Phased Scheduling of Stream Programs

Michal Karczmarek, William Thies and Saman Amarasinghe

{karczma, thies, saman}@lcs.mit.edu

Laboratory for Computer Science
Massachusetts Institute of Technology

ABSTRACT

As embedded DSP applications become more complex, it
is increasingly important to provide high-level stream ab-
stractions that can be compiled without sacrificing efficiency.
In this paper, we describe scheduler support for Streamlt,
a high-level language for signal processing applications. A
Streamlt program consists of a set of autonomous filters that
communicate with each other via FIFO queues. As in Syn-
chronous Dataflow (SDF), the input and output rates of each
filter are known at compile time. However, unlike SDF, the
stream graph is represented using hierarchical structures,
each of which has a single input and a single output.

We describe a scheduling algorithm that leverages the
structure of Streamlt to provide a flexible tradeoff between
code size and buffer size. The algorithm describes the exe-
cution of each hierarchical unit as a set of phases. A com-
plete cycle through the phases represents a single steady-
state execution. By varying the granularity of a phase, our
algorithm provides a continuum between single appearance
schedules and minimum latency schedules. We demonstrate
that a minimal latency schedule is effective in decreasing
buffer requirements for some applications, while the phased
representation mitigates the associated increase in code size.

Categories and Subject Descriptors

D.3.4 [Programming Languages]|: Processors; D.3.2 [Pro-
gramming Languages]: Language Classifications; D.3.3
[Programming Languages]: Language Constructs and
Features

General Terms

Algorithms, Languages, Performance, Experimentation

Keywords

Phased Scheduling, StreamlIt, Synchronous Dataflow, Cyclo-
Static Dataflow, Buffer Size, Code Size, Stream Program-
ming, DSP

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

LCTES 03, June 11-13, 2003, San Diego, California, USA.

Copyright 2003 ACM 1-58113-647-1/03/0006 ...$5.00

1. INTRODUCTION

From handheld computers to cell phones to sensor net-
works, there has been a surge of embedded applications that
demand high-performance digital signal processing. These
programs constitute a new and important class of appli-
cations: those that are centered around streams of data.
Despite the widespread parallelism and regular communi-
cation patterns that are inherit in stream programs, appli-
cation development in the streaming domain is still very
labor-intensive and error-prone. In order to optimize criti-
cal loops, DSP programmers are often forced to resort to as-
sembly code, thereby sacrificing portability and robustness
for the sake of performance. As the complexity of embedded
software grows, this practice will become infeasible. There
is a pressing need to provide high-level stream abstractions
that can be compiled without sacrificing efficiency.

The goal of the Streamlt project is to provide language
and compiler support for high-level stream programming.
A Streamlt program consists of a set of autonomous filters
that communicate using FIFO queues. Filters can be com-
bined into single-input, single-output modules by using a set
of hierarchical primitives, thereby imposing a structure on
the stream graph that is akin to structured control flow in a
mainstream language. In order to facilitate static schedul-
ing, the input and output rates of each filter are known at
compile time.

In this paper, we present techniques for scheduling stream
graphs such as those found in StreamlIt. The Streamlt repre-
sentation has much in common with Synchronous Dataflow
(SDF) graphs [17], for which there is a large body of lit-
erature devoted to scheduling (see [4] for a review). There
are two aspects of Streamlt programs that distinguish our
scheduling problem from a general SDF graph: 1) Streamlt
graphs are hierarchical, with each node having only a single
input and single output, and 2) Streamlt allows a “peek”
operation whereby nodes can operate on items that they do
not consume until a future invocation. In this context, this

paper makes the following contributions:

e Fundamental techniques for constructing a hierarchical
schedule from a hierarchical stream graph.

e A method for computing an initialization schedule,
which is a unique requirement of graphs supporting
the peek construct.

e A parameterized phased scheduling algorithm that lever-
ages the structure of a Streamlt graph to give a flexible
tradeoff between code size and data size.

op=1 op=2 op=2 op=3
— P FA || P PB || P! PC || pop: |,
push=3 push=3 push=1 push=1
0 0 0 0 0 0 0 0 0
[E] 5]
0 0 0 0 0 0 0 0 0
(4A)(3(2B)(3C)D) (2A)(2B)(3C)D(2E) (2E)CDB(2F)B(2C)D
E=A(2B)(3C)D E=ABC, F=CE

—

a) Single Appearance
Schedule

(b) Phased Minimum
Latency Schedule

(c) Push Schedule

Figure 1: Execution trace of three different schedul-
ing strategies for one steady state execution of a simple
pipeline. Channels are annotated with the number of
live data items that they contain; shaded nodes repre-
sent those that fire on a given time step.

e An instance of the phased scheduling algorithm that
computes a minimal latency schedule, guaranteed to
avoid deadlock in any valid feedback loop.

This paper is organized as follows. The remainder of this
section gives an illustrating example and describes relevant
Streamlt constructs; Section 2 explains basic concepts in
scheduling Streamlt graphs; Section 3 describes the phased
scheduling technique and presents a minimum latency schedul-
ing algorithm; Section 4 presents experimental results; Sec-
tion 5 describes related work and Section 6 presents conclu-
sions and planned future work.

1.1 Example

A classic problem in the scheduling of synchronous dataflow
graphs is the tradeoff between code size and data size [5].
Code size refers to the space needed to represent the sched-
ule, while data size refers to the buffering of items during
execution. Generally speaking, smaller schedules contain
loops that require coarse-grained execution of nodes, thereby
leading to larger buffer requirements.

