
On Interprocess Communication

Leslie Lamport

December 25, 1985

Much of this research was performed while the author was a member of the Com-
puter Science Laboratory at SRI International, where it was sponsored by the Office
of Naval Research Project under contract number N00014-84-C-0621 and the Rome
Air Development Command Project under contract number F30602-85-C-0024.

i

Publication History

The two parts of this report will appear as separate articles in Distributed
Computing.

Copyright 1986 by Springer-Verlag. All rights reserved. Printed with per-
mission.

ii

Author’s Abstract

A formalism, not based upon atomic actions, for specifying and reasoning about
concurrent systems is defined. It is used to specify several classes of interprocess
communication mechanisms and to prove the correctness of algorithms for imple-
menting them.

Capsule Review by Andrei Broder

Concurrent systems are customarily described hierarchically, each level being in-
tended to implement the level above it. On each level certain actions are considered
atomic with respect to that level, although they decompose into a set of actions
at a lower level. Furthermore there are cases when, for efficiency purposes, their
components might be interleaved in time at a lower level with no loss of semantic
correctess, despite the fact that the atomicity specified on the higher level is not
respected. In this paper a very clean formalism is developed that allows a cohe-
sive description of the different levels and axiomatic proofs of the implementation
properties, without using the atomic action concept.

Capsule Review by Paul McJones

A common approach to dealing with concurrency is to introduce primitives allowing
the programmer to think in terms of the more familiar sequential model. For
example, database transactions and linguistic constructs for mutual exclusion such
as the monitor give a process the illusion that there is no concurrency. In contrast,
Part II of this paper presents the approach of designing and verifying algorithms
that work in the face of manifest concurrency.

Starting from some seemingly minimal assumptions about the nature of com-
munication between asynchronous processes, the author proposes a classification of
twelve partially-ordered kinds of single-writer shared registers. He provides con-
structions for implementing many of these classes from “weaker” ones, culminating
in a multi-value, single-reader, atomic register. The constructions are proved both
informally and using the formalism of Part I.

Much of the paper is of a theoretical nature. However, its ideas are worth
study by system builders. For example, its algorithms and verification techniques
could be of use in designing a “conventional” synchronization mechanism (e.g. a
semaphore) for a multiprocessor system. A more exciting possibility would be to
extend its approach to the design of a higher level concurrent algorithm such as
taking a snapshot of an online database.

iii

iv

Contents

I Basic Formalism 1

1 System Executions 2

2 Hierarchical Views 6

3 Systems 12

II Algorithms 17

4 The Nature of Asynchronous Communication 17

5 The Constructions 22

6 Register Axioms 31

7 Correctness Proofs for the Constructions 38
7.1 Proof of Constructions 1, 2, and 3 38
7.2 Proof of Construction 4 . 40
7.3 Proof of Construction 5 . 42

8 Conclusion 45

v

vi

Part I

Basic Formalism
This paper addresses what I believe to be fundamental questions in the
theory of interprocess communication. Part I develops a formal definition of
what it means to implement one system with a lower-level one and provides a
method for reasoning about concurrent systems. The definitions and axioms
introduced here are applied in Part II to algorithms that implement certain
interprocess communication mechanisms. Readers interested only in these
mechanisms and not in the formalism can skip Part I and read only Sections
4 and 5 of Part II.

To motivate the formalism, let us consider the question of atomicity.
Most treatments of concurrent processing assume the existence of atomic
operations—an atomic operation being one whose execution is performed as
an indivisible action. The term operation is used to mean a class of actions
such as depositing money in a bank account, and the term operation execu-
tion to mean one specific instance of executing such an action—for example,
depositing $100 in account number 14335 at 10:35AM on December 14, 1987.
Atomic operations must be implemented in terms of lower-level operations.
A high-level language may provide a P operation to a semaphore as an
atomic operation, but this operation must be implemented in terms of lower-
level machine-language instructions. Viewed at the machine-language level,
the semaphore operation is not atomic. Moreover, the machine-language
operations must ultimately be implemented with circuits in which opera-
tions are manifestly nonatomic—the possibility of harmful “race conditions”
shows that the setting and the testing of a flip-flop are not atomic actions.

Part II considers the problem of implementing atomic operations to a
shared register with more primitive, nonatomic operations. Here, a more
familiar example of implementing atomicity is used: concurrency control in
a database. In a database system, higher-level transactions, which may read
and modify many individual data items, are implemented with lower-level
reads and writes of single items. These lower-level read and write operations
are assumed to be atomic, and the problem is to make the higher-level
transactions atomic. It is customary to say that a semaphore operation is
atomic while a database transaction appears to be atomic, but this verbal
distinction has no fundamental significance.

In database systems, atomicity of transactions is achieved by implement-
ing a serializable execution order. The lower-level accesses performed by the

1

different transactions are scheduled so that the net effect is the same as if
the transactions had been executed in some serial order—first executing all
the lower-level accesses comprising one transaction, then executing all the
accesses of the next transaction, and so on. The transactions should not
actually be scheduled in such a serial fashion, since this would be inefficient;
it is necessary only that the effect be the same as if that were done.1

In the literature on concurrency control in databases, serializability is
usually the only correctness condition that is stated [1]. However, serial-
izability by itself does not ensure correctness. Consider a database system
in which each transaction either reads from or writes to the database, but
does not do both. Moreover, assume that the system has a finite lifetime, at
the end of which it is to be scrapped. Serializability is achieved by an im-
plementation in which reads always return the initial value of the database
entries and writes are simply not executed. This yields the same results as
a serial execution in which one first performs all the read transactions and
then all the writes. While such an implementation satisfies the requirement
of serializability, no one would consider it to be correct.

This example illustrates the need for a careful examination of what it
means for one system to implement another. It is reconsidered in Section 2,
where the additional correctness condition needed to rule out this absurd
implementation is stated.

1 System Executions

Almost all models of concurrent processes have indivisible atomic actions as
primitive elements. For example, models in which a process is represented by
a sequence or “trace” [11, 15, 16] assume that each element in the sequence
represents an indivisible action. Net models [2] and related formalisms [10,
12] assume that the firing of an individual transition is atomic. These models
are not appropriate for studying such fundamental questions as what it
means to implement an atomic operation, in which the nonatomicity of
operations must be directly addressed.

More conventional formalisms are therefore eschewed in favor of one
introduced in [7] and refined in [6], in which the primitive elements are

1In the context of databases, atomicity often denotes the additional property that a
failure cannot leave the database in a state reflecting a partially completed transaction.
In this paper, the possibility of failure is ignored, so no distinction between atomicity and
serializability is made.

2

operation executions that are not assumed to be atomic. This formalism is
described below; the reader is referred to [7] and [6] for more details.

A system execution consists of a set of operation executions, together with
certain temporal precedence relations on these operation executions. Recall
that an operation execution represents a single execution of some operation.
When all operations are assumed to be atomic, an operation execution A
can influence another operation execution B only if A precedes B—meaning
that all actions of A are completed before any action of B is begun. In
this case, one needs only a single temporal relation −→, read “precedes”, to
describe the temporal ordering among operation executions. While temporal
precedence is usually considered to be a total ordering of atomic operations,
in distributed systems it is best thought of as an irreflexive partial ordering
(see [8]).

Nonatomicity introduces the possibility that an operation execution A
can influence an operation execution B without preceding it; it is necessary
only that some action of A precede some action of B. Hence, in addition
to the precedence relation −→, one needs an additional relation ✮, read
“can affect”, where A ✮ B means that some action of A precedes some
action of B.

Definition 1 A system execution is a triple 〈S,−→, ✮〉, where S is a fi-
nite or countably infinite set whose elements are called operation executions,
and −→ and ✮ are precedence relations on S satisfying axioms A1–A5 be-
low.

To assist in understanding the axioms for the −→ and ✮ relations, it
is helpful to have a semantic model for the formalism. The model to be used
is one in which an operation execution is represented by a set of primitive
actions or events, where A −→ B means that all the events of A precede all
the events of B, and A ✮ B means that some event of A precedes some
event of B. Letting E denote the set of all events, and −→ the temporal
precedence relation among events, we get the following formal definition.

Definition 2 A model of a system execution 〈S,−→, ✮〉 consists of a
triple E,−→, µ, where E is a set, −→ is an irreflexive partial ordering on
E, and µ is a mapping that assigns to each operation execution A of S a
nonempty subset µ(A) of E, such that for every pair of operation executions
A and B of S:

A −→ B ≡ ∀a ∈ µ(A) : ∀b ∈ µ(B) : a −→ b

A ✮ B ≡ ∃a ∈ µ(A) : ∃b ∈ µ(B) : a −→ b or a = b (1)

3

A B

C

Figure 1: Three operation executions in a global-time model.

Note that the same symbol −→ denotes the “precedes” relation both
between operation executions in S and between events in E.

Other than the existence of the temporal partial-ordering relation −→,
no assumption is made about the structure of the set of events E. In par-
ticular, operation executions may be modeled as infinite sets of events. An
important class of models is obtained by letting E be the set of events in
four-dimensional spacetime, with −→ the “happens before” relation of spe-
cial relativity, where a −→ b means that it is temporally possible for event
a to causally affect event b.

Another simple and useful class of models is obtained by letting E be the
real number line and representing each operation execution A as a closed
interval.

Definition 3 A global-time model of a system execution 〈S,−→, ✮〉 is
one in which E is the set of real numbers, −→ is the ordinary < relation,
and each set µ(A) is of the form [sA, fA] with sA < fA.

Think of sA and fA as the starting and finishing times of A. In a global-
time model, A −→ B means that A finishes before B starts, and A ✮ B
means that A starts before (or at the same time as) B finishes. These
relations are illustrated by Figure 1, where operation executions A, B, and
C, represented by the three indicated intervals, satisfy: A −→ B, A −→ C,
B ✮ C, and C ✮ B. (In this and similar figures, the number line runs
from left to right, and overlapping intervals are drawn one above the other.)

