
Phased Scheduling
of Stream Programs

Michal Karczmarek, William Thies
and Saman Amarasinghe

MIT LCS

Streaming Application Domain

Based on audio, video and data streams
Increasingly prevalent

Embedded systems
Cell phones, handheld computers, etc.

Desktop applications
Streaming media
Software radio
Real-time encryption

High-performance servers
Software Routers (ex. Click)
Cell phone base stations
HDTV editing consoles

Properties of Stream Programs

A large (possibly infinite) amount of data
Limited lifespan of each data item
Little processing of each data item

A regular, static computation pattern
Stream program structure is relatively constant
A lot of opportunities for compiler
optimizations

StreamIt Language
Streaming Language from MIT LCS
Similar to Synchronous Data Flow
(SDF)
Provides hierarchy & structure
Four Structures:

Filter
Pipeline
SplitJoin
FeedbackLoop

All Structures have Single-Input Channel
Single-Output Channel
Filters allow ‘peeking’ – looking at items
which are not consumed

Splitter

LPF

CClip

ACorr

Sink

Joiner

Source

LPF

HPF

Compress

LPF

HPF

Compress

LPF

HPF

Compress

LPF

HPF

Compress

Our Contributions

New scheduling technique called Phased Scheduling

Small buffer sizes for hierarchical programs
Fine grained control over schedule size vs buffer
size tradeoff
Allows for separate compilation by always
avoiding deadlock
Performs initialization for peeking Filters

Overview

General Stream Concepts
StreamIt Details
Program Steady State and Initialization
Single Appearance and Pull Scheduling
Phased Scheduling

Minimal Latency

Results
Related Work and Conclusion

Stream Programs

Consist of Filters and Channels
Filters perform computation
Channels act as FIFO queues
for data between Filters

filter

filter

filter

filter

Filters

Execute a work function which:
Consumes data from their input
Produces data to their output

Filters consume and produce
constant amount of data on every
execution of the work function

Rates are known at compilation time
Filter executions are atomic

filter

Stream Program Schedule

Describes the order in which filters are
executed
Needs to manage grossly mismatched rates
between filters
Manages data buffered up in channels
between filters
Controls latency of data processing

Overview

General Stream Concepts
StreamIt Details
Program Steady State and Initialization
Single Appearance and Pull Scheduling
Phased Scheduling

Minimal Latency

Results
Related Work and Conclusion

StreamIt - Filter

Performs the computation
Consumes pop data items
Produces push data items
Inspects peek data items

peek, pop

push

StreamIt - Filter

Example:
FIR filter

peek = 3 pop = 1

FIR
push = 1

StreamIt - Filter

Example:
FIR filter
Inspects 3 data items

peek = 3 pop = 1

FIR
push = 1

StreamIt - Filter

Example:
FIR filter
Inspects 3 data items
Consumes 1 data item

peek = 3 pop = 1

FIR
push = 1

StreamIt - Filter

Example:
FIR filter
Inspects 3 data items
Consumes 1 data item
Produces 1 data item

peek = 3 pop = 1

FIR
push = 1

StreamIt - Filter

Example:
FIR filter
Inspects 3 data items
Consumes 1 data item
Produces 1 data item

peek = 3 pop = 1

FIR
push = 1

StreamIt - Filter

Example:
FIR filter
Inspects 3 data items
Consumes 1 data item
Produces 1 data item
And again…

peek = 3 pop = 1

FIR
push = 1

StreamIt - Filter

Example:
FIR filter
Inspects 3 data items
Consumes 1 data item
Produces 1 data item
And again…

peek = 3 pop = 1

FIR
push = 1

StreamIt - Filter

Example:
FIR filter
Inspects 3 data items
Consumes 1 data item
Produces 1 data item
And again…

peek = 3 pop = 1

FIR
push = 1

StreamIt - Filter

Example:
FIR filter
Inspects 3 data items
Consumes 1 data item
Produces 1 data item
And again…

peek = 3 pop = 1

FIR
push = 1

StreamIt - Filter

Example:
FIR filter
Inspects 3 data items
Consumes 1 data item
Produces 1 data item
And again…

peek = 3 pop = 1

FIR
push = 1

StreamIt Pipeline

Connects multiple
components together
Sequential (data-wise)
computation
Inserts implicit buffers
between them