Consider the example stream graph depicted in Figure 1.
Even given a simple pipeline of filters, there is a large space
of different schedules, each with different requirements for
code and buffer size. Figure 1 illustrates two extreme schedul-
ing policies. First is Single Appearance Scheduling (SAS),

254

20

[0 single Appearance
Schedule

O Phased Minimum
Latency Schedule

Pull Schedule

0 T ——

Buffer Size Code Size

Figure 2: Buffer and code sizes for the execution traces
of Figure 1. For brevity, we show these figures on the
same graph, even though a unit of storage might have a
different cost for code and data.

stream graph; the one shown in Figure 1 is the best SAS
schedule for this case.

At the other end of the spectrum is a push schedule, which
results in the minimal buffer size at the expense of code size
(Figure 1(c)). A push schedule starts by executing the top-
most node, and then pushes the items produced through the
rest of the graph, always executing the most downstream
node possible. When no further node can fire, the top node
is executed again. In this case, the push schedule reduces
the buffer size by 48% but increases code size by 325% over
the SAS schedule.

In this paper, we develop a phased scheduling algorithm
that offers a flexible alternative between the extremes of SAS
and push scheduling. Shown in Figure 1(b) is the phased
minimum latency schedule. It consists of three “phases”,
each of which is a single-appearance sub-schedule that re-
sults in a single output item being produced from the pipeline.
The schedule has the same latency as the push schedule, but
has reduced code size due the single-appearance property of
the phases and the collapse of phases 2 and 3 into a single
representation “E”.

Figure 2 illustrates the tradeoff between code size and
data size for the scheduling schemes. It shows that there
can be a large tradeoff between code size and buffer size,
with phased scheduling striking a compromise between ex-
tremes. In Section 3, we give a flexible version of our phased
scheduling algorithm, and we also demonstrate that it can
handle tight feedback loops for which there does not exist a
valid single appearance schedule.

1.2 The Streamlt Language

The source language for our scheduler is Streamlt: an
architecture-independent programming language for high-
performance streaming applications. This section contains
a very brief overview of the semantics of Streamlt. We do
not concern ourselves with the syntax of the language, as it
is not relevant to scheduling stream graphs. A more detailed
description of the design and rationale for StreamlIt can be
found in [23] or on our website [13].

1.2.1 Language Constructs

The basic unit of computation in Streamlt is the filter.

splitter
21

3} delay = 9

(a) a pipeline (b) a splitjoin (c) a feedbackloop

Figure 3: Sample Streamlt operators. Each node is
labeled with its peek, pop rates (at top) and push rate
(at bottom). The L filter has been flipped upside-down

for clarity.

A filter is a single-input, single-output block with a user-

defined procedure for translating input items to output items.

Every filter contains a work function, which is comprised of
one or more atomic phases that the filter cycles through
during its steady-state execution. A filter can optionally
declare a prework function that executes instead of work
on the first invocation of the filter, if special startup be-
havior is desired. Filters communicate with their neighbors
via FIFO queues, called channels, using the intuitive opera-
tions of push(value), pop(), and peek(index), where peek
returns the value at position index without dequeuing the
item. The number of items that are pushed, popped, and
peeked! on each invocation are declared with each phase of
the work function.

Streamlt provides three primitives for composing filters
into hierarchical streams (see Figure 3). The pipeline con-
struct cascades a set of filters in sequence, with the output
of one connected to the input of the next. The splitjoin con-
struct is used to specify independent parallel streams that
diverge from a common splitter and merge into a common
joiner—for example, in the Equalizer of Figure 4. Streamlt
currently supports two types of splitters: duplicate, which
broadcasts its input items to each parallel stream, and round-
robin, which distributes items cyclically to one child after
another according to an array of weights. The joiner node
must be a roundrobin.

The last control construct provides a means for creating
cycles in the stream graph: the feedbackloop. A feedback-
loop contains a joiner, a body operator, a splitter, and a
loop operator. A feedbackloop has an additional feature to
allow it to begin computation: since there are no data items
on the feedback path at first, the stream needs to enqueue
initial values onto the channel. The number of items pushed
onto the feedback path is called the delay, denoted delay ;,
for a feedbackloop fl.

1.2.2 Design Rationale

Streamlt differs from other stream languages in the single-
input, single-output hierarchical structure that it imposes
on streams. This structure aims to help the programmer
by defining clean, composable modules that admit a linear
textual representation. In addition, it helps the compiler

"We define peek as the total number of items read, including the
items popped. Thus, we always have that peek > pop.

12
duplicate splitter

FIRFilter

[Bandpass 1 |
FM Demodulator

Figure 4: Block diagram of an FM Radio.

[BandPass N]

by restricting certain analyses to a local level rather than
dealing with global properties of the graph. In the context
of scheduling, hierarchy is also useful because it allows for
the separate compilation of program components. This en-
ables the creation of standardized libraries and their distri-
bution in binary form, rather than source code. This ability
may become important as streaming languages become more
widely used for larger applications.

Another important feature of StreamIt—and one that re-
quires special support from the scheduler—is the peek con-
struct. By using the peek command, a filter can examine
an input item at a given index without removing it from
the channel. This exposes to the compiler the reuse of in-
put items between successive invocations of a filter’s work
function. A primary example is an FIR filter, which pops
1 item but peeks N items. Without the capability to peek,
the programmer would have to maintain a persistent circu-
lar buffer within the filter to retain previous input items.
Apart from being difficult to implement and understand,
this would greatly complicate compiler analysis. In partic-
ular, the linear analysis and optimization passes within the
StreamIt compiler benefit greatly from analyzing peek state-
ments directly instead of reverse-engineering internal filter
state [16].

2. STREAMIT SCHEDULING CONCEPTS

This section introduces the general concepts used for schedul-
ing Streamlt programs. Concepts presented here are com-
mon with other systems [18]. Section 2.1 presents the Streamlt
execution model. Section 2.2 introduces the concept of a
steady state and shows how to calculate it. Section 2.3 ex-
plains the need for initialization of a Streamlt program.

