often give worse results than the pure tests, 

possibly because of inconsistent coding between the two 

surveys. The category of “Religious/Community” has low F-

measures for both mixed tests. This may be because ATUS’s 

“Place of Worship” category is possibly quite different from 

PSRC’s “Religious/Community” category. Regional 

differences may also play a role, as the PSRC data comes 

from one relatively small part of the U.S. 

 

Figure 2: Adding business features improves the 

performance of place labeling for almost every place 

category in the PSRC data. 
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Figure 3: F-Measures and accuracies of place labeling 

within and between ATUS and PSRC. 
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TEST ON GPS DATA 

Thus far we have tested Placer on ATUS and PSRC data. In 

this section we use our PSRC model to label home and work 

locations from GPS data of real users. 

We began by logging GPS data from 28 volunteers (7 

female) at our institution. Each subject borrowed a RoyalTek 

RBT-2300 GPS logger and placed it in their main vehicle, 

powered by the cigarette lighter. Most of the subjects were 

compensated with a US$ 30 cafeteria card, although a few 

agreed to participate without compensation. Our goal was to 

collect at least six weeks of data from each subject. In the 

end, we obtained data for an average of 47.6 days, varying 

from 27 to 60 days. 

The loggers were set to record a time-stamped 

latitude/longitude pair every 10 seconds. Since the logger 

was powered by the vehicle’s cigarette lighter, some loggers 

turned off when the vehicle was turned off, while others 

logged continuously. 

Point Clustering 

We performed simple processing to extract the locations of 

visits. This is a well-studied problem in the mobile 

computing research literature, including work by Marmasse 

and Schmandt [18], Ashbrook and Starner [19], and Kang et 

al. [20], Hightower et al. [21], and Caoy et al. [22]. We adopt 

a simple agglomerative clustering technique that starts by 

treating each individual GPS point as its own cluster. It then 

creates a new cluster by merging the two geographically 

nearest clusters into a new cluster and deleting the two 

constituent clusters. Merging continues like this until all the 

clusters are at least 100 meters apart. 

Although we value the simplicity of this technique, we were 

forced to modify it in two ways. One modification was to 

account for the warm-up time for GPS. If the GPS logger 

turned off with the cigarette lighter, then it could take up to 

a minute to start logging on the next trip as the vehicle drives 

away from its last visit. Even if the GPS stays on, there can 

be a similar delay if the vehicle is parked where it loses its 

view of the GPS satellites, such as a parking garage. To 

account for these situations, we artificially repeated the most 

recent latitude/longitude point after each gap in logging that 

exceeded the sampling time of 10 seconds. This had the 

effect of inserting a GPS point close to the time and place of 

a departure after being parked. 

The other modification was designed to ignore GPS points 

where the vehicle was moving. This helped avoid small 

clusters on the roads and greatly decreased the processing 

time required for clustering. Our tactic was to take only pairs 

of GPS points that likely came from a stationary GPS logger. 

Intuitively, we know that points measured from the same 

location are likely to be closer together than points measured 

from different locations. Our aim was to find a principled 

way to detect such pairs of temporally adjacent points 

measured from the same location. They key was to find a 

distance threshold: only pairs of points whose distance 

between is less than this threshold would be retained as likely 

coming from a non-moving logger. 

To identify such points, we modeled GPS noise as a two-

dimensional Gaussian, which has precedent in the GPS 

community [23]. We estimated the standard deviation of the 

error in our GPS loggers at approximately 𝜎 = 4  meters. 

Because of this error, multiple measurements from a non-

moving logger change from one sample to the next. We can 

model the the distance between two points measured from 

the same location. The probability distribution of the 

distance between two samples taken from a normal 

distribution is called the normal difference distribution. For 

one-dimensional Gaussians, this distribution has a closed 

form [24]. Shaikh and Kitagawa [25] give a formula for the 

cumulative probability distribution of the distance between 

two, two-dimensional points 𝒂  and 𝒃  with different 

Gaussian distributions: 
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𝛼𝑥 = 𝜇𝑎,𝑥 − 𝜇𝑏,𝑥 