A

B

C

StreamIt SplitJoin

Also connects several
components together
Parallel computation
construct
Allows for computation of
same data (DUPLICATE
splitter) or different data
(ROUND_ROBIN splitter)

BA

splitter

joiner

StreamIt FeedbackLoop

ONLY structure to allow
data cycles
Needs initialization on
feedbackPath
Amount of data on
feedbackPath is delay

B L

splitter

joiner

delay

Overview

General Stream Concepts
StreamIt Details
Program Steady State and Initialization
Single Appearance and Pull Scheduling
Phased Scheduling

Minimal Latency

Results
Related Work and Conclusion

Scheduling – Steady State

Every valid stream graph has a Steady State
Steady State does not change amount of
data buffered between components
Steady State can be executed repeatedly
forever without growing buffers

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B)
downsamples by factor of 2

pop = 1
A

push = 3

pop = 2
B

push = 1

Steady State Example

A executes 2 times
pushes 2 * 3 = 6 items

B executes 3 times
pops 3 * 2 = 6 items

Number of data items
stored between Filters
does not change

pop = 1
A

push = 3

pop = 2
B

push = 1

2 *

3 *

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

pop = 1
A

push = 3

pop = 2
B

push = 1

2

0

0

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

A

pop = 1
A

push = 3

pop = 2
B

push = 1

2

0

0

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

A

pop = 1
A

push = 3

pop = 2
B

push = 1

1

0

0

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

A

pop = 1
A

push = 3

pop = 2
B

push = 1

1

3

0

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

AA

pop = 1
A

push = 3

pop = 2
B

push = 1

1

3

0

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

AA

pop = 1
A

push = 3

pop = 2
B

push = 1

0

3

0

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

AA

pop = 1
A

push = 3

pop = 2
B

push = 1

0

6

0

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

AAB

pop = 1
A

push = 3

pop = 2
B

push = 1

0

6

0

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

AAB

pop = 1
A

push = 3

pop = 2
B

push = 1

0

4

0

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

AAB

pop = 1
A

push = 3

pop = 2
B

push = 1

0

4

1

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

AABB

pop = 1
A

push = 3

pop = 2
B

push = 1

0

4

1

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

AABB

pop = 1
A

push = 3

pop = 2
B

push = 1

0

2

1

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

AABB

pop = 1
A

push = 3

pop = 2
B

push = 1

0

2

2

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

AABBB

pop = 1
A

push = 3

pop = 2
B

push = 1

0

2

2

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

AABBB

pop = 1
A

push = 3

pop = 2
B

push = 1

0

0

2

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

AABBB

pop = 1
A

push = 3

pop = 2
B

push = 1

0

0

3

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

AABBB

pop = 1
A

push = 3

pop = 2
B

push = 1

0

0

3

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

AABBB
A

pop = 1
A

push = 3

pop = 2
B

push = 1

2

0

0

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

AABBB
A

pop = 1
A

push = 3

pop = 2
B

push = 1

1

0

0

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

AABBB
A

pop = 1
A

push = 3

pop = 2
B

push = 1

1

3

0

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

AABBB
AB

pop = 1
A

push = 3

pop = 2
B

push = 1

1

3

0

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

AABBB
AB

pop = 1
A

push = 3

pop = 2
B

push = 1

1

1

0

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

AABBB
AB

pop = 1
A

push = 3

pop = 2
B

push = 1

1

1

1

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

AABBB
ABA

pop = 1
A

push = 3

pop = 2
B

push = 1

1

1

1

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

AABBB
ABA

pop = 1
A

push = 3

pop = 2
B

push = 1

0

1

1

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

AABBB
ABA

pop = 1
A

push = 3

pop = 2
B

push = 1

0

4

1

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

AABBB
ABAB

pop = 1
A

push = 3

pop = 2
B

push = 1

0

4

1

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

AABBB
ABAB

pop = 1
A

push = 3

pop = 2
B

push = 1

0

2

1

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

AABBB
ABAB

pop = 1
A

push = 3

pop = 2
B

push = 1

0

2

2

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

AABBB
ABABB

pop = 1
A

push = 3

pop = 2
B

push = 1

0

2

2

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

AABBB
ABABB

pop = 1
A

push = 3

pop = 2
B

push = 1

0

0

2

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

AABBB
ABABB

pop = 1
A

push = 3

pop = 2
B

push = 1

0

0

3

Steady State Example

3:2 Rate Converter
First filter (A) upsamples by
factor of 3
Second filter (B) downsamples
by factor of two
Schedule:

AABBB
ABABB

pop = 1
A

push = 3

pop = 2
B

push = 1

0

0

3

Steady State Example - Buffers

AABBB requires 6 data
items of buffer space
between filters A and B
ABABB requires 4 data
items of buffer space
between filters A and B

pop = 1
A

push = 3

pop = 2
B

push = 1

0

0

3

Steady State Example - Latency

AABBB – First data item
output after third execution
of an filter

Also A already consumed 2
data items

ABABB – First data item
output after second execution
of an filter

A consumed only 1 data item

pop = 1
A

push = 3

pop = 2
B

push = 1

0

0

3

Initialization

Filter Peeking provides a new
challenge
Just Steady State doesn’t work:

pop = 1
A

push = 3

peek = 3, pop = 2
B

push = 1

3

0

0

Initialization

Filter Peeking provides a new
challenge
Just Steady State doesn’t work:

A

pop = 1
A

push = 3

peek = 3, pop = 2
B

push = 1

2

3

0

Initialization

Filter Peeking provides a new
challenge
Just Steady State doesn’t work:

AA

pop = 1
A

push = 3

peek = 3, pop = 2
B

push = 1

1

6

0

Initialization

Filter Peeking provides a new
challenge
Just Steady State doesn’t work:

AAB

pop = 1
A

push = 3

peek = 3, pop = 2
B

push = 1

1

4

1

Initialization

Filter Peeking provides a new
challenge
Just Steady State doesn’t work:

AABB
Can’t execute B again!

pop = 1
A

push = 3

peek = 3, pop = 2
B

push = 1

1

2

2

Initialization

Filter Peeking provides a new
challenge
Just Steady State doesn’t work:

AABB
Can’t execute B again!

Can’t execute A one extra time:
AABB

pop = 1
A

push = 3

peek = 3, pop = 2
B

push = 1

1

2

2

Initialization

Filter Peeking provides a new
challenge
Just Steady State doesn’t work:

AABB
Can’t execute B again!

Can’t execute A one extra time:
AABBA

pop = 1
A

push = 3

peek = 3, pop = 2
B

push = 1

0

5

2

Initialization

Filter Peeking provides a new
challenge
Just Steady State doesn’t work:

AABB
Can’t execute B again!

Can’t execute A one extra time:
AABBAB
Left 3 items between A and B!

pop = 1
A

push = 3

peek = 3, pop = 2
B

push = 1

0

3

3

Initialization

Must have data between A and B
before starting execution of Steady
State Schedule
Construct two schedules:

One for Initialization
One for Steady State

Initialization Schedule leaves data in
buffers so Steady State can execute

pop = 1
A

push = 3

peek = 3, pop = 2
B

push = 1

0

3

3

Initialization

Initialization Schedule:
pop = 1

A
push = 3

peek = 3, pop = 2
B

push = 1

3

0

0

Initialization

Initialization Schedule:
A

pop = 1
A

push = 3

peek = 3, pop = 2
B

push = 1

2

3

0

Initialization

Initialization Schedule:
A
Leave 3 items between A and B

Steady State Schedule:

pop = 1
A

push = 3

peek = 3, pop = 2
B

push = 1

2

3

0

Initialization

Initialization Schedule:
A
Leave 3 items between A and B

Steady State Schedule:
A

pop = 1
A

push = 3

peek = 3, pop = 2
B

push = 1

1

6

0

Initialization

Initialization Schedule:
A
Leave 3 items between A and B

Steady State Schedule:
AA

pop = 1
A

push = 3

peek = 3, pop = 2
B

push = 1

0

9

0

Initialization

Initialization Schedule:
A
Leave 3 items between A and B

Steady State Schedule:
AAB

pop = 1
A

push = 3

peek = 3, pop = 2
B

push = 1

0

7

1

Initialization

Initialization Schedule:
A
Leave 3 items between A and B

Steady State Schedule:
AABB

pop = 1
A

push = 3

peek = 3, pop = 2
B

push = 1

0

5

2

Initialization

Initialization Schedule:
A
Leave 3 items between A and B

Steady State Schedule:
AABBB

pop = 1
A

push = 3

peek = 3, pop = 2
B

push = 1

0

3

3

Initialization

Initialization Schedule:
A
Leave 3 items between A and B

Steady State Schedule:
AABBB

Leave 3 items between A and B

pop = 1
A

push = 3

peek = 3, pop = 2
B

push = 1

0

3

3

Initialization

Initialization Schedule:
A
Leave 3 items between A and B

Steady State Schedule:
AABBB

Leave 3 items between A and B
See paper for more details

pop = 1
A

push = 3

peek = 3, pop = 2
B

push = 1

0

3

3

Overview

General Stream Concepts
StreamIt Details
Program Steady State and Initialization
Single Appearance and Pull Scheduling
Phased Scheduling

Minimal Latency

Results
Related Work and Conclusion

Scheduling

Steady State tells us how many times each
component needs to execute
Need to decide on an order of execution
Order of execution affects

Buffer size
Schedule size
Latency

Single Appearance Scheduling (SAS)

Every Filter is listed in the schedule only
once
Use loop-nests to express the multiplicity of
execution of Filters
Buffer size is not optimal
Schedule size is minimal

Schedule Size

Schedules can be stored in two ways
Explicitly – in a schedule data structure
Implicitly – as code which executes the schedule’s
loop-nests

Schedule size = number of appearances of nodes
(filters and splitters/joiners) in the schedule

Single appearance schedule size is same as number of
nodes in the program
Other scheduling techniques can have larger size
SAS schedule size is minimal: all nodes must appear in
every schedule at least once

SAS Example – Buffer Size

Example: CD-DAT
CD to Digital Audio Tape rate
converter
Mismatched rates cause large
number of executions in Steady
State

1
A
2

3
B
2

7
C
8

7
D
5

147 *

98 *

28 *

32 *

SAS Example – Buffer Size

Naïve SAS schedule:
147A 98B 28C 32D
Required Buffer Size: 714
Unnecessarily large buffer
requirements!

294

196

224

1
A
2

3
B
2

7
C
8

7
D
5

147 *

98 *

28 *

32 *

SAS Example – Buffer Size

Naïve SAS schedule:
147A 98B 28C 32D
Required Buffer Size: 714
Unnecessarily large buffer
requirements!

Optimal SAS CD-DAT schedule:
49{3A 2B} 4{7C 8D}
Required Buffer size: 258

1
A
2

3
B
2

7
C
8

7
D
5

SAS Example – Buffer Size

Naïve SAS schedule:
147A 98B 28C 32D
Required Buffer Size: 714
Unnecessarily large buffer
requirements!

Optimal SAS CD-DAT schedule:
49{3A 2B} 4{7C 8D}
Required Buffer size: 258

1
A
2

3
B
2

7
C
8

7
D
5

6

3 *

2 *

SAS Example – Buffer Size

Naïve SAS schedule:
147A 98B 28C 32D
Required Buffer Size: 714
Unnecessarily large buffer
requirements!

Optimal SAS CD-DAT schedule:
49{3A 2B} 4{7C 8D}
Required Buffer size: 258

1
A
2

3
B
2

7
C
8

7
D
5

6

3 *

2 *

SAS Example – Buffer Size

Naïve SAS schedule:
147A 98B 28C 32D
Required Buffer Size: 714
Unnecessarily large buffer
requirements!

Optimal SAS CD-DAT schedule:
49{3A 2B} 4{7C 8D}
Required Buffer size: 258

1
A
2

3
B
2

7
C
8

7
D
5

49 * 6

SAS Example – Buffer Size

Naïve SAS schedule:
147A 98B 28C 32D
Required Buffer Size: 714
Unnecessarily large buffer
requirements!