2.1 Streamlt Execution Modé€

A Streamlt program is represented by a hierarchical graph,
where the leaf nodes are filters, splitters, and joiners, and
the composite nodes are pipelines, splitjoins, and feedback-
loops. Edges in the graph represent data channels, which
operate as FIFO queues.

In order for a filter f to execute, it must have at least
peek; items on its input channel. Execution will decrease the
amount of data on its input channel by pop, and increase the
amount of data on its output channel by push;,. Similarly,
a splitter s will consume pop, data from its input channel
and push push, ; data onto its ¢th output channel, while a
joiner j will consume pop, ; items from its ith input channel
and push push; onto its output channel.

Each filter, splitter, and joiner in the graph has two epochs
of execution: one for initialization, and one for the steady
state. Within each epoch, a given filter can have any number
of phases, each of which is an atomic execution step with its

own input and output rates. At the start of the program,
each node starts in phase 0 of the initial epoch. It then
advances through its initialization phases, executing each
a single time before transitioning to phase 0 of the steady
state epoch. Within the steady state, a filter executes its
steady state phases cyclically.

2.2 Steady State Schedule

One of the most important concepts in scheduling stream-
ing applications is the steady state schedule. A steady state
schedule is a schedule that the program can repeatedly ex-
ecute forever. It has the property that the amount of data
buffered up between any two nodes does not change from
before to after its execution.

A “steady state” of a program is a collection of number
of times that every node in the program needs to execute
in a steady state schedule. It does not impose an order of
execution on the nodes in the program.

2.2.1 Minimal Seady Sate

We now summarize some of the key properties of steady
states, which are presented in [17]. Detailed proofs of these
properties in the context of StreamlIt can be found in [15].

The first property concerns the size of a steady state. The
size is defined to be the sum of the repetitions of all nodes
in the schedule.

THEOREM 1 (MINIMAL STEADY STATE UNIQUENESS).
A StreamlIt program that has a wvalid steady state, has a
unique minimal steady state.

This means that for every valid Streamlt program, there
is a unique set of steady state multiplicities that fires as few
nodes as possible. Our scheduler will produce schedules that
execute exactly the minimal steady state of a program.

THEOREM 2 (MULTIPLICITY OF STEADY STATES). Ifa
StreamlIt program has a valid steady state, then all its steady
states are strict multiples of its minimal steady state.

This property means that in order to find a minimal steady
state schedule of a stream operator, we can find any of its
steady states and divide it by the ged of executions of all its
children to find the minimal steady state schedule.

2.2.2 Calculating Minimal Steady States

For a general stream graph, the minimal steady state can
be calculated in a linear algebra framework by formulating
a set of balance equations [17]. However, with Streamlt
we leverage the structure of the stream graph to calculate
steady states in a hierarchical manner. That is, a mini-
mal steady state is calculated for all child operators of a
pipeline, splitjoin and feedbackloop, and then the schedule
is computed for the actual parent operator using these min-
imal states as atomic executions. This approach is useful in
the context of separate compilation, where the entire graph
might not be available at compile time; additionally, the
steady state multiplicity of a given node in relation to its
parent is useful for our scheduling algorithms.

For brevity, we omit the equations for finding the min-
imal steady states. The steady states are calculated hier-
archically; filters with multiple phases are represented by a
single, coarser phase for the sake of the steady-state sched-
ule. Details can be found in [15]. For example, the minimal
steady states of the stream graphs in Figure 3 are as follows:

Sample Pipeline: steady(A) = 4
steady(B) = 6
steady(C) =9
steady(D) = 3

Sample SplitJoin: steady sphtter) 2
steady(A) =
steady(B) =

steady Jomer) =2

Sample FeedbackLoop: steady(joiner) = 6
steady(B) = 15
steady sphtter) =5

steady(L) =

Note that these numbers represent the multiplicity of each
node in one steady state execution of its parent. In Section 3,
we consider how to order these executions to form a valid
schedule.

2.3 Initialization Schedule

Unlike traditional SDF graphs, Streamlt programs may
require a separate schedule for initialization. This is for two
reasons. First, each filter might contain an initialization
stage, where the input and output rates are different than in
the steady state. But even without the initialization epoch,
an initialization schedule is necessary if any filter makes use
of Streamlt’s peek construct, in which input items can be
examined without being consumed.

To understand the impact of peeking on scheduling, con-
sider a filter f, with peek; = 2 and a pop, = 1. When a
Streamlt program is first run, there is no data present on
any of the channels (ignoring the case of a feedbackloop de-
lay). This means that for the first execution, filter f requires
that two data items be pushed onto its input channel. After
the first execution of f, it will have consumed one data item,
and left at least one data item on its input channel. Thus
in order to execute f for the second time, no more than one
extra data item needs to be pushed onto f’s input channel.
The same situation persists for all subsequent executions of
f — no more than one additional data item is required on
f’s input channel in order to execute f.

This example illustrates that the first execution of a filter
may require special treatment. Namely, some nodes will
need to push extra items at the start of execution so that
downstream filters can fire for the first time. Due to this
condition, a StreamIt node may need to be initialized before
it can enter steady state execution.

3. PHASED SCHEDULING

A schedule for a given hierarchical node of a StreamIt pro-
gram is a list of the node’s immediate children, specifying
the order in which they should be executed. More precisely,
since filters (and, as we will see, hierarchical nodes as well)
can have multiple phases, a schedule is a list of phases of
child nodes. In order for a schedule to be legal, it must
satisfy two conditions: first, for every execution of a node,
a sufficient amount of data must be present on its input
channel(s); second, in the case of the steady state, an infi-
nite repetition of the schedule must require a finite amount
of memory. The second condition is ensured by using the
steady state multiplicities calculated in the previous section,
while the first condition is one that we must respect when
choosing an ordering for the nodes.