To complete Definition 1, the axioms for the precedence relations −→
and ✮ of a system execution must be given. They are the following, where
A, B, C, and D denote arbitrary operation executions in S. Axiom A4 is
illustrated (in a global-time model) by Figure 2; the reader is urged to draw
similar pictures to help understand the other axioms.

A1. The relation −→ is an irreflexive partial ordering.

A2. If A −→ B then A ✮ B and B / ✮ A.

4

A B

C D

Figure 2: An illustration of Axiom A4.

A3. If A −→ B ✮ C or A ✮ B −→ C then A ✮ C.

A4. If A −→ B ✮ C −→ D then A −→ D.

A5. For any A, the set of all B such that A /−→ B is finite.

(These axioms differ from the ones in [6] because only terminating operation
executions are considered here.)

Axioms A1–A4 follow from (1), so they do not constrain the choice of a
model. Axiom A5 does not follow from (1); it restricts the class of allowed
models. Intuitively, A5 asserts that a system execution begins at some point
in time, rather than extending into the infinite past. When E is the set of
events in space-time, A5 holds for any model in which: (i) each operation
occupies a finite region of space-time, (ii) any finite region of space-time
contains only a finite number of operation executions, and (iii) the system
is not expanding faster than the speed of light.2

Most readers will find it easiest to think about system executions in
terms of a global-time model, and to interpret the relations −→ and ✮

as indicated by the example in Figure 1. Such a mental model is adequate
for most purposes. However, the reader should be aware that in a system
execution having a global-time model, for any distinct operation executions
A and B, either A −→ B or B ✮ A. (In fact, this is a necessary and
sufficient condition for a system execution to have a global-time model [5].)
However, in a system execution without a global-time model, it is possible
for neither A −→ B nor B ✮ A to hold. As a trivial counterexample, let
S consist of two elements and let the relations −→ and ✮ be empty.

While a global-time model is a valuable aid to acquiring an intuitive
understanding of a system, it is better to use more abstract reasoning when
proving properties of systems. The relations −→ and ✮ capture the es-
sential temporal properties of a system execution, and A1–A5 provide the

2A system expanding faster than the speed of light could have an infinite number of
operation executions none of which are preceded by any operation.

5

necessary tools for reasoning about these relations. It has been my experi-
ence that proofs based upon these axioms are simpler and more instructive
than ones that involve modeling operation executions as sets of events.

2 Hierarchical Views

A system can be viewed at different levels of detail, with different operation
executions at each level. Viewed at the customer’s level, a banking system
has operation executions such as deposit $1000. Viewed at the programmer’s
level, this same system executes operations such as dep amt [cust] := 1000.
The fundamental problem of system building is to implement one system
(like a banking system) as a higher-level view of another system (like a
Pascal program).

A higher-level operation consists of a set of lower-level operations—the
set of operations that implement it. Let 〈S,−→, ✮〉 be a system execution
and let H be a set whose elements, called higher-level operation executions,
are sets of operation executions from S. A model for 〈S,−→, ✮〉 represents
each operation execution in S by a set of events. This gives a representation
of each higher-level operation execution H in H as a set of events—namely,
the set of all events contained in the representation of the lower-level oper-
ation executions that comprise H. This in turn defines precedence relations
∗−→ and ∗

✮, where G ∗−→ H means that all events in (the representation
of) G precede all events in H, and G

∗
✮ H means that some event in G

precedes some event in H, for G and H in H.
To express all this formally, let E,−→, µ be a model for 〈S,−→, ✮〉,

define the mapping µ∗ on H by

µ∗(H) =
⋃

{µ(A) : A ∈ H}

and define the precedence relations ∗−→ and ∗
✮ on H by

G
∗−→ H ≡ ∀g ∈ µ∗(G) : ∀h ∈ µ∗(H) : g −→ h

G ∗
✮ H ≡ ∃g ∈ µ∗(G) : ∃h ∈ µ∗(H) : g −→ h or g = h

Using (1), it is easy to show that these precedence relations are the same
ones obtained by the following definitions:

G
∗−→ H ≡ ∀A ∈ G : ∀B ∈ H : A −→ B

G
∗

✮ H ≡ ∃A ∈ G : ∃B ∈ H : A ✮ B or A = B (2)

6

Observe that ∗−→ and ∗
✮ are expressed directly in terms of the −→ and

✮ relations on S, without reference to any model. We take (2) to be the
definition of the relations ∗−→ and ∗

✮.
For the triple 〈H, ∗−→, ∗

✮〉 to be a system execution, the relations ∗−→
and ∗

✮ must satisfy axioms A1–A5. If each element of H is assumed to
be a nonempty set of operation executions, then Axioms A1–A4 follow from
(2) and the corresponding axioms for −→ and ✮. For A5 to hold, it is
sufficient that each element of H consist of a finite number of elements of
S, and that each element of S belong to a finite number of elements of H.
Adding the natural requirement that every lower-level operation execution
be part of some higher-level one, this leads to the following definition.

Definition 4 A higher-level view of a system execution 〈S,−→, ✮〉 con-
sists of a set H such that:

H1. Each element of H is a finite, nonempty set of elements of S.

H2. Each element of S belongs to a finite, nonzero number of elements of
H.

In most cases of interest, H is a partition of S, so each element of S
belongs to exactly one element of H. However, Definition 4 allows the more
general case in which a single lower-level operation execution is viewed as
part of the implementation of more than one higher-level one.

Let us now consider what it should mean for one system to implement
another. If the system execution 〈S,−→, ✮〉 is an implementation of a
system execution 〈H, H−→, H

✮〉, then we expect H to be a higher-level view
of S—that is, each operation in H should consist of a set of operation ex-
ecutions of S satisfying H1 and H2. This describes the elements of H, but
not the precedence relations H−→ and H

✮. What should those relations be?
If we consider the operation executions in S to be the “real” ones, and the

elements of H to be fictitious groupings of the real operation executions into
abstract, higher-level ones, then the induced precedence relations ∗−→ and
∗

✮ represent the “real” temporal relations on H. These induced relations
make the higher-level view H a system execution, so they are an obvious
choice for the relations H−→ and H

✮. However, as we shall see, they may
not be the proper choice.

Let us return to the problem of implementing atomic database oper-
ations. Atomicity requires that, when viewed at the level at which the

7

G1 H1 G2 H2

Figure 3: An example with G /−→ H and H /−→ G.

operation executions are the transactions, the transactions appear to be ex-
ecuted sequentially. In terms of our formalism, the correctness condition
is that, in any system execution 〈H, H−→, H

✮〉 of the database system, all
the elements of H (the transactions) must be totally ordered by H−→. This
higher-level view of the database operations is implemented by lower-level
operations that access individual database items. The higher-level system
execution 〈H, H−→, H

✮〉 must be implemented by a lower-level one 〈S,−→,
✮〉 in which each transaction H in H is implemented by a set of lower-level

operation executions in S.
Suppose G = {G1, . . . , Gm} and H = {H1, . . . ,Hn} are elements of H,

where the Gi and Hi are operation executions in S. For G ∗−→ H to hold,
each Gi must precede (−→) each Hj, and, conversely, H

∗−→ G only if
each Hj precedes each Gi. In a situation like the one in Figure 3, neither
G

∗−→ H nor H ∗−→ G holds. (For a system with a global-time model, this
means that both G

∗
✮ H and H

∗
✮ G hold.) If we required that the

relations H−→ and H
✮ be the induced relations ∗−→ and ∗

✮, then the only
way to implement a serializable system, in which H−→ is a total ordering
of the transactions, would be to prevent the type of interleaved execution
shown in Figure 3. The only allowable system executions would be those
in which the transactions were actually executed serially—each transaction
being completed before the next one is begun.

Serial execution is, of course, too stringent a requirement because it pre-
vents the concurrent execution of different transactions. We merely want to
require that the system behave as if there were a serial execution. To show
that a given system correctly implements a serializable database system,
one specifies both the set of lower-level operation executions corresponding
to each higher-level transaction and the precedence relation H−→ that de-
scribes the “as if” order, where the transactions act as if they had occurred
in that order. This order must be consistent with the values read from the
database—each read obtaining the value written by the most recent write
of that item, where “most recent” is defined by H−→.

As was observed in the introduction, the condition that a read obtain a

8

value consistent with the ordering of the operations is not the only condition
that must be placed upon H−→. For the example in which each transaction
either reads from or writes to the database, but does not do both, we must
rule out an implementation that throws writes away and lets a read return
the initial values of the database entries—an implementation that achieves
serializability with a precedence relation H−→ in which all the read trans-
actions precede all the write transactions. Although this implementation
satisfies the requirement that every read obtain the most recently written
value, this precedence relation is absurd because a read is defined to precede
a write that may really have occurred years earlier.

Why is such a precedence relation absurd? In a real system, these
database transactions may occur deep within the computer; we never ac-
tually see them happen. What is wrong with defining the precedence rela-
tion H−→ to pretend that these operation executions happened in any order
we wish? After all, we are already pretending, contrary to fact, that the
operations occur in some serial order.

In addition to reads and writes to database items, real systems perform
externally observable operation executions such as printing on terminals.
By observing these operation executions, we can infer precedence relations
among the internal reads and writes. We need some condition on H−→ and
H

✮ to rule out precedence relations that contradict such observations.
It is shown below that these contradictions are avoided by requiring

that if one higher-level operation execution “really” precedes another, then
that precedence must appear in the “pretend” relations. Remembering that
∗−→ and ∗

✮ are the “real” precedence relations and H−→ and H
✮ are the

“pretend” ones, this leads to the following definition.