Optimal SAS CD-DAT schedule:
49{3A 2B} 4{7C 8D}
Required Buffer size: 258

1
A
2

3
B
2

7
C
8

7
D
5

49 * 6

7 *

8 *

56

SAS Example – Buffer Size

Naïve SAS schedule:
147A 98B 28C 32D
Required Buffer Size: 714
Unnecessarily large buffer
requirements!

Optimal SAS CD-DAT schedule:
49{3A 2B} 4{7C 8D}
Required Buffer size: 258

1
A
2

3
B
2

7
C
8

7
D
5

49 * 6

7 *

8 *

56

SAS Example – Buffer Size

Naïve SAS schedule:
147A 98B 28C 32D
Required Buffer Size: 714
Unnecessarily large buffer
requirements!

Optimal SAS CD-DAT schedule:
49{3A 2B} 4{7C 8D}
Required Buffer size: 258

1
A
2

3
B
2

7
C
8

7
D
5

49 * 6

564 *

SAS Example – Buffer Size

Naïve SAS schedule:
147A 98B 28C 32D
Required Buffer Size: 714
Unnecessarily large buffer
requirements!

Optimal SAS CD-DAT schedule:
49{3A 2B} 4{7C 8D}
Required Buffer size: 258

1
A
2

3
B
2

7
C
8

7
D
5

49 * 6

564 *

196

SAS Example – Buffer Size

Naïve SAS schedule:
147A 98B 28C 32D
Required Buffer Size: 714
Unnecessarily large buffer
requirements!

Optimal SAS CD-DAT schedule:
49{3A 2B} 4{7C 8D}
Required Buffer size: 258

1
A
2

3
B
2

7
C
8

7
D
5

6

56

196

Pull Schedule Example – Buffer Size

Pull Scheduling:
Always execute the bottom-most element
possible

CD-DAT schedule:
2A B A B 2A B A B C D … A B C 2D
Required Buffer Size: 26
251 entries in the schedule

Hard to implement efficiently, as
schedule is VERY large

4

8

14

1
A
2

3
B
2

7
C
8

7
D
5

SAS vs Pull Schedule

Need something in between
SAS and Pull Scheduling

25126Pull Schedule

4258SAS
Schedule SizeBuffer Size

Overview

General Stream Concepts
StreamIt Details
Program Steady State and Initialization
Single Appearance and Pull Scheduling
Phased Scheduling

Minimal Latency

Results
Related Work and Conclusion

Phased Scheduling

Idea:
What if we take the naïve SAS schedule, and
divide it into n roughly equal phases?

Buffer requirements would reduce roughly
by factor of n
Schedule size would increase by factor of n
May be OK, because buffer requirements
dominate schedule size anyway!

Phased Scheduling

Try n = 2:
Two phases are:

74A 49B 14C 16D
73A 49B 14C 16D

Total Buffer Size: 358
Small schedule increase
Greater n for bigger savings

1
A
2

3
B
2

7
C
8

7
D
5

148

98

112

Phased Scheduling

Try n = 3:
Three phases are:

48A 32B 9C 10D
53A 35B 10C 11D
46A 31B 9C 11D

Total Buffer Size: 259
Basically matched best SAS result

Best SAS was 258

1
A
2

3
B
2

7
C
8

7
D
5

106

71

82

Phased Scheduling
Try n = 28:
The phases are:

6A 4B 1C 1D
5A 3B 1C 1D
…
4A 3B 1C 2D

Total Buffer Size: 35
Drastically beat best SAS result

Best SAS was 258
Close to minimal amount (pull schedule)

Pull schedule was 26

1
A
2

3
B
2

7
C
8

7
D
5

13

8

14

CD-DAT Comparison:
SAS vs Pull vs Phased

25126Pull Schedule
5235Phased Schedule

4258SAS

Schedule SizeBuffer Size

Phased Scheduling

Apply technique hierarchically
Children have several phases
which all have to be executed
Automatically supports cyclo-
static filters
Children pop/push less data, so
can manage parent’s buffer
sizes more efficiently

