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Abstract

Planar-faced mesh surfaces, also known as polyhedral surfaces, that
possess vertex-offsets are useful in architectural design for con-
structing supporting structures, and also of interest in discrete dif-
ferential geometry. We consider the existence and computation of
vertex-offset meshes of general polyhedral surfaces and, specifi-
cally, study how the existence of vertex offsets is dictated by the
face shape, mesh surface geometry and mesh surface topology. This
extends the study in [Pottmann et al. 2007; Pottmann and Wallner
2008] on vertex-offset meshes of simply-connected circular quad
meshes.
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1 Introduction

Polyhedral surfaces are meshes with planar faces. It has recently
been shown [Liu et al. 2006] that polyhedral surfaces, especially
those beyond triangle meshes, are useful for modeling glass/metal
panels in architectural design. A vertex-offset mesh of a given mesh
M0 is one that has the same mesh connectivity ofM0 and all of
its vertices have a same constant distance to their corresponding
vertices inM0. The vertex-offset mesh, along with other variants
of offset meshes, are useful for building supporting structures of a
building surface modeled as a polyhedral surface [Pottmann et al.
2007].

A circular quad mesh is a mesh with planar quad faces each of
which has a circum-circle. Circular meshes were first introduced
by Martin et al. [1986] as quad meshes with planar faces which dis-
cretize the principal curvature lines of an underlying smooth surface
and possess a circum-circle for each quad face. Recently circular
meshes have been well studied from the discrete differential geome-
try point of view [Bobenko and Suris 2005]. The focal geometry of
circular meshes, including discrete normals, offsets and focal sur-
faces, has recently been studied in [Pottmann and Wallner 2008].

A simply connected quad mesh surface possesses a vertex-offset
mesh if and only if it is a circular quad mesh [Pottmann et al. 2007];
in fact, a simply connected circular quad mesh has a two-parameter
family of parallel spherical meshes [Pottmann and Wallner 2008].
However, the existence of the vertex-offset mesh of a general poly-
hedral surface is a more complex problem. For example, a quad
mesh with more than one closed boundaries or a closed quad mesh
with nonzero genus may not have vertex-offset meshes, except for
the trivial case of a translation of the mesh. Two examples are
shown in Figure 1.

We study in this paper how the existence of vertex-offset meshes
of a polyhedral surface is governed by the face shape, mesh surface
geometry and mesh surface topology. We also present numerical
techniques for computing the parallel spherical meshes of a vertex-
offset mesh.
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Figure 1: Both quad meshes are circular meshes. The one on the
left has a unique parallel spherical mesh, and the one one the right
has no parallel spherical mesh and therefore no vertex offset.

2 Quasi-circular polygons and meshes

The vertex offset can be characterized using the concept of parallel
meshes [Pottmann et al. 2007] – a mesh M0 possesses a vertex-
offset mesh if and only if it has a parallel spherical meshMs, which
is a mesh that has all of its vertices lie on the unit sphere S2. Such
a meshMs is called a parallel spherical embedding mesh ofM0.
Based on this result, our study will be centered around the exis-
tence of the spherical embedding meshes of a given mesh. We first
introduce necessary notions and definitions.

A meshM is a planar polygonal mesh, or called a polyhedral sur-
face, if every face of M spans a plane. Since we always require
face planarity, all meshes discussed in the paper will be assumed
to have planar faces. A proper mesh is one such that it does not
have degenerate edges, that is, the two endpoints of any edge are
not identical.

Two polygons are parallel if their vertices can be put in one-to-
one correspondence such that the corresponding edges are parallel.
A circular polygon is a planar polygon inscribed in a circle. A
circular mesh is a mesh all of whose faces are circular polygons.
To study the vertex-offset mesh of a general mesh in the framework
of parallel meshes, we need to go beyond circular meshes.

Definition 1 A planar polygonP is called a quasi-circular polygon
if it has a parallel non-degenerate circular polygon Pc inscribed in
a unit circle S1. Here the non-degeneracy of Pc means that if the
two endpoints uc and vc of any edge ec of Pc are identical, then the
direction of ec’s corresponding edge e in P is tangent to the circle
S1 at uc (= vc). We call Pc a circular embedding polygon of P .