Definition 5 A system execution 〈S,−→, ✮〉 implements a system execu-
tion 〈H, H−→, H

✮〉 if H is a higher-level view of S and the following condition
holds:

H3. For any G,H ∈ H: if G ∗−→ H then G
H−→ H, where ∗−→ is defined

by (2).

One justification for this definition in terms of global-time models is
given by the following proposition, which is proved in [5]. (Recall that a
global-time model is determined by the mapping µ, since the set of events
and their ordering is fixed.)

9

µ(A) µ(C)

µ(B)

µ′(B) µ′(A) µ′(C)

Figure 4: An illustration of Proposition 1.

Proposition 1 Let 〈S,−→, ✮〉 and 〈S, ′−→, ′
✮〉 be system executions,

both of which have global-time models, such that for any A,B ∈ S: A −→ B
implies A ′−→ B. For any global-time model µ of 〈S,−→, ✮〉 there exists
a global-time model µ′ of 〈S, ′−→, ′

✮〉 such that µ′(A) ⊆ µ(A) for every A
in S.

This proposition is illustrated in Figure 4, where: (i) S = {A,B,C},
(ii) A −→ C is the only −→ relation, and (iii) B ′−→ A

′−→ C. To apply
Proposition 1 to Definition 5, substitute S for H, substitute ∗−→ and ∗

✮ for
−→ and ✮, and substitute H−→ and H

✮ for ′−→ and ′
✮. The proposition

then states that the “pretend” precedence relations are obtained from the
real ones by shrinking the time interval during which the operation execution
is considered to have occurred.

Let us return to the example of implementing a serializable database
system. The formal requirement is that any system execution 〈S,−→, ✮〉,
whose operation executions consist of reads and writes of individual database
items, must implement a system 〈H, H−→, H

✮〉, whose operations are database
transactions, such that H−→ is a total ordering of H. By Proposition 1, this
means that not only must the transactions be performed as if they had
been executed in some sequential order, but that this order must be one
that could have been obtained by executing each transaction within some
interval of time during the period when it actually was executed. This rules
out the absurd implementation described above, which implies a precedence
relation H−→ that makes writes come long after they actually occurred.

Another justification for Definition 5 is derived from the following result,
which is proved in [5]. Its statement relies upon the obvious fact that if 〈S,
−→, ✮〉 is a system execution, then 〈T ,−→, ✮〉 is also a system execution
for any subset T of S. (The symbols −→ and ✮ denote both the relations
on S and their restrictions to T . Also, in the proposition, the set T is
identified with the set of all singleton sets {A} for A ∈ T .)

10

Proposition 2 Let S ∪ T ,−→, ✮ be a system execution, where S and T
are disjoint; let 〈S,−→, ✮〉 be an implementation of a system execution
〈H, H−→, H

✮〉; and let ∗−→ and ∗
✮ be the relations defined on H∪T by (2).

Then there exist precedence relations HT−→ and HT
✮ such that:

• H ∪ T , HT−→,
HT

✮ is a system execution that is implemented by S ∪
T ,−→, ✮.

• The restrictions of HT−→ and HT
✮ to H equal H−→ and H

✮, respectively.

• The restrictions of HT−→ and HT
✮ to T are extensions of the relations

∗−→ and ∗
✮, respectively.

To illustrate the significance of this proposition for Definition 5, let 〈S,
−→, ✮〉 be a system execution of reads and writes to database items that
implements a higher-level system execution 〈H, H−→, H

✮〉 of database trans-
actions. The operation executions of S presumably occur deep inside the
computer and are not directly observable. Let T be the set of all other op-
eration executions in the system, including the externally observable ones.
Proposition 2 means that, while the “pretend” precedence relations H−→ and
H

✮ may imply new precedence relations on the operation executions in
T , these relations (HT−→ and HT

✮) are consistent with the “real” precedence
relations ∗−→ and ∗

✮ on T . Thus, pretending that the database transac-
tions occur in the order given by H−→ does not contradict any of the real,
externally observable orderings among the operations in T .

When implementing a higher-level system, one usually ignores all op-
eration executions that are not part of the implementation. For example,
when implementing a database system, one considers only the transactions
that access the database, ignoring the operation executions that initiate the
transactions and use their results. This is justified by Proposition 2, which
shows that the implementation cannot lead to any anomalous precedence
relations among the operation executions that are being ignored.

A particularly simple kind of implementation is one in which each higher-
level operation execution is implemented by a single lower-level one.

Definition 6 An implementation 〈S,−→, ✮〉 of 〈H, H−→, H
✮〉 is said to be

trivial if every element of H is a singleton set.

11

In a trivial implementation, the sets S and H are (essentially) the same;
the two system executions differ only in their precedence relations. A trivial
implementation is one that is not an implementation in the ordinary sense,
but merely involves choosing new precedence relations (“as if” temporal
relations).

3 Systems

A system execution has been defined, but not a system. Formally, a system is
just a set of system executions—a set that represents all possible executions
of the system.

Definition 7 A system is a set of system executions.

The usual method of describing a system is with a program written in
some programming language. Each execution of such a program describes
a system execution, and the program represents the system consisting of
the set of all such executions. When considering communication and syn-
chronization properties of concurrent systems, the only operation executions
that are of interest are ones that involve interprocess communication—for
example, the operations of sending a message or reading a shared variable.
Internal “calculation” steps can be ignored. If x, y, and z are shared vari-
ables and a is local to the process in question, then an execution of the
statement x := y + a ∗ z includes three operation executions of interest: a
read of y, a read of z, and a write of x. The actions of reading a, computing
the product, and computing the sum are independent of the actions of other
processes and could be considered to be either separate operation execu-
tions or part of the operation that writes the new value of x. For analyzing
the interaction among processes, what is significant is that each of the two
reads precedes (−→) the write, and that no precedence relation is assumed
between the two reads (assuming that the programming language does not
specify an evaluation order within expressions).

A formal semantics for a programming language can be given by defining,
for each syntactically correct program, the set of all possible executions. This
is done by recursively defining a succession of lower and lower higher-level
views, in which each operation execution represents a single execution of
a syntactic program unit.3 At the highest-level view, a system execution

3For nonterminating programs, the formalism must be extended to allow nonterminat-
ing higher-level operation executions, each one consisting of an infinite set of lower-level

12

consists of a single operation execution that represents an execution of the
entire program. A view in which an execution of the statement S;T is a
single operation execution is refined into one in which an execution consists
of an execution of S followed by (−→) an execution of T .4 While this kind
of formal semantics may be useful in studying subtle programming language
issues, it is unnecessary for the simple language constructs generally used in
describing synchronization algorithms like the ones in Part II, so these ideas
will just be employed informally.

Having defined what a system is, the next step is to define what it means
for a system S to implement a higher-level systemH. The higher-level system
H can be regarded as a specification of the lower-level one S, so we must
decide what it should mean for a system to meet a specification.

The system executions of S involve lower-level concepts such as program
variables; those of H involve higher-level concepts such as transactions. The
first thing we need is some way of interpreting a “concrete” system execution
〈S,−→, ✮〉 of the “real” implementation S as an “abstract” execution of
the “imaginary” high-level system H. Thus, there must be some mapping
ι that assigns to any system execution 〈S,−→, ✮〉 of S a higher-level sys-
tem execution ι(〈S,−→, ✮〉) that it implements. The implementation S,
which is a set of system executions, yields a set ι(S) of higher-level system
executions. What should be the relation between ι(S) and H?

There are two distinct approaches to specification, which may be called
the prescriptive and restrictive approaches. The prescriptive approach is
generally employed by methods in which a system is specified with a high-
level program, as in [10] and [12]. An implementation must be equivalent to
the specification in the sense that it exhibits all the same possible behaviors
as the specification. In the prescriptive approach, one requires that every
possible execution of the specification H be represented by some execution
of S, so ι(S) must equal H.

The restrictive approach is employed primarily by axiomatic methods,
in which a system is specified by stating the properties it must satisfy. Any
implementation that satisfies those properties is acceptable; it is not neces-
sary for the implementation to allow all possible behaviors that satisfy the
properties. If H is the set of all system executions satisfying the required
properties, then the restrictive approach requires only that every execution

operation executions.
4In the general case, we must also allow the possibility that an execution of S; T consists

of a nonterminating execution of S.

13

of S represent some execution of H, so ι(S) must be contained in H.
To illustrate the difference between the two approaches, consider the

problem of implementing a program containing the statement x := y+ a ∗ z
with a lower-level machine-language program. The statement does not spec-
ify in which order y and z are to be read, so H should contain executions in
which y is read before z, executions in which z is read before y, as well as
ones in which they are read concurrently. With the prescriptive approach,
a correct implementation would have to allow all of these possibilities, so a
machine-language program that always reads y first then z would not be a
correct implementation. In the restrictive approach, this is a perfectly ac-
ceptable implementation because it exhibits one of the allowed possibilities.

The usual reason for not specifying the order of evaluation is to allow
the compiler to choose any convenient order, not to require that it produce
nondeterministic object code. I therefore find the restrictive approach to be
the more natural and adopt it in the following definition.

Definition 8 The system S implements a system H if there is a mapping
ι : S �→ H such that, for every system execution 〈S,−→, ✮〉 in S, 〈S,−→,

✮〉 implements ι(〈S,−→, ✮〉).

In taking the restrictive approach, one faces the question of how to spec-
ify that the system must actually do anything. The specification of a banking
system must allow a possible system execution in which no customers hap-
pen to use an automatic teller machine on a particular afternoon, and it
must include the possibility that a customer will enter an invalid request.
How can we rule out an implementation in which the machine simply ignores
all customer requests during an afternoon, or interprets any request as an
invalid one?