CD-DAT

CD reader

DAT
recorder

Equalizer

Phased Scheduling

What if a Steady State of a component of a
FeedbackLoop required more data than available?
Single Appearance couldn’t do separate
compilation!
Phased Scheduling can provide a fine-grained
schedule, which will always allow separate
compilation (if possible at all)

Overview

General Stream Concepts
StreamIt Details
Program Steady State and Initialization
Single Appearance and Pull Scheduling
Phased Scheduling

Minimal Latency

Results
Related Work and Conclusion

Minimal Latency Schedule

Every Phase consumes as few items as possible to
produce at least one data item
Every Phase produces as many data items as
possible
Guarantees any schedulable program will be
scheduled without deadlock
Allows for separate compilation
For details, see our paper

Minimal Latency Scheduling

Simple FeedbackLoop with a
tight delay constraint
Not possible to schedule
using SAS
Can schedule using Phased
Scheduling

Use Minimal Latency
Scheduling

3
B
5

4
L
4

2
1 1

1 5
6

delay = 10

*4

*8

*20

*5

Minimal Latency Scheduling

Minimal Latency Phased
Schedule:

3
B
5

4
L
4

2
1 1

1 5
6

delay = 10

10

0

0

0

Minimal Latency Scheduling

Minimal Latency Phased
Schedule:

join 2B 5split L

3
B
5

4
L
4

2
1 1

1 5
6

delay = 10

9

1

0

0

Minimal Latency Scheduling

Minimal Latency Phased
Schedule:

join 2B 5split L
join 2B 5split L 3

B
5

4
L
4

2
1 1

1 5
6

delay = 10

8

2

0

0

Minimal Latency Scheduling

Minimal Latency Phased
Schedule:

join 2B 5split L
join 2B 5split L
join 2B 5split L

3
B
5

4
L
4

2
1 1

1 5
6

delay = 10

7

3

0

0

Minimal Latency Scheduling

Minimal Latency Phased
Schedule:

join 2B 5split L
join 2B 5split L
join 2B 5split L
join 2B 5split 2L

3
B
5

4
L
4

2
1 1

1 5
6

delay = 10

10

0

0

0

Minimal Latency Schedule

Minimal Latency Phased
Schedule:

join 2B 5split L
join 2B 5split L
join 2B 5split L
join 2B 5split 2L

Can also be expressed as:
3 {join 2B 5split L}
join 2B 5split 2L

Common to have repeated
Phases

3
B
5

4
L
4

2
1 1

1 5
6

delay = 10

Why not SAS?

Naïve SAS schedule
4join 8B 20split 5L:
Not valid because 4join
consumes 20 data items

Would like to form a loop-nest
that includes join and L
But multiplicity of executions
of L and join have no common
divisors

3
B
5

4
L
4

2
1 1

1 5
6

delay = 10

*4

*8

*20

*5

Overview

General Stream Concepts
StreamIt Details
Program Steady State and Initialization
Single Appearance and Pull Scheduling
Phased Scheduling

Minimal Latency

Results
Related Work and Conclusion

Results

SAS vs Minimal Latency
Used 17 applications

9 from our ASPLOS paper
2 artificial benchmarks
2 from Murthy99
Remaining 4 from our internal applications

Results - Buffer Size

Results – Schedule Size

Results - Combined

Overview

General Stream Concepts
StreamIt Details
Program Steady State and Initialization
Single Appearance and Pull Scheduling
Phased Scheduling

Minimal Latency

Results
Related Work and Conclusion

Related Work

Synchronous Data Flow (SDF)
Ptolemy [Lee et al.]
Many results for SAS on SDF

Memory Efficient Scheduling [Bhattacharyya97]
Buffer Merging [Murthy99]

Cyclo-Static [Bilsen96]
Peeking in US Navy Processing Graph Method
[Goddard2000]
Languages: LUSTRE, Esterel, Signal

Conclusion

Presented Phased Scheduling Algorithm
Provides efficient interface for hierarchical scheduling
Enables separate compilation with safety from deadlock
Provides flexible buffer / schedule size trade-off
Reduces latency of data throughput

Step towards a large scale hierarchical
stream programming model

Phased Scheduling
of Stream Programs

StreamIt Homepage

http://cag.lcs.mit.edu/streamit