Note that any triangle is circular, since it has a unique circum-circle.
A planar quad is circular if the sums of two opposite internal angles
are equal. A quasi-circular quad mesh P has infinitely many circu-
lar embedding polygons, including itself; therefore, a quasi-circular
quad is also circular. However, a quasi-circular polygon with more
than four sides, in general, is not circular.

Definition 2 A mesh is called a quasi-circular mesh if all of its
faces are quasi-circular polygons.

The notion of quasi-circular meshes is the equivalent to that of cir-
cular meshes for quad meshes, but different from and more general
than the latter for mesh faces that contain faces with more than four
sides.

Two polygonal meshes are defined to be parallel if their vertices
are in one-to-one correspondence with isomorphic edge connectiv-



ity and their corresponding edges are parallel. Clearly, the corre-
sponding faces of two parallel meshes are parallel.

Definition 3 A mesh is a spherical mesh if all of its vertices lie on
the unit sphere S2.

The existence of the vertex-offset meshes of a given mesh can be
characterized by the existence of its parallel spherical meshes, as
observed in [Pottmann et al. 2007]. This is summarized as follows.

Proposition 1 A meshM has a vertex-offset mesh if and only if it
has a non-degenerate parallel spherical meshMs. Here a “non-
degenerate”Ms means that if the two endpoints us and vs of any
edge es ofMs are identical, then the direction of es’s correspond-
ing edge e inM is parallel to the tangent plane of S2 at us (= vs).

We also call Ms the parallel spherical embedding of M. With
Ms, a vertex-offset meshMo ofM can be expressed asMo :=
M+dMs, for some constant d and “+” is vector addition applied
to the coordinates of the corresponding vertices. By insisting on the
non-degeneracy of Ms, we have excluded the trivial case where
Mo is a translational copy ofM, which would be caused byMs

collapsing into a single point on S2.

It follows from Proposition 1 that a mesh possessing a vertex-offset
mesh is a quasi-circular mesh. This conditions turns out to be also
sufficient for a simply connected circular quad mesh, as pointed
above, since a simply connected circular quad mesh always has a
two-parameter family of parallel spherical meshes [Pottmann and
Wallner 2008].

We now consider the 2D reflections induced by the sides a quasi-
circular polygon P : u0u1 · · ·un, with u0 = un. Similar to the
procedure described in Remark 11 in [Pottmann and Wallner 2008],
the construction of a circular embedding polygon P ′ : u′0u

′
1 · · ·u′n

of P can be obtained via a series of reflections. The procedure is as
follows:

• Pick a point u′0 on the unit circle, set j = 0;

• Repeat the following procedure until j = n: Select the line
passing through the origin and orthogonal to −−−−→uj+1uj as the
reflection line. Reflect u′j in this line to obtain u′j+1. (This
reflection is denoted as Tj which is a 2×2 orthogonal matrix.)
Set j := j + 1.

If P is a quasi-circular polygon, then there needs to be u′0 = u′n in
order for P ′ to exist. Define Tref := Tn−1 ◦ Tn−2 ◦ · · · ◦ T1 ◦ T0.
Then u′0 = u′n implies u′0 = Trefu

′
0, or equivalently, Tref has an

eigenvalue equal to 1 and u′0 is the associated eigenvector. Since
each reflection Tj is a 2 × 2 orthogonal matrix with det(Tj) =
−1, Tref is orthogonal with det(Tref) = −1 when n is odd and
det(Tref) = 1 when n is even.

When n is odd, the two eigenvalues of Tref are 1 and−1. That is to
say, there is a unique invariant vector u′0 of Tref in this case, up to
scaling. Hence, there are exactly two circular embedding polygons
of P , given by a unit invariant vector u′0 of Tref and −u′0. We state
this as a proposition.

Proposition 2 Any odd-sided planar polygon is a quasi-circular
polygon with two circular embedding polygons, which are reflec-
tions of each other about the center of the circle.

When n is even, it is easy to see that Tref = I2×2 (the identity
matrix) if and only if P is quasi-circular. In this case, any point u′0
on the unit circle S1 gives an eigenvalue vector of Tref; therefore,
there is a one-parameter family of circular embedding polygons of
P . When n is even and P is not quasi-circular, the eigenvalues
of Tref are complex conjugate or −1 and −1, representing a 2D
rotation of angle not equal to a multiple of 2π.

A quasi-circular even-sided convex polygon is characterized by the
following theorem (we do not include its proof here due to space
limit).