The answer lies in the concept of an interface specification, discussed in
[9]. The specification must explicitly describe how certain interface opera-
tions are to be implemented; their implementation is not left to the imple-
mentor. The interface specification for the bank includes a description of
what sequences of keystrokes at the teller machine constitute valid requests,
and the set of system executions only includes ones in which every valid re-
quest is serviced. What it means for someone to use the machine is part of
the interface specification, so the possibility of no one using the machine on
some afternoon does not allow the implementation to ignore someone who
does use it.

Part II considers only the internal operations that effect communication
between processes within the system, not the interface operations that effect

14

communication between the system and its environment. Therefore, the
interface specification is not considered further. The reader is referred to [9]
for a discussion of this subject.

15

16

Part II

Algorithms
Part I describes a formalism for specifying and reasoning about concurrent
systems. Here in Part II, communication between asynchronous processes in
a concurrent system is studied. The next section explains why the problem
of achieving asynchronous interprocess communication may be viewed as
one of implementing shared registers, and the following section describes
algorithms for doing this. These two sections are informal, and may be read
without having read the formalism of Part I. The concepts introduced in
Section 4 are formally defined in Section 6, and formal correctness proofs of
the algorithms of Section 5 are given in Section 7. These latter two sections
assume knowledge of the material in Part I.

4 The Nature of Asynchronous Communication

All communication ultimately involves a communication medium whose
state is changed by the sender and observed by the receiver. A sending
processor changes the voltage on a wire and a receiving processor observes
the voltage change; a speaker changes the vibrational state of the air and a
listener senses this change.

There are two kinds of communication acts: transient and persistent. In
a transient communication act, the medium’s state is changed only for the
duration of the act, immediately afterwards reverting to its “normal” state.
A message sent on an Ethernet modifies the transmission medium’s state
only while the message is in transit; the altered state of the air lasts only
while the speaker is talking. In a persistent communication act, the state
change remains after the sender has finished its communication. Setting a
voltage level on a wire, writing on a blackboard, and raising a flag on a
flagpole are all examples of persistent communication.

Transient communication is possible only if the receiver is observing the
communication medium while the sender is modifying it. This implies an a
priori synchronization—the receiver must be waiting for the communication
to take place. Communication between truly asynchronous processes must
be persistent, the sender changing the state of the medium and the receiver
able to sense that change at a later time.

At a low level, message passing is often considered to be a form of tran-

17

sient communication between asynchronous processes. However, a closer
examination of asynchronous message passing reveals that it involves a per-
sistent communication. Messages are placed in a buffer that is periodically
tested by the receiver. Viewed at a low level, message passing is typically
accomplished by putting a message in a buffer and setting an interrupt bit
that is tested on every machine instruction. The receiving process actually
consists of two asynchronous subprocesses: a main process that is usually
thought of as the receiver, and an input process that continuously monitors
the communication medium and transfers messages from the medium to the
buffer. The input process is synchronized with the sender (it is a “slave”
process) and communicates asynchronously with the main process, using the
buffer as a medium for persistent communication.

The subject of this paper is asynchronous interprocess communication,
so only persistent communication is considered. Moreover, attention is re-
stricted to unidirectional communication, in which only a single process can
modify the state of the medium. (With this restriction, two-way commu-
nication requires at least two separate communication media, one modified
by each process.) However, multiple receivers will be considered. Also, only
discrete systems, in which the medium has a finite number of distinguishable
states, are considered. A receiver is assumed always to obtain one of these
discrete values. The sender can therefore set the medium to one of a fixed
number of persistent states, and the receiver(s) can observe the medium’s
state.

This form of persistent communication is more commonly known as a
shared register, where the sender and receiver are called the writer and
reader, respectively, and the state of the communication medium is known
as the value of the register. These terms are used in the rest of this paper,
which therefore considers finite-valued registers with a single writer and one
or more readers.

In assuming a single writer, the possibility of concurrent writes (to the
same register) is ruled out. Since a reader only senses the value of the
register, there is no reason why a read operation must interfere with another
read or write operation. (While reads do interfere with other operations
in some forms of memory, such as magnetic core, this interference is an
idiosyncrasy of the particular technology rather than an inherent property
of reading.) A read is therefore assumed not to affect any other read or any
write. However, it is not clear what effect a concurrent write should have
on a read.

In concurrent programming, one traditionally assumes that a writer has

18

exclusive access to shared data, making concurrent reading and writing im-
possible. This assumption is enforced either by requiring the programming
language to provide the necessary exclusive access, or by implementing the
exclusion with a “readers-writers” protocol [3]. Such an approach requires
that a reader wait while a writer is accessing the register, and vice versa.
Moreover, any method for achieving such exclusive access, whether imple-
mented by the programmer or the compiler, requires a lower-level shared
register. At some level, the problem of concurrent access to a shared regis-
ter must be faced. It is this problem that is addressed by this paper; any
approach that requires one process to wait for another is eschewed.

Asynchronous concurrent access to shared registers is usually considered
only at the hardware level, so it is at this level that the methods developed
here could have some direct application. However, concurrent access to
shared data also occurs at higher levels of abstraction. One cannot allow
any single process exclusive access to the entire Social Security system’s
database. While algorithms for implementing a single register cannot be
applied to such a database, I hope that insight obtained from studying these
algorithms will eventually lead to new methods for higher-level data sharing.
Nevertheless, when reading this paper, it is best to think of a register as a
low-level component, probably implemented in hardware.

Hardware implementations of asynchronous communication often make
assumptions about the relative speeds of the communicating processes. Such
assumptions can lead to simplifications. For example, the problem of con-
structing an atomic register, discussed below, is shown to be easily solved
by assuming that two successive reads of a register cannot be concurrent
with a single write. If one knows how long a write can take, a delay can be
added between successive reads to ensure that this assumption holds. No
such assumptions are made here about process speeds. The results therefore
apply even to communication between processes of vastly differing speeds.

Writes cannot overlap (be concurrent with) one another because there
is only one writer, and overlapping reads are assumed not to affect one
another, so the only case left to consider is a read overlapping one or more
writes. Three possible assumptions about what can happen in this case are
considered.

The weakest possibility is a safe register, in which it is assumed only
that a read not concurrent with any write obtains the correct value—that
is, the most recently written one. No assumption is made about the value
obtained by a read that overlaps a write, except that it must obtain one
of the possible values of the register. Thus, if a safe register may assume

19

read1 read2 read3

write 5 write 6

Figure 5: Two writes and three reads.

the values 1, 2, and 3, then any read must obtain one of these three values.
A read that overlaps a write operation that changes the value from 1 to 2
could obtain any of these values, including 3.

The next stronger possibility is a regular register, which is safe (a read
not concurrent with a write gets the correct value) and in which a read that
overlaps a write obtains either the old or new value. For example, a read
that overlaps a write that changes the value from 1 to 3 may obtain either
1 or 3, but not 2. More generally, a read that overlaps any series of writes
obtains either the value before the first of the writes or one of the values
being written.

The final possibility is an atomic register, which is safe and in which
reads and writes behave as if they occur in some definite order. In other
words, for any execution of the system, there is some way of totally ordering
the reads and writes so that the values returned by the reads are the same
as if the operations had been performed in that order, with no overlapping.
(The precise formal condition was developed in Section 2 of Part I.)

The difference between the three kinds of registers is illustrated by Fig-
ure 5, which shows five operations to a register that may assume the three
values 5, 6, and 27. The duration of each operation is indicated by a line
segment, where time runs from left to right. A write of the value 5 precedes
all other operations, including a subsequent write of 6. There are three
successive reads, denoted read1, read2, and read3.

For a safe register, read1 obtains the value 5, since a read that does not
overlap a write must obtain the most recently written value. However, the
other two reads, which overlap the second write, may obtain 5, 6, or 27.

With a regular register, read1 must again obtain the value 5, since a
regular register is also safe. Each of the other two reads may obtain either
a 5 or a 6, but not a 27. In particular, read2 could obtain a 6 and read3 a 5.

With an atomic register, read1 must also obtain the value 5 and the
other two reads may obtain the following pairs of values:

20

read2 read3

5 5
5 6
6 6

For example, the pair of values 5,6 represents a situation in which the op-
erations act as if the first read preceded the write of 6 and the second read
followed it. However, unlike a regular register, an atomic register does not
admit the possibility of read2 obtaining the value 6 and read3 obtaining 5.
In general, if two successive reads overlap the same write, then a regular
register allows the first read to obtain the new value and the second read
the old value, while this is forbidden with an atomic register. In fact, Propo-
sition 5 of Section 6 essentially states that a regular register is atomic if two
successive reads that overlap the same write cannot obtain the new then
the old value. Thus, a regular register is automatically an atomic one if two
successive reads cannot overlap the same write.

These are the only three general classes of register that I have been able
to think of. Each class merits study. Safeness5 seems to be the weakest re-
quirement that allows useful communication; I do not know how to achieve
any form of interprocess synchronization with a weaker assumption. Regu-
larity asserts that a read returns a “reasonable” value, and seems to be a
natural requirement. Atomicity is the most common assumption made about
shared registers, and is provided by current multiport computer memories.6

At a lower level, such as interprocess communication within a single chip,
only safe registers are provided; other classes of register must be imple-
mented using safe ones.

Any method of implementing a single-writer register can be classified by
three “coordinates” with the following values:

• safe, regular, or atomic, according to the strongest assumption that
the register satisfies.

• boolean ormultivalued, according to whether the method produces only
boolean registers or registers with any desired number of values.

5The term “safeness” is used because “safety” already has a technical meaning for
concurrent programs.

6However, the standard implementation of a multiport memory does not meet my
requirements for an asynchronous register because, if two processes concurrently access a
memory cell, one must wait for the other.