(
(
(
(
(
(
(
(
(
(B
(
(L

Our phased scheduling algorithm, shown in Figure 5, op-
erates in a hierarchical fashion. That is, it constructs a
schedule for a given pipeline, splitjoin, or feedbackloop as
a sequence of the schedules of its children. A schedule is
represented as a sequence of phases. In the base case of a
filter, these phases are specified by the Streamlt program
(with one small modification, described below), while at hi-
erarchical nodes they are computed by our algorithm. To
schedule an entire Streamlt program, our algorithm should
be applied as a post-order traversal of the stream graph.

Intuitively, our algorithm is based on the observation that
a hierarchical stream displays cyclic behavior as it executes
its components. At the coarsest level of granularity, these
cycles are evident in the steady state schedule: each iteration
of the steady state is exactly the same. The aim of our al-
gorithm is to exploit a finer level of granularity in execution
behavior—the basic unit being a phase of the push sched-
ule for the stream. Generally speaking, a phase of the push
schedule holds the smallest sequence of filter executions that
will both consume input and produce output for the stream.
Our algorithm allows a parameterized level of granularity by
collapsing some of these fine-grained phases together and
shuffling the resulting schedule so that the phases of a given
child stream are all adjacent. As we demonstrate below, a
single appearance schedule and minimum latency schedule
are both special cases of a parameterized phased schedule.
For a more mathematical description of the phased schedul-
ing technique, see [15].

3.1 Algorithm Details

We now consider in more detail the pseudocode in Fig-
ure 5; refer to Figures 6 and 7 for an example. The algorithm
inputs a Stream s and returns a sequences of phases that
represent the schedule for that stream. It also inputs two
additional parameters: maxPhases, which specifies the max-
imum number of phases in the resulting schedule, and mode,
which indicates whether we are scheduling for the initial or
steady-state epoch. The algorithm starts by assembling a
series of fine-grained phases, each of which corresponds to a
push schedule as built by the pushSchedule routine.

The pushSchedule routine simulates a push schedule un-
til the bottom node is fired at least once (in most cases,
this will correspond to an output being produced). A push
schedule is one in which downstream nodes are fired as much
as possible before upstream nodes are considered. The rou-
tine starts with the entrance node of the stream, i.e., the
first child of a pipeline, the splitter of a splitjoin, or the
joiner of a feedbackloop. It then pushes live items as far
forward as possible, only executing the entrance node again
if the exit node could not fire.

There are two subtleties in the pushSchedule procedure.
First, note that it always flushes extra items from the stream:
the exit node might fire multiple times, even though all fir-
ings were caused by a single execution of the entrance node.
Second, in the case of a feedbackloop, it is careful to push
items around the feedback path even after the splitter (the
exit node) has fired. That is, the ranking of nodes in a
feedback loop is (joiner, body, splitter, loop), and pushing of
items through the loop node is necessary to ensure a correct
steady-state schedule.

The phasedSchedule routine builds up a maximal list of
phases from the push schedule. In the steady state, this
list is complete when each node has completed its steady

// a Phase represents a component of a schedule
struct Phase {
Stream str
Phase[] children
}

: stream that this Phase corresponds to
: component Phases, each corresponding to a child of <str>

// returns a “push phase” for <s>: the minimal sequence of child executions that
// executes the entrance node, the exit node, and flushes all data downstream
Phase pushSchedule (Stream s) {
result « Phase(s, {})
child « entrance(s)
do {
result.children < result.children o currentPhase(child)
simulate(child)
child «— most downstream node in s that can fire
} loop until (child = entrance(s) A exit(s) has fired at least once)
return result

}

// returns a phased schedule for <s> that contains no more than <maxPhases> phases
Phase[] phasedSchedule (Stream s, int maxPhases, int mode) {
// get maximally fine-grained phases
phases « {}
do {
phases « phases o pushSchedule(s)

} loop until {

// combine into <maxPhases> groups, with contents sorted by child stream
numPhases < min(maxPhases, phases.length)
Vi € [0, numPhases - 1] {
phaseStart < floor(i x phases.length/numPhases)
phaseEnd « floor((i+1) x phases.length/numPhases) - 1
newChildren « phases[phaseStart].children o ... o phases[phaseEnd].children
result[i] < Phase(s, sortByStream(newChildren))
¥

return result

each node of s has fired all its init phases (if mode = INIT)
each node of s has completed its steady state (if mode = STEADY)

Figure 5: Phased Scheduling Algorithm.

state repetitions, while in the initialization mode, simulation
is finished when each node has executed its initial phases.
To ensure that the initialization schedule provides enough
data items for the peeking requirements of the steady state,
we add an extra initialization phase to each filter before
running the algorithm. For filter f, this phase has rates
peek” = peek; — popg, pop” = push’ = 0. Since this phase
must execute in the initial schedule, it ensures that there
will be peek — pop items present at the start of the steady
state. A steady state schedule is then possible to construct,
since the filter can return the buffer to this state by firing
once with peek items on the channel.

Once it has gathered the list of maximally fine-grained
phases, the phasedSchedule algorithm makes two modifi-
cations. First, it combines some adjacent phases so that
only maxPhases are returned. Combination works simply
by concatenating the sequence of child executions from the
given phases. Second, even if no phases are combined, the
algorithm re-arranges the order of child phases so that all
phases corresponding to a given stream are adjacent. This
is an attempt to provide a canonical form for a given series
of executions, so that phases with the same form can be
compressed in the resulting schedule (see Section 3.4).