Theorem 1 An even-sided planar polygon P = u1u2 . . .u2n is
a quasi-circular if and only if its internal angles θ1, θ2, . . . , θ2n

satisfy θ1 + θ3 + . . .+ θ2n−1 = θ2 + θ4 + . . .+ θ2n.

Proposition 3 An even-sided quasi-circular polygon has a one-
parameter family of circular embedding polygons.

Consider a quasi-circular (planar) polygon in 3D. The reflections
along its successive sides define a series of reflections in 3D fol-
lowing a similar procedure: we reflect the vertex u′j with respect
to the plane with normal vector −−−−→ui+1ui which passes through the
origin to obtain u′j+1. All possible combinations of the eigenvalues
of Tref are listed in the following table.

A quasi-circular det(Tref) = 1 det(Tref) = −1
polygon in 3D (n is even) (n is odd)
Eigenvalues {1, 1, 1} {1, 1,−1}

It follows that an even-sided quasi-circular polygon P has a two-
parameter family of parallel embedding polygons on the unit sphere
S2; in this case any point on S2 can be used as a starting point u′0
to construct an embedding P ′ of P on S2. For an odd-sided planar
polygon, which is always quasi-circular (cf. Proposition 2), there is
a one-parameter family of parallel embedding polygons on S2. In
this case, the initial point u′0 of P ′ is confined to be on a great arc
of S2. Hence, we conclude that if a mesh P contains more than two
odd-sided faces in general orientations, then P , in general, does not
have a parallel spherical embedding and therefore has no vertex-
offset meshes, since three great circles on S2, in general, do not
have a common point.

This suggests that meshes with odd-sided faces, such as triangle
meshes and pentagonal meshes, are not amendable to vertex-offset
computation. Hence, from now on we will only consider quasi-
circular meshes with even-sided face, which will be referred to as a
quasi-circular even-sided polygonal mesh, or QCEP mesh for short.

3 Spherical loops and loop homotopy

A quasi-circular mesh is characterized by the local condition that
each face is quasi-circular. Except in the case of a simply connected
quasi-circular mesh, the existence of the vertex-offset of a general
quasi-circular mesh is determined globally by the shape and topol-
ogy of the mesh. Here, the topology refers to the number of closed
boundaries for an open mesh surface and the genus for a closed
mesh surface. To study this topological aspect, we need to consider
loops on the mesh.

A loop L on a mesh P is a closed path consisting of a sequence
of incident edges of P; therefore, it is, in fact, a closed polygon in
3D, which is not necessarily planar. Parallel loops are defined in
the same way as for parallel planar polygons. All loops on a mesh
surface can be classified into equivalence classes via homotopy –
two loops are homotopic if they can deform continuously into each
other on the surface. Evidently, a loop L1 on a quasi-circular EP
mesh P can be deformed into another loop L2 homotopic to L1 via
a sequence of face addition or face removal operations, one face at
a time.

Definition 4 A loop L is quasi-spherical if it has a non-degenerate
parallel loop L′ whose vertices are on the unit sphere S2. Here a
“non-degenerate” parallel loop L′ means that if the two endpoints
us and vs of any edge es of the parallel loop L′ are identical, then
the direction of es’s corresponding edge e in L is parallel to the



tangent plane of S2 at us (= vs). The loop L′ is called a parallel
spherical embedding loop of L.

The next theorem implies that if a loop on a quasi-circular mesh is
quasi-spherical, then all loops homotopic to it are quasi-spherical.
We skip the proof due to space limit.

Theorem 2 Suppose that L1 and L2 are homotopic on a quasi-
circular even-sided (QCEP) mesh P . Then L1 is quasi-spherical if
and only if L2 is quasi-spherical. Furthermore, when L1 is quasi-
spherical, all the parallel spherical embedding loops ofL1 are con-
sistent and in one-to-one correspondence with those of L2.

Clearly, any loop on a mesh which has a parallel spherical embed-
ding is quasi-spherical. Therefore, if there is a non-quasi-spherical
loop on a quasi-circular mesh, then the mesh does not have a vertex-
offset mesh.

A loop induces a sequence of 3D reflections along it sides. Whether
or not a loop is quasi-spherical can be analyzed by considering the
eigenvalues of the composition of the reflections, again denoted as
Tref. All possible combinations of the eigenvalues of Tref for an
n-sided loop in 3D are listed in the following table.