21

• single-reader or multireader, according to whether the method yields
registers with only one reader or with any desired number of readers.

This produces twelve classes of implementations, partially ordered by
“strength”—for example, a method that produces atomic, multivalued, mul-
tireader registers is stronger than one producing regular, multivalued, single-
reader registers. This paper addresses the problem of implementing a regis-
ter of one class using one or more registers of a weaker class.

The weakest class of register, and therefore the easiest to implement, is
a safe, boolean, single-reader one. This seems to be the most natural kind of
register to implement with current hardware technology, requiring only that
the writer set a voltage level either high or low and that the reader test this
level without disturbing it.7 A series of constructions of stronger registers
from weaker ones is presented that allows almost every class of register
to be constructed starting from this weakest class. The one exception is
that constructing an atomic, multireader register from any weaker one is
still an open problem. Most of the constructions are simple; the difficult
ones are Construction 4 that implements an m-reader, multivalued, regular
register using m-reader, boolean, regular registers, and Construction 5 that
implements a single-reader, multivalued, atomic register using single-reader,
multivalued, regular registers.

5 The Constructions

In this section, the algorithms for constructing different classes of registers
are described and informally justified. Rigorous correctness proofs are post-
poned until Section 7.

The algorithms are described by indicating how a write and a read are
performed. For most of them, the initial state is not indicated—it is the one
that would result from writing the initial value starting from any arbitrary
state.

The first construction implements a multireader safe or regular register
from single-reader ones. It uses the obvious method of having the writer
maintain a separate copy of the register for each reader. The for all state-
ment denotes that its body is executed once for each of the indicated values
of i; these separate executions can be done in any order or concurrently.

7This is only safe and not regular if, for example, setting a level high when it is already
high can cause a perturbation of the level.

22

Construction 1 Let v1, . . . , vm be single-reader, n-valued registers, where
each vi can be written by the same writer and read by process i, and construct
a single n-valued register v in which the operation v := µ is performed as
follows:

for all i in {1, . . . ,m} do vi := µ od

and process i reads v by reading the value of vi. If the vi are safe or regular
registers, then v is a safe or regular register, respectively.

The proof of correctness for this construction runs as follows. Any read
by process i that does not overlap a write of v does not overlap a write of
vi. If vi is safe, then this read gets the correct value, which shows that v is
safe. If a read of vi by process i overlaps a write of vi, then it overlaps the
write of the same value to v. This implies that if vi is regular, then v is also
regular.

Construction 1 does not make v an atomic register even if the vi are
atomic. If reads by two different processes i and j both overlap the same
write, it is possible for i to get the new value and j the old value even though
the read by i precedes the read by j—a possibility not allowed by an atomic
register.

The next construction is also trivial; it implements an n-bit safe register
from n single-bit ones.

Construction 2 Let v1, . . . , vn be boolean m-reader registers, each written
by the same writer and read by the same set of readers. Let v be the 2n-
valued, m-reader register in which the number with binary representation
µ1 . . . µn is written by

for all i in {1, . . . ,m} do vi := µi od

and in which the value is read by reading all the vi. If each vi is safe, then
v is safe.

This construction yields a safe register because, by definition, a read
does not overlap a write of v only if it does not overlap a write of any of the
vi, in which case it obtains the correct values. The register v is not regular
even if the vi are. A read can return any value if it overlaps a write that
changes the register’s value from 0 . . . 0 to 1 . . . 1.

The next construction shows that it is trivial to implement a boolean
regular register from a safe boolean register. In a safe register, a read that

23

overlaps a write may get any value, while in a regular register it must get
either the old or new value. However, a read of a safe boolean register
must obtain either true or false on any read, so it must return either the
old or new value if it overlaps a write that changes the value. A boolean
safe register can fail to be regular only if a read that overlaps a write that
does not change the value returns the other value—for example, writing the
value true when the current value equals true could cause an overlapping
read to obtain the value false. To prevent this possibility, one simply does
not perform a write that does not change the value.

Construction 3 Let v be an m-reader boolean register, and let x be a vari-
able internal to the writer (not a shared register) initially equal to the initial
value of v. Define v∗ to be the m-reader boolean register in which the write
operation v∗ := µ is performed as follows:

if x �= µ then v := µ;
x := µ fi

and a read of v∗ is performed by reading v. If v is safe then v∗ is regular.

There are two known algorithms for implementing a multivalued regular
register from boolean ones. The simpler one is given as Construction 4; the
second one is described later. Construction 4 employs a unary encoding, in
which the value µ is denoted by zeros in bits 0 through µ − 1 and a one
in bit µ. A reader reads the bits from left to right (0 to n) until it finds a
one. To write the value µ, the writer first sets vµ to one and then sets bits
µ − 1 through 1 to zero, writing from right to left. (While this algorithm
has never before been published, the idea of implementing shared data by
reading and writing its components in different directions was also used in
[4].8)

Construction 4 Let v1, . . . , vn be boolean, m-reader registers, and let v be
the n-valued, m-reader register in which the operation v := µ is performed
by

vµ := 1;
for i := µ− 1 step −1 until 1 do vi := 0 od

8Although the algorithms in [4] require only that the registers be regular, the assump-
tion of atomicity was added because the editor felt that nonatomicity at the level of
individual bits was too radical a concept to appear in Communications of the ACM.

24

and a read is performed by:

µ := 1;
while vµ = 0 do µ := µ+ 1 od;
return µ

If each vi is regular, then v is regular.

The correctness of this algorithm is not at all obvious. Indeed, it is not
even obvious that the while loop in the read operation does not “fall off
the end” and try to read the nonexistent register vn+1. This can’t happen
because, whenever the writer writes a zero, there is a one to the right of
it. (Since an initial value is assumed to have been written, some vi initially
equals one.) As an exercise, the reader of this paper can convince himself
that, whenever a reading process sees a one, it was written by either a
concurrent write or by the most recent preceding one, so v is regular. The
formal proof is given in Section 7.

The value of vn is only set to one, never to zero. It can therefore be
eliminated; the writer simply never writes it and the reader assumes its
value is one instead of reading it.

Even if all the vi are atomic, Construction 4 does not produce an atomic
register. To see this, suppose that the register initially has the value 3, so
v1 = v2 = 0 and v3 = 1, the writer first writes the value 1 then the value 2,
and there are two successive read operations. This can produce the following
sequence of actions:

• the first read finds v1 = 0

• the first write sets v1 := 1

• the second write sets v2 := 1

• the first read finds v2 = 1 and returns the value 2

• the second read finds v1 = 1 and returns the value 1.

In this scenario, the first read obtains a newer value (the one written by the
second write) than the second read (which obtains the one written by the
first write), even though it precedes the second read. This shows that the
register is not atomic.

Construction 4 uses n− 1 boolean regular registers to make an n-valued
one, so it is practical only for small values of n. One would like an al-
gorithm that requires O(log n) boolean registers to construct an n-valued

25

register. The second method for constructing a regular multivalued register
uses an algorithm of Peterson [14] that implements an m-reader, n-valued,
atomic register with m + 2 safe, m-reader, n-valued registers; 2m atomic,
boolean, one-reader registers; and two atomic, boolean m-reader registers.
However, there is no known algorithm for constructing the atomic, m-reader
registers required by Peterson’s algorithm from simpler ones. Nevertheless,
we can apply his algorithm to construct an n-valued, single-reader, atomic
register using three safe, single-reader, n-valued registers and four single-
reader, atomic, boolean registers. The safe registers can be implemented
with Construction 2, and the atomic boolean registers can be implemented
with Construction 5 below. Since an atomic register is regular, Construc-
tion 1 can then be used to make an m-reader, n-valued, regular register from
O(3m log n) single-reader, boolean, regular registers.

Before giving the algorithm for constructing a two-reader atomic register,
a result is proved that indicates why no trivial algorithm will work. It asserts
that there can be no algorithm in which the writer only writes and the reader
only reads; any algorithm must involve two-way communication between the
reader and the writer.

Theorem: There exists no algorithm to implement an atomic register using
a finite number of regular registers that can be written only by the writer (of
the atomic register).

Proof : We assume such an algorithm and derive a contradiction. Any al-
gorithm that uses multiple registers can be replaced by one in which these
registers are combined into a single large register. A read in the original al-
gorithm is replaced by one that reads all the combined register and ignores
the other components; a write in the original algorithm is replaced by one
that changes only the desired component of the combined register. (This
is possible because there is only a single writer.) Therefore, without loss
of generality, we can assume that there is only a single regular register v
written by the writer and read by the reader.

Let v∗ denote the atomic register that is being implemented. Since the
algorithm must work if the writer never stops writing, we may suppose that
the writer performs an infinite number of writes that change the value of
v∗. There must be some pair of values assumed by v∗, call them 0 and 1,
such that there are an infinite number of writes that change v∗’s value from
0 to 1. Since v can assume only a finite number of values (the hypothesis
states that the original algorithm has only a finite number of registers, and

26

all registers are taken to have only a finite number of possible values), there
must exist values v0, . . . , vn of v such that: (i) v0 is the final value of v after
each one of an infinite number of writes of 0 to v∗, (ii) vn is the final value
of v after each one of an infinite number of writes of 1 to v∗, and (iii) for
each i < n, the value of v is changed from vi to vi+1 during infinitely many
writes that change the value of v∗ from 0 to 1.9

A read of v∗ may involve several reads of v. However, in our quest for
a contradiction, we may restrict our attention to scenarios in which each of
those reads of v obtains the same value, so we may assume that each read
of v∗ reads v only once. Since v assumes each value vi infinitely often, it
must be possible for a sequence of n+1 consecutive reads of v to obtain the
values vn, vn−1, . . . , v0.