Note that the pseudocode given in Figure 5 specifies only
the behavior of the algorithm, rather than the implementa-
tion. In our implementation, we avoid symbolic execution
of the entire steady state by calculating, from the bottom-
up, the number of node firings that will be required in each
phase. If upstream nodes produce more data than is neces-
sary, then we drain this data through the stream by firing
downstream nodes again. In this technique, each child is vis-
ited no more than twice per calculation of a parent phase.

N - D A | 8 [¢]| b] [A [8] cl c[o [o [o | |
Push phases
ABCD ABC(2D) \ AB(2C)(3D)
Phased schedules
\ ABCD \ ABC(2D) \ AB(2C)(3D) \ ";;L’I‘,'Dsfl’fjeffef
(2A)(2B)(2C)(3D) AB(2C)(3D) '7;;}'1’};;‘132:0)2
| GAEEIECIED) | maxPhases = 1

(buf size = 33)

Figure 6: Example construction of phased schedules for the splitjoin of Figure 7. First, execution is simulated for
one steady state according to a push schedule; the stream graph is labeled with the number of items on each channel
following the firing of a shaded node. Then, fine-grained phases are formed that include executions of both the entry
(A) and exit (D) nodes. Finally, the fine-grained phases are combined into mazPhases phases, each of which is factored
into a single appearance schedule. Note that buffer size increases with the granularity of the phases, as shown at right.

5
A
1 4

Figure 7: Example splitjoin
to illustrate phased schedul-
ing. Each node is annotated
with its input and output
rates.

w) w

1.2
b
3
ﬁh

3.2 Generalizing Other Techniques

As alluded to above, single appearance scheduling and
minimum latency scheduling are special cases of our param-
eterized phased scheduling algorithm. A single appearance
schedule is defined as a schedule where each node appears in
one position of the loop nest denoting the schedule. Because
the nodes within a phase are sorted by child stream, this is
equivalent to a phased schedule with a single phase:

singleAppSchedule[s] = (phasedSchedule(s,1,INIT),
phasedSchedule(s,1, STEADY))

A minimum latency schedule exhibits the following prop-
erty: if ¢ input items have been consumed by a hierarchical
node when it produces its jth output item, then there does
not exist a schedule which produces j output items while
consuming less than ¢ input items. This condition is nec-
essary and sufficient for a schedule to be minimum latency.
We can construct a minimum latency schedule as a phased
schedule with an unlimited number of phases:

minLatencySchedule[s] = (phasedSchedule(s, oo, INIT),
phasedSchedule(s, co, STEADY))

This schedule is guaranteed to be minimum latency, since
it is comprised of push phases that do not fire the entrance
node once the exit node has been fired (see pushSchedule
in Figure 5).

Thus, single appearance and minimum latency schedules
represent extreme values of the maxPhases parameter. Other
values of maxPhases indicate compromises between these
two extremes. Also, note that different levels of granularity
could be applied to different streams in the same graph, de-
pending on the constraints; the algorithm does not depend
on the granularity of the children when it is scheduling a
parent node.

3.3 Scheduling Feedback L oops

Some feedback loops require a minimum number of phases
in order to construct a valid schedule. This is because if the
latency of child streams is too high, then a node could dead-
lock waiting for its own (upcoming) output to propagate
through the loop. For example, in our GSM benchmark,
there is a tightly constrained feedback loop (see Figure 9).
While it is impossible to schedule this loop with a single ap-
pearance schedule, a minimum latency schedule results in a
legal ordering (see Figure 8).

Figure 10 provides an algorithm for calculating the min-
imum number of phases that are required to schedule a
feedback loop. The routine’s functionality is similar to the
phased scheduler, except for one key difference: the joiner
is executed as much as possible before the items that it
pushes are propagated around the loop. This ensures that
the reshuffling step of the phased scheduling algorithm will
be legal, since no element in the schedule will depend on
items that it produced earlier in the same phase. Note that
the phasedSchedule algorithm gives an undefined result if
a given loop is impossible to schedule with the requested
number of phases; thus, phasesForFeedback should always
be called first to see how many phases are needed.

phase 1 phase 2

phase 3 phase 4

Figure 8: Phased minimum latency schedule for one steady state execution of the feedback loop of Figure 9. Nodes
are labeled with the number of times they fire in a given phase. No single appearance schedule exists for this loop.

162
joiner
2 160

splitter

duplicate
11

Figure 9: A tightly coupled feedback loop that appears
as one component of our GSM benchmark. Nodes are
labeled with their pop and push rates.

3.4 Schedule Representation

In the discussion above, a schedule is represented simply
as a sequence of phases for child nodes. However, since
this representation can become large for some programs, our
implementation employs compression to keep code size to a
minimum.

We compress the schedule in three simple ways. First,
we collect repetitions of identical phases into a loop. For
example, if A is a phase:

A=BBB — A={3B}

Second, if a hierarchical phase contains only one execution
of a child, we substitute all occurrences of the parent with
a direct call to the child:

A=BCD, C=E — A=BED

Finally, if a phase is used only once, then it can be replaced
by its child phases, even if there are multiple children:

A=BCD, C=EFG, C used only once — A=BEFGD

To improve the compression of the schedule, we repeat-
edly apply the above three transformations until no further
changes can be made.

In the future, an additional optimization could be ex-
plored regarding schedule compression. Instead of repre-
senting different phases for a given stream by distinct en-
tries in the schedule, we could record only the name of
the stream in the schedule and postpone the resolution of
the current phase number until runtime. This would allow

// returns the minimum number of phases required to execute feedbackloop <s>
int phasesForFeedback(FeedbackLoop s, int mode) {
phaseCount « 0
do {
phaseCount++
while (canFire(joiner(s)))
simulate(joiner(s))
while (3 ¢ € s, ¢ # joiner(s) and canFire(c))

simulate(c)
} loop until { each node of's has fired all its init phases (if mode = INIT)
P each node of s has completed its steady state (if mode = STEADY)

return phaseCount
v
s

Figure 10: Algorithm to detect the minimum number
of phases required by a given feedback loop.

more opportunities for schedule compression, as two differ-
ent phases would be considered equal if they call the same
child streams, rather than requiring them to call the same
phases on those children. However, proper evaluation of this
technique would need to take into account the overhead of
this indirection at runtime, and we do not evaluate it here.