𝛼𝑦 = 𝜇𝑎,𝑦 − 𝜇𝑏,𝑦 

While we do not know of a closed form solution for this 

integral, we can fortunately simplify it. Since we are 

modeling a stationary GPS logger, we have  𝝁𝑎 = 𝝁𝑏. And 

since the logger’s noise characteristics are isotropic and do 

not change between sample points 𝒂 and 𝒃, we have 𝜎𝑎,𝑥 =

𝜎𝑎,𝑦 = 𝜎𝑏,𝑥 = 𝜎𝑏,𝑦 = 𝜎. With these simplifications, we get  

𝑃(|𝒂 − 𝒃| < 𝑑) = 1 − exp (−
𝑑2

4𝜎2
) 

This equation gives the probability that the distance between 

two sampled points from a stationary GPS logger will be less 

than 𝑑. As shown in Figure 4, when we set this probability 

to a high value, say 0.95, then 𝑑 = 13.85 meters when 𝜎 =
4. Thus, with 95% probability, any pair of points measured 

from the same location will be within 13.85 meters of each 

other. Stated differently, taking all temporally adjacent pairs 

of points that are less than 13.85 meters apart will 

theoretically give a recall rate of 0.95 when we are looking 

for points from a non-moving logger. We use this in our 

clustering by filtering out temporally adjacent points whose 

distance apart is greater than this threshold. We note that a 



 

vehicle moving at 10 miles per hour, sampled at our 10-

second interval, would move about 45 meters between 

points, so even a slow-moving vehicle will produce inter-

point distances greater than our threshold. 

With these two changes (artificially adding departure points 

and filtering out moving points), we apply the regular 

agglomerative clustering described above. For purposes of 

our user study, we retained the top 30 clusters we found when 

sorted by time spent in each cluster. 

Ground Truth Labels and Results 

With each subject’s clusters computed, we returned to them 

with an interactive map program for labeling their home and 

work clusters, show in Figure 5. Based on this labeling from 

our subjects, we verified that our clustering program found 

clusters representing all the subjects’ homes and main work 

locations. 

To test Placer, we used each subject’s GPS data to compute 

a feature vector for each visit to each cluster. We set the visit  

arrival time at each cluster as the point when we first saw a 

GPS point within 200 meters of the cluster center, and the 

departure time as when the logger was subsequently 200 

meters away. Each home and work cluster had multiple 

visits. The feature vector for each visit comprised the same 

69 features that we used for our PSRC test above: temporal, 

demographic, and nearby businesses. We trained a decision 

tree on all the PSRC data using the same learning parameters 

as previously. The classifications resulted in potentially 

multiple inferred labels for each cluster, one for each visit. 

We declared the label correct if the majority of the inferred 

labels matched the actual label. 

We were able to correctly label the home locations of all 28 

subjects. We correctly labeled at least one work cluster of 18 

of the 28 subjects (64%). The accuracy for labeling work is 

lower than we would have expected for the PSRC model. We 

attribute this to two factors. One is that a few of our subjects 

split their time between multiple workplaces on the campus 

of our institution, often within the same day, which split their 

visits unnaturally. The other factor is that our compensation 

for GPS warm-up is inadequate. Most of our participants 

park their vehicles in a parking garage while at work, leading 

to the warm-up problem. This is in contrast to their homes, 

where it is generally easier to get GPS data while parked. 

This is reflected in the fact that we found homes more 

successfully than workplaces. We were gratified, however, 

that we could train a classifier from relatively clean diary 

data and successfully test on GPS visit data taken under very 

different circumstances. 

THE PROMISE OF SEQUENCES 

It is natural to assume that people follow certain sequences 

of visits rather than picking their next location completely at 

random. For instance, we might expect most people go 

directly home after work. If this bias is true, then it can be 

exploited to help label a sequence of visits. 

This idea was explored with data from four users with a 

conditional random field algorithm in [10] and from one user 

(apparently) using a hidden Markov model in [11]. With a 

large amount of data available from diary studies, we were 

curious to see if sequence analysis would be useful for a 

much larger sample of subjects. 

We explored this by creating a simple first-order Markov 

model for place visits from our ATUS data. Specifically, we 

looked at 14 different ATUS place types. For each, we 

tracked the next places visited, giving an estimate of the 

Markov probability of next visiting a certain place category 

given the current place category. We ignored all of ATUS’s 

transportation categories, because we found that 

transportation usually intervenes between actual place visits, 

making it uninteresting to consider. The Markov 

probabilities are show in Table 5. 