The read that finds v equal to vi and the subsequent read that finds v
equal to vi−1 could both have overlapped the same write of v, which could
have been a write that occurred in the process of changing v∗’s value from
0 to 1. Therefore, if the read of v∗ that finds v equal to vi returns the value
1, then the subsequent read that finds v equal to vi−1 must also return the
value 1, since both reads could be overlapping the same write and, in that
case, two successive reads of an atomic register cannot return first the new
value, then the old one.

The first read, which finds v equal to vn, must return the value 1, since
it could have occurred after the completion of a write of 1. By induction,
this implies that the last read, which found v equal to v0, must return the
value 1. However, this read could have occurred after a write of 0 and before
any subsequent write, so returning the value 1 would violate the assumption
that the register v∗ is safe. (An atomic register is a fortiori safe.) This is
the required contradiction.

.
This theorem could be expressed and proved using the formalism of Part I

and the definitions of the next section, but doing so would lead to no new
insight. The formalization of this theorem is therefore left as an exercise for
the reader who wishes to gain practice in using the formalism.

The theorem is false if no bound is placed on the number of values a
register can hold. Given a regular register v that can assume an unbounded

9If we assume that the writer has only a finite number of internal states, then we can
conclude that the precise sequence of values v0, . . . , vn is written infinitely many times
when changing the value of v∗ from 0 to 1. However, with an infinite number of internal
states, it is possible for the writer never to perform the same sequence of writes to v twice.

27

number of values, an atomic register v∗ is implemented as follows. The
writer sets v equal to a pair consisting of the value of v∗ and a sequential
version number. The reader reads v and compares the version number with
the previous one it read. If the new version number is higher, then it uses
the value it just read; if the new version number is lower, then it forgets
the value and version number it just read and uses the previously read
value. The correctness of this algorithm follows easily from Proposition 5
of Section 6. By assuming that registers hold only a bounded set of values,
such algorithms are disallowed.

Finally, we come to the algorithm for constructing a single-reader, multi-
valued, atomic register from regular ones. Let v∗ denote the atomic register
being implemented, and let the writer set this register by writing into a
shared regular register v. Suppose that some value µ of v∗ is represented
by letting v equal v0, and that to change the value of v∗ to another value
ν, the writer successively sets v to the values v1, v2, . . . , vn, where v = vn
represents v∗ = ν. The proof of the above theorem rested upon showing that
the reader is in a quandary if n successive reads return the values vn, vn−1,
. . . , v0. If the ith read returns ν then the i + 1st read must also return ν
because both reads could have overlapped the same write of v, in which case
returning µ would result in the later read returning the earlier value. The
first read must return the value ν, so the last read, which ought to return
µ, the value of ∗ denoted by v = v0, is forced to return ν.

The way out of this problem is to encode, as part of v’s value, a boolean
quantity called a color. Each value of v∗ is represented by two different
values of v—one of each color. Every time the reader reads v, it sets a
boolean register c to the color of the value it just read. When the writer
wants to write a new value of v∗, it first reads c and then makes the series
of values v1, . . . , vn it writes to v have the opposite color to c. (Thus, the
reader tries to keep c equal to the color of v, and the writer tries to keep
the color of v different from c.) It can be shown that if n ≥ 4, so at least
three intermediate values are written when changing the value of v∗, then
successive reads cannot obtain the sequence vn, . . . , v0. This enables one to
devise an algorithm in which the writer changes the value of the register from
µ to ν by first writing a series of intermediate values (µ, ν, 1, κ), (µ, ν, 2, κ),
(µ, ν, 3, κ), and then writing (ν, κ), where κ is the color. However, one can do
better, and an algorithm is developed below that uses only two intermediate
values.

When n = 3, so the writer writes the sequence v1, v2, v3, with v3 rep-
resenting the new value ν, it is possible for three successive reads R3, R2,

28

R2 R1 R0

write v1 write v2

Figure 6: Reads R2 and R1 overlapping the write of v2.

R1 to obtain the values v3, v2, and v1, respectively. However, it will be
shown that this can happen only if the two reads R2 and R1 both overlap
a single write of v2. As indicated by Figure 6, this implies that a fourth
read R0 cannot overlap the write of the value v1 that was obtained by R1.
Therefore, if the fourth read R0 obtains v0, the reader can return the value
µ represented by v0 with no fear of the pair R1, R0 returning a forbidden
“new-old” sequence.

The following construction implements an atomic register v∗ using two
regular registers v (written by the writer) and c (written by the reader). For
clarity, it is presented in a form in which v can assume more values than
are necessary; the number of different values that v really needs is discussed
afterwards. To change the value of v∗ from µ to ν, the writer first sets nc
to be different from c, then writes the following sequence of values to v:
(µ, ν, 1, nc), (µ, ν, 2, nc), (µ, ν, 3, nc). Thus, v = (µ, ν, 3, κ) denotes v∗ = ν
for any values of µ and κ.

The reader reads v and sets c equal to its color, but what value of v∗ does
it return? Suppose the reader obtains the value (µ, ν, i, κ) when reading v.
If i = 3, then to guarantee safeness, the reader must return ν. If i < 3, then
regularity requires only that the read return either µ or ν. The basic idea
is for the reader to return µ except when this might allow the possibility
that two successive reads overlapping the same write return first the new
then the old value. For example, this is the case if the preceding read had
obtained the value (µ, ν, i+ 1, κ) and returned the value ν. To simplify the
algorithm, the reader bases its decision of which value to return only upon
the values of i and κ obtained by this and the preceding read, not upon the
values of µ and ν obtained by the preceding read.

The following notation is used in describing the algorithm: for ξ =
(µ, ν, i, κ), let old(ξ) = µ, new(ξ) = ν, num(ξ) = i, and col(ξ) = κ. In
the algorithm, the variable v is written by the writer and read by both
the reader and the writer. A two-reader register is not needed, since the
writer can maintain a local variable containing the value that it last wrote
into v. (This is just Construction 1 with m = 2 and the writer being the

29

second reader.) Such a local variable would complicate the description, so
it is omitted. The variables nc, µ, rv, rv′, and nuret are local (not shared
registers); nuret is true if the reader returned the “ν value” on the preceding
read. The proof of correctness of this construction is given in Section 7.

Construction 5 Let w and r be processes, let V∗ be a finite set, let v be a
regular register with values in V∗ × V∗ × {1, 2, 3} × {true , false} that can be
written by w and read by r, with num(v) initially equal to 3, and let c be a
regular boolean register that can be written by r and read by w. Define the
register v∗ with values in V∗, written by w and read by r, as follows. The
write v∗ := ν is performed by

nc := ¬c;
µ := old(v);
for i := 1 until 3 do v := (µ, ν, i, nc)

and the read operation is performed by the following algorithm, where nuret
is initially false:

rv′ := rv;
rv := v;
c := col(rv);
if num(rv)=3

then nuret := true;
return new(rv)

else if nuret ∧ col(rv) = col(rv′) ∧ num(rv) ≥ num(rv′)− 1
then return new(rv)
else nuret := false;

return old(rv)
fi fi

Then v∗ is an atomic register.

If a read R∗
1 of v

∗ obtains the value (µ, ν, 1, κ) for v and returns ν as the
value of v∗, then there must have been two previous reads R∗

3 and R∗
2 that

obtained the values (. . . , 3, κ) and (. . . , 2, κ), respectively, for v such that
any reads coming between R∗

3 and R∗
1 obtained a value (. . . , κ). It will be

shown in the correctness proof of the construction that this can happen only
if R∗

2 obtained the value (µ, ν, 2, κ). This means that the read R
∗
1 can simply

return the same value returned by R∗
2. Hence, if the reader remembers the

30

last value returned by a read that found num(rv) = 2, then the ν component
is redundant in values of v of the form (µ, ν, 1, κ).

When num(rv) = 3, the reader always returns new(rv). Hence, the µ
component is redundant in values of v of the form (µ, ν, 3, κ). Since the
writer can simply do nothing if the value it is writing is the same as the
current value, there is no need for v to assume values in which µ = ν.

From these observations, it follows that v need assume only values of the
following forms, with µ �= ν: (µ, 1, κ), (µ, ν, 2, κ), and (ν, 3, κ). If there are n
possible values for µ and ν, then there are 2n(n+2) such values. Therefore,
Construction 5 can be modified to implement an n-valued atomic register v∗

with a 2n(n+2)-valued regular register v written by the writer and read by
the reader and a boolean regular register c written by the reader and read
by the writer.

6 Register Axioms

The formalism described in Part I applies to any system execution. For
system executions containing reads and writes to registers, the general ax-
ioms A1–A5 of Part I must be augmented by axioms for these operation
executions. They include axioms that provide the formal statements of the
properties of safe, regular, and atomic registers.

Axioms A1–A5 do not require that there be any precedence relations
among operation executions. However, some precedence relations must be
assumed among operations to the same register. Implicit in our assumption
that a register has only a single writer is the assumption that all the writes
to a register are totally ordered. We let V [1], V [2], . . . denote the sequence
of write operations to the register v, where V [1] −→ V [2] −→ · · · and let v[i]

denote the value written by V [i]. (There may be a finite or infinite number
of write operations V [i].)

A register v is assumed to have some initial value v[0]. It is convenient
to assume that this value is written by a write V [0] that precedes (−→) all
other reads and writes of v. Eliminating this assumption changes none of
the results, but it complicates the reasoning because a read that precedes all
writes has to be treated as a separate case. These assumptions are expressed
formally by the following axiom.

B0. The set of write operation executions to a register v consists of the
(finite or infinite) set {V [0], V [1], . . . } where V [0] −→ V [1] −→ · · · and,

31

R

. . .
V [5] V [6] V [7] V [8] V [9]

Figure 7: A read that sees v[5,8].

for any read R of v, V [0] −→ R. The value written by V [i] is denoted
v[i].