4. RESULTS

We have implemented the phased single appearance and
minimum latency scheduling algorithms as part of the StreamIt
compiler, and we evaluate them in this section. Section 4.1
presents the applications used for evaluation, while Section
4.2 presents the results and analysis.

41 Benchmarks

Our benchmark suite contains 17 applications. Out of
these applications, 15 represent meaningful computations
taken from real-life applications, while two were chosen to
highlight the effectiveness of phased scheduling.

SJPeek1024 and SJPeek31 are synthetic benchmarks, de-
signed to highlight the strengths of phased schedules [15].
SJPeek1024 requires an initialization schedule which bene-
fits from the finer granularity of minimum latency schedul-
ing. SJPeek31 contains a push/pop mismatch which causes
a combinatorial blow-up using single appearance scheduling.

Nine test applications (BitonicSort, FFT, FilterBank, FIR,
Radio, GSM, 3GPP, Radar and Vocoder) are also used in
[10]. BitonicSort performs a 32 element bitonic sort; FFT
performs a 64-element FFT; FilterBank is an 8 channel filter
bank; FIR is a 64-tap fine-grained FIR filter; Radio is an FM
radio decoder with an equalizer; 3GPP is a 3GPP Radio Ac-
cess Protocol application; Radar is a radar array front-end
with beamforming; Vocoder is a 28 channel Vocoder.

Two test applications (CD-DAT and QMF) are borrowed
from [20]. We model only the communication properties of

120%

100%

80%

60%

Buffer Size
(Min latency / Single Appearance)

20%

517% 1067%

350%

300%

250%

200%

Code Size
(Min latency / Single Appearance)

150%

100%

50%

N < > &] @ & & ©
& Q@é S &S ¢ & & & & T NS &
RS S & & § N
@ $7 N
T

Figure 11: Buffer size required by a phased minimum
latency schedule, normalized to buffer size of a hierar-
chical single appearance schedule.

the graphs; the code inside of the filters has not been im-
plemented. CD-DAT performs sample rate conversion and
is exactly the same as that described in [20]. QMF is a
filter bank application which uses a 1/2-1/2 split for the
spectrum up to a depth of 3 (qmfl2.3d in [20]). It was
slightly modified to use Streamlt’s pre-defined splitter and
joiner constructs. The high-pass and low-pass filtering in
multiple-output blocks has been converted to a splitter fol-
lowed by filters on each of the output channels. The low and
high pass filters have also been given a peek amount of 16
so they can perform their function in the way intended by
Streamlt.

The remaining 4 applications were chosen from our sample
applications used for testing the StreamlIt compiler. HDTV
performs a HDTV signal decoding/encoding. CFAR imple-
ments PCA Constant False Alarm Rate detection. Block
Matrix Mult performs a blocked matrix multiplication - it
multiplies a 12x12 matrix by a 9x12 matrix in blocks of 3x3
sub-matrices. Trellis performs trellis encoding/decoding.

4.2 Results

Table 1 presents the code and buffer sizes required by
our hierarchical single appearance and minimum latency
scheduling algorithms for our benchmark suite. Note that
the GSM application cannot be scheduled using a single ap-
pearance schedule, because it has a tightly constrained feed-
back loop (see Figure 9). Thus, we omit GSM in Figures 11
to 13.

Several applications show a very large improvement in
buffer size necessary for execution (see Figure 11). These
improvements are usually coupled with an increase in code
size (Figure 12). However, as shown in Figure 13, minimum
latency scheduling never increases the sum of code size and
data size for any application. In computing this sum, note
that we give equal weight to the code size and data size
only for the sake of illustration; in an actual system, the
relative cost of each kind of storage would greatly depend
on resource constraints and the implementation strategy.

The CD-DAT benchmark exhibits a decrease in buffer size
from 1021 to 72, a 93% improvement. [20] reports a buffer
size of 226 after applying buffer merging techniques. Our
improvement is due to reducing the combinatorial growth of
the buffers using phased scheduling.

Figure 12: Code size required by a phased minimum la-
tency schedule, normalized to code size of a hierarchical
single appearance schedule.

120%

100%
80% T

60% T

[Code Size
W Buffer Size

Code Size + Buffer Size
(Min latency / Single Appearance)

20% 1

Figure 13: Sum of buffer and code size required by a
phased minimum latency schedule, normalized to that of
a hierarchical single appearance schedule. We give equal
weight to the code and buffer size only for illustration; in
an actual system, the relative weights are complex and
depend upon resource constraints.

For our synthetic benchmarks SJPeek31 and SJPeek1024,
buffer sizes decrease by 95% and 32%, respectively. In the
case of SJPeek1024, the improvement is due to creating
fine grained phases which allow the initialization schedule
to transfer smaller amounts of data and allow the children
of a splitjoin to drain their data before the splitter provides
them with more. This improvement is only evident in the
presence of peeking. In the case of SJPeek31, the improve-
ment reflects reduced combinatorial growth in addition to
the fine-grained benefit with peeking.