A loop det(Tref) = 1 det(Tref) = −1
in 3D (n is even) (n is odd)

{1, 1, 1} {1, 1,−1}
Eigenvalues {1,−1,−1} {−1,−1,−1}

{1, a+ bi, a− bi} {−1, a+ bi, a− bi}

Here a2 + b2 = 1, a, b 6= 0 and a, b ∈ R.

Hence, an even-sided loop is always quasi-spherical, since Tref has
at least one eigenvalue equal to 1. In the special case where the
eigenvalues are {1, 1, 1}, the loop has a two-parameter family of
parallel spherical embedding loops. An odd-sided loop may not
be quasi-spherical, since it may not have an eigenvalue equal to 1.
Only in the special case where the eigenvalues are {1, 1,−1}, the
loop has a one-parameter family of parallel spherical embedding
loops; this happens, for instance, for an odd-sided planar polygon.

4 Existence of vertex-offset meshes

Open quasi-circular meshes For a simply connected open
QCEP mesh, all loops on it are simply connected, even-sided, and
homotopic to each other. In particular, every loop is homotopic
to every face of M, which is even-sided and quasi-circular with
a two-parameter family of spherical embedding polygons. Hence,
any simply connected QCEP mesh has a two-parameter family of
parallel spherical embedding meshes.

Now consider an open QCEP meshMwith one hole, which has the
topology of a truncated cylinder, as shown for example in Figure 1
(left). Clearly, a simply connected loop L0 on M is even-sided,
but a non-simply connected loop L1 around the hole (with wind-
ing number equal to 1) may be even-sided or odd-sided. If L1 is
even-sided, then L1 is quasi-spherical and there are in general two
parallel spherical meshes of L1 that are reflections of each other
about the center of the sphere, resulting from a unit invariant eigen-
vector u′0 of Tref and−u′0; two such spherical meshes are said to be
diametrically opposite, and they lead to the unique family of vertex
offset meshesMo :=M+ dMs with the parameter d. It follows
that the mesh P in general has a unique vertex-offset mesh, since
any other loop around the hole as an element of the fundamental
group ofM can be generated from the generators L0 and L1. In
the special case where Tref = I3×3 for L1,M has a two-parameter
family of parallel spherical meshes. When L1 is odd-sided,M in
general does not have a vertex-offset mesh.

Figure 2: A torus-like QCEP mesh without a vertex-offset mesh
(left). The same surface but with one row removed for better illus-
tration.

Figure 3: Two QCEP meshes without vertex-offset meshes. The one
on the left has non-homotopic quasi-spherical loops whose parallel
spherical embedding loops are inconsistent with each other. The
one on the right has odd-sided loops that are not quasi-spherical.
The original models are from the repository of TOPMOD.

When an open QCEP meshM has more than one hole, there are
at least three closed boundary loops that are not homotopic to each
other. Then M in general does not have any vertex-offset mesh,
even if each loop is quasi-spherical, since the spherical embedding
loops of these loops may not have a common vertex.

Closed quasi-circular meshes The topology of a closed QCEP
mesh is indicated by its genus, i.e., the number of its handles. First,
if a QCEP meshM is a topological sphere, then it is simply con-
nected. Consequently, we can show that it has a two-parameter
family of vertex-offset meshes.

For a QCEP meshM of genus 1 or higher, there are at least three
loops that are mutually non-homotopic. It follows thatM in gen-
eral does not has a vertex-offset mesh, either because one of these
loops is not quasi-spherical or because the parallel spherical em-
bedding loops of these non-homotopic loops are inconsistent even
if they are all quasi-spherical. Figure 2 shows a QCEP mesh that
does not have a vertex offset, because it contains a non-planar odd-
sided loop that is non-quasi-spherical. Figure 3 shows two more
QCEP meshes with high genus that have no vertex-offset meshes.

For a closed QCEP mesh M of genus g > 0, if all the genera-
tor loops of the fundamental group of M are even-sided, quasi-
spherical and have their composed reflections Tref = I3×3, then
M has a two-parameter family of spherical meshes, and hence a
two-parameter family of vertex offsets.

Finally, the above observations also apply to a QCEP mesh surface
with open boundaries and handles.