Communication implies causal connection; for processes to communi-
cate through operations to a register, there must be some causality (✮)
relations between reads and writes of the register. The following axiom is
therefore assumed; the reader is referred to [6] (where it is labeled C3) for
its justification.

B1. For any read R and writeW to the same register, R ✮ W orW ✮

R (or both).

Note that B1 holds for any system execution that has a global-time model
because, for any operation executions A and B in such a system execution,
either A −→ B or B ✮ A.

Each register has a finite set of possible values—for example, a boolean-
valued register has the possible values true and false. A read is assumed to
obtain one of these values, whether or not it overlaps a write.

B2. A read of a register obtains one of the (finite collection of) values that
may be written in the register.

Thus, a read of a boolean register cannot obtain a nonsense value like “trlse”.
Axiom B2 does not assert that the value obtained by a read was ever actually
written in the register, so it does not imply safeness.

Let R be a read of register v, and let

IR
def= {V [k] : R / ✮ V [k]}

JR
def= {V [k] : V [k] ✮ R}

In the example of Figure 7, IR = {V [0], . . . , V [5]} and JR = {V [0], . . . , V [8]}.
As this example shows, in system executions with a global-time model, IR
is the set of writes that precede (−→) R and the writes in JR are the ones
that could causally affect R. The difference JR − IR of these two sets is the

32

set of writes that are concurrent with (overlap) R. If we think of the register
as containing “traces” of both the old and new values during a write, then a
read R can see traces of the values written by writes in JR − IR and by the
last write in IR. In Figure 7, R can see traces of the values v[5] through v[8].
(The value v[5] is present during the write V [6], which is overlapped by R.)
All traces of earlier writes vanish with the completion of the last write in
IR, and R sees no value written after the last write in JR. This suggests the
following formal definition, where “sees v[i,j]” is an abbreviation for “sees
traces of v[i] through v[j]”.

Definition 9 A read R of register v is said to see v[i,j] where:

i
def= max{k : R / ✮ V [k]}

j
def= max{k : V [k] ✮ R}

The informal discussion that led to this definition was based upon a
global-time model. When the existence of a global-time model is not as-
sumed, IR not only contains all the writes that precede R, but it may con-
tain later writes as well. The set JR consists of all writes that could causally
affect R.

For Definition 9 to make sense, it is necessary that the sets whose maxima
are taken—or, equivalently, the sets IR and JR—be finite and nonempty.
They are nonempty because, by A2 and the assumption that V [0] precedes
all reads, both IR and JR contain V [0]; and Axioms A5 and A2 imply that
they are finite. Furthermore, B1 implies that IR ⊆ JR, so i ≤ j.

The formal definitions of safe, regular, and live registers can now be
given. A safe register has been informally defined to be one that obtains
the correct value if it is not concurrent with any write. A read that is not
concurrent with a write is one that sees traces of only a single write, which
leads to the following definition:

B3. (safe) A read that sees v[i,i] obtains the value v[i].

A regular register is one for which a read obtains a value that it “could
have” seen—that is, a value it has seen a trace of.

B4. (regular) A read that sees v[i,j] obtains a value v[k] for some k with
i ≤ k ≤ j.

An atomic register satisfies the additional requirement that a read is never
concurrent with any write.

33

B5. (atomic) If a read sees v[i,j] then i = j.

A safe register satisfies B0–B3, a regular register satisfies B0–B4 (note that
B4 implies B3), and an atomic register satisfies B0–B5.

Observe that in B3–B5, the conditions placed upon the value obtained
by a read R of register v depend only upon precedence relations between R
and writes of v. No other operation executions affect R. In particular, a
read is not influenced by other reads.

The following two propositions state some useful properties that are sim-
ple consequences of Definition 9. In Proposition 3, the notation is introduced
that v[i,j] denotes a read that sees the value v[i,j], so part (a) is an abbrevi-
ation for: “If R is a read that sees v[i,j] and R −→ V [k], then” (Recall
that V [k] is the kth write of v.)

Proposition 3 (a) If v[i,j] −→ V [k] then j < k.

(b) If V [k] −→ v[i,j] then k ≤ i.

(c) If v[i,j] −→ v[i′,j′] then j ≤ i′ + 1.

Proof : Parts (a) and (b) are immediate consequences of Definition 9. To
prove part (c), observe first that Definition 9 also implies that V [j] ✮ v[i,j].
Part (c) is immediate if j = 0. If j > 0, then V [j−1] −→ V [j]. Combining
these two relations with the hypothesis gives

V [j−1] −→ V [j] ✮ v[i,j] −→ v[i′,j′]

Axiom A4 implies that V [j−1] −→ v[i′,j′], which, by A2, implies v[i′,j′] / ✮

V [j−1]. Definition 9 then implies that j − 1 ≤ i′.

Proposition 4 If R is a read that sees v[i,j], then

(a) k ≤ j if and only if V [k] ✮ R.

(b) i ≤ k if and only if R ✮ V [k+1].

Proof : To prove part (a), observe that it follows immediately from Defini-
tion 9 that V [k] ✮ R implies k ≤ j. To prove the converse, assume k ≤ j.
Since V [j] ✮ R, the desired conclusion, V [k] ✮ R, is immediate if k = j.
If k < j, then V [k] −→ V [j], and the result follows from A3.

34

For part (b), Definition 9 implies that if i < k′ then R ✮ V [k′]. Letting
k′ = k + 1, this shows that if i ≤ k then R ✮ V [k+1]. Conversely, suppose
R ✮ V [k+1]. By Definition 9, this implies k + 1 �= i. If k + 1 < i, then
V [k+1] −→ V [i], so A3 would imply R ✮ V [i], contrary to Definition 9.
Hence, we must have i < k+1, so i ≤ k, completing the proof of part (b).

Atomicity is usually taken to mean that all reads and writes are totally
ordered in time. With B5, atomicity is defined by the requirement that each
individual read is totally ordered with respect to the writes, but it leaves the
possibility that two reads may overlap. It can be shown that, given a system
execution for an atomic register, the partial ordering −→ can be completed
to a total ordering of reads and writes without violating conditions B1–B5.
Thus, a system containing an atomic register trivially implements one in
which all reads and writes are sequentially ordered. (Recall the definition of
a trivial implementation in Part I.)

The following proposition is used in the formal correctness proof of Con-
struction 5.

Proposition 5 Let 〈S,−→, ✮〉 be a system execution containing reads and
writes to a regular register v. If there exists an integer-valued function φ on
the set of reads such that:

1. If R sees v[i,j], then i ≤ φ(R) ≤ j.

2. A read R returns the value v[φ(R)].

3. If R −→ R′ then φ(R) ≤ φ(R′).

then 〈S,−→, ✮〉 trivially implements a system execution in which v is an
atomic register.

Proof : Proposition 2 of Part I, with the set of reads and writes of v substi-
tuted for S and with the set of all other operations in S substituted for T ,
shows that it suffices to prove the proposition under the assumption that S
consists entirely of the reads and writes of v.

Let 1−→ be the relation on S that is the same as −→ except between
reads and writes of v, and, for any read R and write V [k] of v: V [k] 1−→ R

if k ≤ φ(R), and R
1−→ V [k] if k > φ(R). Let R be a read that sees v[i,j].

If V [k] −→ R, then part (b) of Proposition 3 implies that k ≤ i, so, by
property 1 of φ, k ≤ φ(R). By definition of 1−→, this implies V [k] 1−→ R.

35

Similarly, part (a) of Proposition 3 implies that if R −→ V [k] then R
1−→

V [k]. Hence, 1−→ is an extension of −→.
By B0, the relation 1−→ is a total ordering on writes, and by definition

it totally orders each read with respect to the writes. The next step is to
extend 1−→ to a total ordering on S, which requires extending it to a total
ordering on the set of reads. The restriction of 1−→ to the set of reads is
just −→, which is an irreflexive partial ordering. By property 3 of φ, we
can therefore complete 1−→ to a total ordering 2−→ of the reads, such that
if φ(R) < φ(R′) then R

2−→ R′.
Let 3−→ be the union of 1−→ and 2−→. It is clear that for any read and/or

write operation executions A and B, either A 3−→ B or B 3−→ A. To show
that 3−→ is a total ordering—meaning that it is a complete partial ordering,
where a partial ordering is transitively closed and irreflexive—it is necessary
to show that it is acyclic. Since the restriction of 1−→ to the writes is a total
ordering and 2−→ is a total ordering on the set of reads that extends 1−→,
any cycle of 3−→ must be of the form

W1
1−→ R1

2−→ · · · 2−→ Rn
1−→ W2

1−→ Rn+1
2−→ · · · 1−→ W1

where theWi are writes and the Rj are reads. But such a cycle is impossible
because of the following three observations, where R is any read, the first
two coming from the definition of 1−→ and the second from the definition of

2−→:

(a) V [k] 1−→ R implies k ≤ φ(R)

(b) R 1−→ V [k] implies φ(R) < k

(c) R
2−→ R′ implies φ(R) ≤ φ(R′)

Thus, 3−→ is a total ordering of S that extends −→. Letting 3
✮ equal

3−→ then makes 〈S, 3−→, 3
✮〉 a system execution. (Axioms A1–A4 follow

easily from the fact that 3−→ is a total ordering, and A5 follows from the
fact that 3−→ extends −→, for which A5 holds.) Thus, 〈S,−→, ✮〉 trivially
implements 〈S, 3−→, 3

✮〉. To complete the proof of the proposition, it suffices
to show that 〈S, 3−→, 3

✮〉 satisfies B0–B5.
Property B0 is trivial, since it holds for −→ and 3−→ is the same as

−→ on the set of writes. Property B1 is also trivial, since 3−→ is a total

36

V [0] V [1] V [2]

R1 R2 R3
Reads:

Writes:

Figure 8: An interesting collection of reads and writes.

ordering. Property B2 follows from the corresponding property for 〈S,−→,
✮〉. To prove the remaining properties, observe that the definition of

1−→ implies that, in the system execution 〈S, 3−→, 3
✮〉, any read R sees

v[φ(R),φ(R)]. Properties B3–B5 then follow immediately from the assumption
that a read R obtains the value v[φ(R)].