It is important to note that the schedules we consider
in our evaluation have the elements of a hierarchical phase
sorted as described in Section 3: all of the phases of a given
child stream are executed before advancing to the next child.
For both single-appearance and minimum latency schedul-
ing, this represents only one possible execution order for
child phases; in particular, a more fine-grained interleav-
ing of children could reduce buffer requirements. While we
do not explore the range of possible interleavings within

Benchmark Number of Number of Single Appearance Minimal Latency
Nodes Node
Executions
Code Size Buffer Size Code Size Buffer Size

SJPeek31 6 12063 8 19964 24 874
HDTV 170 390038 230 550692 1190 28300

CD-DAT 6 612 6 1021 64 72
CFAR 4 193 7 193 9 129
SJPeek1024 6 3081 8 7168 13 4864
Block Matrix Mult 43 1956 48 4212 56 3132
Vocoder 117 415 156 1285 205 1094
Radar 68 161 68 332 68 332
BitonicSort 370 468 370 2112 370 2112
3GPP 94 356 104 986 108 970
Trellis 14 301 14 538 17 499
FIRfine 132 152 132 1560 132 1560
FilterBank 53 312 95 2063 116 1991
QMF 65 184 85 1225 85 1225
Radio 30 43 35 1351 35 1351
FFT 26 448 26 3584 26 3584
GSM 47 3356 - 64 3900

Table 1: Results of running single appearance and minimal latency scheduling algorithms on various applications.

a hierarchical node, note that the hierarchy of the stream
graph provides a set granularity at which the leaf nodes of
the graph can be interleaved—for example, in a hierarchical
single-appearance schedule, two consecutive executions of a
pipeline construct would execute all of its nodes once before
executing all of the nodes again. We are exploring other
interleaving strategies for the nodes within a given phase.

5. RELATED WORK

There has been a wealth of research on scheduling dataflow
graphs. This section introduces some of the other projects.
Ptolemy [18] is a simulation environment for heteroge-
neous embedded systems, including Synchronous Data Flow,
the domain that is most similar to StreamlIt. SDF programs,
however, do not include the peeking constructs of StreamlIt.
The SDF computation model does not impose structure on
the program. All actors (the SDF equivalent of filters) are
allowed to have multiple input and output channels. [1] pro-
vides an overview of dataflow synchronous languages.
There are many results on the scheduling of SDF pro-
grams [4, 6]. While the tradeoff between data size and code
size is well recognized, most projects focus on minimizing
memory requirements while maintaining minimal code size
in the form of a single appearance schedule. A single ap-
pearance schedule is attractive because filters can be inlined
into the schedule without effecting the size of the code. In
this paper, we assume that the schedule and the filter code
are stored separately, and that non-single appearance sched-
ules are supported with function calls. [5] considers a hybrid
model between these two extremes, in which actor invoca-
tions are inlined unless the resulting code grows too large.
There are a number of approaches to minimizing the buffer
requirements for single-appearance schedules (see [4] for a re-
view). APGAN (Pairwise Grouping of Adjacent Nodes) and
RPMC (Recursive Partitioning by Minimum Cuts) are two
complementary heuristics that have shown to be effective
when applied together, taking the best result [3]. Another
technique for reducing buffering requirements is buffer merg-

ing [19, 20], which could be explored for use in Streamlt in
the future. Yet another approach is the GASAS system,
which uses genetic algorithms to minimize buffer size [25].

Buffer minimization has also been done in the context of
a multiprocessor implementation [11]. Using a linear pro-
gramming framework, they minimize the buffer size across
schedules that have optimal throughput.

There are some streaming computation models which are
less constrained than SDF. The most relevant is Cyclo-Static
Data Flow (CSDF) [7, 21]. CSDF actors have multiple work
functions, each of which can produce/consume a different
number of data items. Phased scheduling could be viewed
as a generalization of CSDF to the case where hierarchical
stream containers — not just leaf nodes — have cyclic phases.
In addition, incorporating child phases into parent sched-
ules allows the phase information in a CSDF graph to be
fully utilized, e.g., for decreasing latency and for scheduling
tightly constrained feedback loops.

[24] proposes a model where the flow of data is not static,
but may depend on data being processed. The model is
called Cyclo-Dynamic Data Flow (CDDF). This greatly im-
proves the flexibility of programming, but prevents fully
static scheduling of programs. The U.S. Navy Processing
Graph Method (PGM) uses a version of SDF with an equiv-
alent of peeking [9]. The paper is focused on real-time ex-
ecution and provides analysis and verification of latency of
data flow through their system.

A large number of programming languages have included
a concept of a stream; see [22] for a survey. Synchronous
languages such as LUSTRE [12], Esterel [2], and Signal [8]
also target the embedded domain, but they are more control-
oriented than StreamlIt and are less amenable to static schedul-
ing. Sisal (Stream and Iteration in a Single Assignment
Language) is a high-performance, implicitly parallel func-
tional language [14]. The Distributed Optimizing Sisal Com-
piler [14] considers compiling Sisal to distributed memory
machines, although it is implemented as a coarse-grained
master/slave runtime system instead of a fine-grained static
schedule.

6. CONCLUSION AND FUTURE WORK

This paper presents a general phased scheduling algorithm
for structured Synchronous Dataflow Graphs as used by the
Streamlt language. Unlike other languages, Streamlt en-
forces a hierarchical, single-input single-output structure on
the stream graph, thus allowing a variety of new approaches
to stream scheduling.

A hierarchical approach to scheduling of streaming appli-
cations allows for very simple algorithms. Program graphs
do not have to be considered globally, thus less data needs
to be kept track of. In the hierarchical approaches presented
here, we only need to consider immediate children of a given
stream operator.

The phased approach to scheduling allows the schedul-
ing of arbitrarily tight feedbackloops and allows for more
fine-grained control of buffer requirements. The fine-grained
control of buffer requirements can provide dramatic reduc-
tion of buffer sizes when scheduling streaming applications,
as has been presented here. Furthermore, phased schedules
lend themselves to some easy forms of compression, thus
further reducing the schedule size.