An interesting aspect of this table is a destination of “home” 

dominates every other place category no matter where 

someone is currently visiting, other than already being home. 

For someone already at home, the two most popular places 

to go are “Store for Shopping” (21%) and “Other’s Home” 

(18%). 

 

Figure 5: This is a screenshot of the program our subjects 

used to label their clusters with "home" and "work". 

 

 

Figure 4: This is the cumulative probability distribution for 

the distance between two GPS measurements from the 

same location. There is a 95% chance the two points will be 

within 13.85 meters of each other. 
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To get an idea of the usefulness of sequence analysis, we can 

imagine that we somehow know a person’s current place 

category. Our task is to label the next place they go. Using 

the maximum probabilities in each row of the Markov 

probabilities in Table 5, we would always label the next place 

as “Home”, unless the current place was “Home”, and then 

we would label the next place as “Store for Shopping”. If we 

did this on the original ATUS data, we would correctly label 

the next place 43% of the time. This shows that there is 

worthwhile potential in considering the sequence of visits. 

 

SUMMARY AND DISCUSSION 

We have presented Placer, a technique for inferring semantic 

place labels, trained on data from two large diary surveys, 

ATUS and PSRC. We showed how both diary studies gave 

classification accuracies of around 0.73. With the PSRC 

data, we showed that omitting geographic features reduced 

the accuracy by about 14 percentage points. We showed how 

geographic features help label less frequently visited places 

such as “Eat Out”, “Religious/Community” and “Shopping”. 

We also tested our technique on GPS data from 28 subjects, 

successfully labeling all their home locations and 64% of 

their work locations. Our GPS clustering introduced a new 

technique for detecting places where the GPS logger was not 

moving. 

The problem of labeling locations comes in multiple types. 

In our work with diary surveys, our goal was to correctly 

label each visit. This might be useful for a mobile application 

that needs to infer that a person is visiting a restaurant or 

movie theater, possibly for the first time, so it can take 

appropriate action. Our GPS study was slightly different in 

that we used the inferred labels on visits to label locations as 

either home or work. Once these familiar places are labeled, 

then there is no need for making sophisticated inferences, 

because geographic proximity to the labeled location is 

enough. 

One limitation of using diary surveys to label places is that 

we are constrained by the survey’s taxonomy of places. We 

may want places that were not included in the surveys, like 

camp ground, cemetery, or park. The surveys also 

necessarily aggregate different places that we may want to 

distinguish. For instance, PSRC’s “Recreation – Watch” 

category could include movie theaters, sports stadiums, and 

opera houses. 

The taxonomy of the survey may also be mismatched with 

our geographic business categories. For simplicity, we chose 

to use 15 high-level categories that covered all the businesses 

in our database. However, there are likely 

more targeted subsets of businesses that 

are especially useful for inferring certain 

place types. For instance, the place type 

“Restaurant or bar” is probably a strong 

function of the presence of a restaurant or 

bar, not just our “Food & Dining” 

category that also includes grocery stores. 

There is also a problem of unifying 

taxonomies between multiple diary 

surveys. We did this in a simple way, but 

there may be more sophisticated 

approaches based on looking at the actual 

visit data. 

The same place should sometimes be 

labeled differently for different people. 

For instance, a school could be someone’s 

school or someone’s workplace. Placer does this by 

examining an individual’s demographics and visits to each 

place, allowing the same place to have different labels for 

different people. More subtlety, the same place may have 

different roles depending on the time of day. While we did 

not explore this, the PSRC data does make this distinction 

explicitly in one case by including labels “Home – Paid 

Work” and “Home – Other”. This is an interesting direction 

for future work as it suggests we want to infer activities as 

well as place labels. The ATUS data supports this by 

including both a place label and an activity for each visit. 

Partridge and Golle [3] used the ATUS data to explore this 

connection, and it would be interesting to go further and label 

geographic places with activities. 

Other promising future work should include an examination 

of the necessary intensity of location sampling. We sampled 

GPS at a 10-second interval. For battery efficiency, a longer 

interval may be sufficient, or an adaptive interval, or more 

efficient but less accurate measurements from WiFi. 

Finally, it would be instructive to explore the advantages of 

analyzing sequences of place labels. As we showed, there is 

strong structure in the Markov probabilities. 
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