5 Numerical computation of parallel spheri-
cal meshes

In the preceding sections we considered the existence of parallel
spherical meshes of a quasi-circular mesh via an analysis of mesh
topology. Checking whether each loop is quasi-circular is not an
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Figure 4: A torus-like circular quadrilateral mesh (left) with its
unique parallel spherical mesh (right).

Figure 5: Left: A hexagonal mesh before optimization; right: A
quasi-circular hexagonal mesh after optimization with its discrete
normal.

efficient way to determine the existence of the parallel spherical
mesh. In this section, we utilize mesh parallelism and reflectional
properties to compute the basis of the parallel spherical mesh.

Denote a given quasi-circular polygonal mesh asM and its parallel
spherical mesh be denoted as Ms. Denote the edges of M and
Ms as ek and e′k, k = 1, . . . , Ne. The two end vertices of ek and
e′k are denoted as vk,1, vk,2 and v′k,1, v

′
k,2, respectively. Since the

corresponding edges ofM andMs are parallel, we have

(vk,2 − vk,1)× (v′k,2 − v′k,1) = 0, k = 1, . . . , Ne, (1)

where “×” stands for vector vector cross-product in 3D. Since v′k,1

and v′k,2 on S2 are related by a reflection in a plane with the normal
vector vk,2 − vk,1, we have

v′k,1 + v′k,2

2
· (vk,2 − vk,1) = 0, k = 1, . . . , Ne, (2)

where “·” stands for inner-product. Note that the last equation also
ensures the non-degeneracy ofMs with respect toMwhen v′k,1 =
v′k,2 (cf. Proposition 1). Thus we obtain a homogenous sparse
linear system with size 4Ne × 3Nv , where Nv is the number of
vertices and v′ are unknowns. The space of the vertices ofMs is
the null space of the sparse system of the linear equations, which
can be solved by SVD efficiently. Figure 4 shows an example.

Meshes produced from architects are often not circular, and not
even planar, in general. If one wishes to compute a vertex off-
set mesh of such a mesh, one may use the numerical optimization
technique presented in [Liu et al. 2006; Pottmann et al. 2007]. For
meshes with even-sided faces, face quasi-circularity can be attained
with optimization based on the condition of equal angle sums as
stated in Theorem 1. (For reasons stated previously, we will not
consider here circular meshes with odd-sided faces.) For example,
using the optimization technique similar to that presented in [Liu
et al. 2006; Pottmann et al. 2007] via mesh vertex perturbation,
one can turn a given hexagonal mesh into a quasi-circular planar
hexagonal mesh by enforcing

∑6
i=1 θi = 4π (face planarity) and

θ1 + θ3 + θ5 = θ2 + θ4 + θ6 (quasi-circularity) for each face. An
example is shown in Figure 5.

Based on Theorem 1 and our numerical optimization technique, we
can also handle a quasi-circular mesh with mixed types of faces.
For example, Figure 6 shows a simply connected QCEP mesh with

Figure 6: A QCEP polygonal mesh with three types of faces –
quadrilateral, hexagonal and octagonal faces. This mesh also pos-
sesses a face-offset mesh, since each of its interior vertices has va-
lence 3.

three types of quasi-circular faces. This mesh has a two-parameter
family of vertex-offset meshes.

6 Conclusion and future research

We have studied the vertex-offset meshes of general polygonal
meshes and show how their existence is dictated by face shape,
surface geometry and surface topology. Our analysis is based on
parallel spherical meshes, eigenvalue analysis of reflection trans-
formations, and loop homotopy. We have provided an optimization
method for computing the parallel spherical mesh of a given mesh,
when it exists.

Further research problems include the following:

• The success of optimization methods for achieving face pla-
narity depends strongly on initialization. It is well known that
a circular quadrilateral mesh discretizes the principal curva-
ture lines, so the initialization of a circular quad mesh should
come from an appropriate sampling of the curvature lines. But
for a general polygonal mesh, there is lack of research on how
to go about this initialization.

• Due to aesthetic reasons, an open mesh from architecture de-
sign may have holes, which causes problems for computing
vertex-offset meshes. One possible solution under investiga-
tion is to first fill the holes with EP meshes to make the mesh
simply connected and then perform quasi-circular optimiza-
tion and obtain the basis of parallel spherical meshes for com-
puting discrete normal and offset structure. After that, the
filled parts can be removed to restore the structure of the orig-
inal the holes.
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