Future work will concentrate on expanding phased schedul-
ing to implement schedules that have some real-life con-
straints put upon them. For example, a program may need
to keep all its data in processor caches to provide high per-
formance. Adapting buffer sharing to phased scheduling will
also be explored, as it promises further reduction in buffer
requirements.

7. ACKNOWLEDGEMENTS

Many people have contributed to the Streamlt infrastruc-
ture that was utilized in this paper, including Michael Gor-
don, David Maze, Jasper Lin, and Andrew Lamb. We also
thank Ali Meli, Chris Leger, and Jeremy Wong for imple-
menting some of the applications. The Streamlt project is
supported by grants from DARPA, NSF, and the MIT Oxy-
gen Alliance.

8. REFERENCES

[1] Albert Benveniste, Paul Caspi, Paul Le Guernic, and
Nicolas Halbwachs. Data-Flow Synchronous Languages. In
REX School/Symposium, pages 1-45, 1993.

[2] Gerard Berry and Georges Gonthier. The Esterel
Synchronous Programming Language: Design, Semantics,

Implementation. Science of Computer Programming,
19(2):87-152, 1992.

[3] Chuvra S. Bhattacharyya, Praveen K. Murthy, and
Edward A. Lee. APGAN and RPMC: Complementary
Heuristics for Translating DSP Block Diagrams into
Efficient Software Impelementations. Journal of Design
Automation for Embedded Systems, January 1997.

[4] S. Bhattacharyya, P. Murthy, and E. Lee. Synthesis of
embedded software from synchronous dataflow
specifications. Journal of VLSI Signal Processing Systems,
21(2), June 1999.

[5] S. S. Bhattacharyya. Optimization Trade-offs in the
Synthesis of Software for Embedded DSP. In CASES,
October 1999. Washington, D. C.

[6] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Software
Synthesis from Dataflow Graphs. Kluwer Academic
Publishers, 1996.

[7] Greet Bilsen, Marc Engels, Rudy Lauwereins, and Jean
Peperstraete. Cyclo-Static Dataflow. IEEE Trans. on
Signal Processing, pages 397-408, February 1996.

(8] Thierry Gautier, Paul Le Guernic, and Loic Besnard.
Signal: A declarative language for synchronous
programming of real-time systems. Springer Verlag Lecture
Notes in Computer Science, 274:257-277, 1987.

[9] S. Goddard and K. Jeffay. Analyzing the Real-Time
Properties of a U.S. Navy Singer Processing System.
International Journal of Reliability. Quality and Safety
Engineering, 7(4), 2000.

[10] Michael Gordon, William Thies, Michal Karczmarek,
Jeremy Wong, Henry Hoffmann, David Maze, and Saman
Amarasinghe. A Stream Compiler for
Communication-Exposed Architectures. In ASPLOS, pages
75-86, October 2002.

[11] R. Govindarajan, Guang R. Gao, and Palash Desai.
Minimizing memory requirements in rate optimal
schedules. In Proc. of the 1994 International Conference
on Application Specific Array Processors, pages 75-86.
IEEE Computer Society, August 1994.

[12] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
synchronous data-flow programming language LUSTRE.
Proc. of the IEEE, 79(9):1305-1320, September 1991.

[13] StreamIt Homepage.
http://compiler.lcs.mit.edu/streamit.

[14] J. Gaudiot and W. Bohm and T. DeBoni and J. Feo and P.
Mille. The Sisal Model of Functional Programming and its
Implementation. In Proc. of the Second Aizu International
Symposium on Parallel Algorithms/Architectures
Synthesis, 1997.

[15] Michal Karczmarek. Constrained and Phased Scheduling of
Synchronous Data Flow Graphs for Streamlt Language.
S.M. Thesis, Massachusetts Instititue of Technology,
Laboratory for Computer Science, 2002.

[16] Andrew Lamb, William Thies, and Saman Amarasinghe.
Linear Analaysis and Optimization of Stream Programs. In
PLDI, 2003.

[17] E. Lee and D. Messershmitt. Static Scheduling of
Synchronous Data Flow Programs for Digital Signal
Processing. IEEE Trans. on Computers, C-36(1):24-35,
January 1987.

[18] Edward A. Lee. Overview of the Ptolemy Project.
UCB/ERL Technical Memorandum UCB/ERL MO01/11,
Dept. EECS, UC Berkeley, CA, March 2001.

[19] P. K. Murthy and S. S. Bhattacharyya. A Buffer Merging
Technique for Reducing Memory Requirements of
Synchronous Dataflow Specifications. In International
Symposium on System Synthesis, 1999.

[20] P. K. Murthy and S. S. Bhattacharyya. Buffer Merging —
A Powerful Technique for Reducing Memory Requirements
of Synchronous Dataflow Specifications. Technical report,
Inst. for Adv. Computer Studies, UMD College Park, 2000.

[21] T. Parks, J. Pino, and E. Lee. A Comparison of
Synchronous and CycloStatic Dataflow. In IEEE Asilomar
Conference on Signals, Systems, and Computers, 1995.

[22] Robert Stephens. A Survey of Stream Processing. Acta
Informatica, 34(7):491-541, 1997.

[23] William Thies, Michal Karczmarek, and Saman
Amarasinghe. Streamlt: A Language for Streaming
Applications. In Proc. of the International Conference on
Compiler Construction, 2002.

[24] P. Wauters, M. Engels, R. Lauwereins, and J. Peperstraete.
Cyclo-dynamic dataflow. In 4th EUROMICRO Workshop
on Parallel and Distributed Processing, January 1996.

[25] Eckart Zitzler, Jurgen Teich, and Shuvra S. Bhattacharyya.
Evolutionary Algorithms for the Synthesis of Embedded
Software. IEEE Trans. on Very Large Scale Integration
(VLSI) Systems, 8(4), August 2000.