It was observed above that a regular register can fail to be atomic because
two successive reads that overlap the same write could return the new then
the old value. Intuitively, Proposition 5 shows that this is the only way a
regular register can fail to be atomic. To see this, observe that a function
φ satisfying properties 1 and 2 of the proposition exists if and only if v is
regular. The third property states that two consecutive reads do not obtain
out-of-order values.

The exact wording of the proposition is important. One might be tempt-
ed to replace the hypothesis with the weaker requirement that v be regular
and the following hold:

3′ If v[i,j] −→ v[i′,j′] then there exist k and k′ with i ≤ k ≤ j and
i′ ≤ k′ ≤ j′ such that v[i,j] returns the value v[k] and v[i′,j′] returns the
value v[k′].

This condition also asserts the same intuitive requirement that two consec-
utive reads obtain correctly-ordered values, but it does not imply atomicity.
As a counterexample, let v[0] = v[2] = 0 and v[1] = 1, let R1, R2, R3 be the
three reads shown in Figure 8, and suppose that R1 and R3 return the value
1 while R2 returns the value 0. (Since each of the reads overlaps a write that
changes the value, they all see traces of both values and could return either
of them.) The reader (of this paper) can show that this register is regular,
but no such φ can be constructed; there is no way to interpret these reads
and writes as belonging to an atomic register while maintaining the given
orderings among the writes and among the reads.

Let us now consider what happens if a global-time model exists. An
atomic register is one in which reads and writes do not overlap. Both reads

37

and writes can then be shrunk to a point—that is, reduced to arbitrarily
small time intervals within the interval in which they actually occur. For a
regular register, it is shown in [5] that reads may be shrunk to a point, so
each read overlaps at most one write. However, for a regular register that is
not atomic, not all writes can be shrunk to a point.

If two reads cannot overlap the same write, then v[i,j] −→ v[i′,j′] implies
j ≤ i′. This implies that any φ satisfying conditions 1 and 2 of Proposition 5
also satisfies condition 3. But such a φ exists if v is regular, so any regular
register trivially implements an atomic one if two reads cannot overlap a
single write.

7 Correctness Proofs for the Constructions

7.1 Proof of Constructions 1, 2, and 3

These constructions are all simple, and the correctness proofs are essentially
trivial. Formal proofs add no further insight into the constructions, but
they do illustrate how the formalism of Part I and the register axioms of the
preceding section are applied to actual algorithms. Therefore all the formal
details in the proof of Construction 1 are indicated, while the formal proofs
for the other two constructions are just briefly sketched.

Recall that in Construction 1, the m-reader register v is implemented
by the m single-reader registers vi. Formally, this construction defines a
system, denoted by S, that is the set of all system executions consisting of
reads and writes of the vi such that the only operations to these registers are
the ones indicated by the readers’ and writer’s programs. Thus, S contains
all system executions 〈S,−→, ✮〉 such that:

• S consists of reads and writes of the registers vi.

• Each vi is written by the same writer and is read only by the ith reader.

• For any i and j: if the write V [k]
i occurs, then the write V [k]

j also occurs

and V
[k−1]
i −→ V

[k]
j .

The third condition expresses the formal semantics of the writer’s algorithm,
asserting that a write of v is done by writing all the vi, and that a write of
v is completed before the next one is begun.

To say that the vi are safe or regular means that the system S is further
restricted to contain only system executions that satisfy B0–B3 or B0–B4,
when each vi is substituted for v in those conditions.

38

According to Definition 8 of Part I, showing that this construction im-
plements a register v requires constructing a mapping ι from S to the system
H, the latter system consisting of the set of all system executions formed by
reads and writes to an m-reader register v. To say that v is safe or regular
means that H contains only system executions satisfying B0–B3 or B0–B4.

In giving the readers’ and writer’s algorithms, the construction implies
that, for each system execution 〈S,−→, ✮〉 of S, the set ι(S) of operation
executions of ι(〈S,−→, ✮〉) is the higher-level view of 〈S,−→, ✮〉 consist-
ing of all writes V [k] of the form {V [k]

1 , . . . , V
[k]
m }, for V [k]

i ∈ S, and all reads
of the form {Ri}, where Ri ∈ S is a read of vi. (The write V [k] exists in
ι(S) if and only if some, and hence all, V [k]

i exist.) Conditions H1 and H2 of
Definition 4 in Part I are obviously satisfied, so this is indeed a higher-level
view. To complete the mapping ι, we must define the precedence relations
H−→ and H

✮ so that ι(〈S,−→, ✮〉) is defined to be 〈ι(S), H−→, H
✮〉. Proving

the correctness of the construction means showing that:

1. 〈ι(S), H−→, H
✮〉 is a system execution. This requires proving that A1–

A5 are satisfied.

2. 〈S,−→, ✮〉 implements 〈ι(S), H−→, H
✮〉. This requires proving that

H1–H3 are satisfied.

3. 〈ι(S), H−→, H
✮〉 is in H. This requires proving that B0–B3 or B0–B4

are satisfied.

The precedence relations on ι(S) are defined to be the “real” ones, with
G

H−→ H if and only if G really precedes H. Formally, this means that we
let H−→ and H

✮ be the induced relations ∗−→ and ∗
✮, defined by equations

(2) in Section 2 of Part I. It was pointed out in that section that the induced
precedence relations make any higher-level view a system execution, so 1 is
satisfied. It was already observed that H1 and H2, which are independent of
the choice of precedence relations, are satisfied, and H3 is trivially satisfied
by the induced precedence relations, so 2 holds. Therefore, it suffices to
show that, if B0–B3 or B0–B4 are satisfied for reads and writes of each of
the registers vi in 〈S,−→, ✮〉, then they are also satisfied by the register v
of 〈ι(S), H−→, H

✮〉.
Properties B0 and B1 for 〈ι(S), ∗−→, ∗

✮〉 follow easily from equations (2)
of Part I and the corresponding property for 〈S,−→, ✮〉. Property B2 is
immediate. The informal proof of B3 is as follows: if a read of v by process i

39

does not overlap a write (in ι(S)), then the read of vi does not overlap any
write of vi, so it obtains the correct value. A formal proof is based upon:

X. If a read Ri in 〈S,−→, ✮〉 sees v[k,l]
i , then the corresponding read

{Ri} in 〈ι(S), ∗−→, ∗
✮〉 sees v[k′,l′], where k′ ≤ k ≤ l ≤ l′.

The proof of property X is a straightforward application of (2) of Part I
and Definition 9. Property X implies that if B3 or B4 holds for 〈S,−→,

✮〉, then it holds for 〈ι(S), ∗−→, ∗
✮〉. This completes the formal proof of

Construction 1.
The formal proof of Construction 2 is quite similar. Again, the induced

precedence relations are used to turn a higher-level view into a system execu-
tion. The proof of Construction 3 is a bit trickier because a write operation
to v∗ that does not change its value consists only of the read operation to
the internal variable x. This means that the induced precedence relation
∗

✮ does not necessarily satisfy B1, so ∗−→ and ∗
✮ must be extended to

relations H−→ and H
✮ for which B1 hold. This is done as follows. For every

read-write pair R, W for which neither R ∗
✮ W nor W ∗

✮ R holds, add
either one of the relations R H

✮ W orW H
✮ R (it does not matter which),

and then add all the extra relations implied by A3, A4, and the transitiv-
ity of H−→. It is then necessary to show that the new precedence relations
satisfy A1–A5, the only nontrivial part being the proof that H−→ is acyclic.
Alternatively, one can simply apply Proposition 3 of [5], which asserts the
existence of the required precedence relations.

7.2 Proof of Construction 4

The higher-level system execution of reads and writes to v is defined to
have the induced precedence relations ∗−→ and ∗

✮. As in the above proofs,
verifying that this defines an implementation and that B0 and B1 hold is
trivial. The only problems are proving B2—namely, showing that the reader
must find some vi equal to one—and proving B4 (which implies B3).

First, the following property is proved:

Y. If a read sees v[l,r] and returns the value µ, then there is some k with
l ≤ k ≤ r such that v[k] = µ.

If B2 holds, then property Y implies B4.
Reasoning about the construction is complicated by the fact that a write

of v does not write all the vj, so the write of vj that occurs during the kth

40

write of v is not necessarily the kth write of vj. To overcome this difficulty,
new names for the write operations to the vj are introduced. If vj is written
during the execution of V [k], then W

[k]
j denotes that write of vj ; otherwise,

W
[k]
j is undefined. Thus, every write V [l]

j of vj is also named W
[l′]
j for some

l′ ≥ l. A read of vj is said to see w
[l′,r′]
j if it sees v[l,r]

j and the writesW [l′]
j and

W
[r′]
j are the same writes as V [l]

j and V
[r]
j , respectively. Note that, because

the writer’s algorithm writes from “right to left”, W [k]
1 exists for all k and,

if W [k]
i exists, then so do all the W [k]

j with j < i.
Let R be a read that returns the value µ, and let µ be the ith value, so

R consists of the sequence of reads R1 −→ · · · −→ Ri, where each Rj is a
read of vj . All the Rj return the value 0 except Ri, which returns the value
1. Let R see v[l,r] and let each Rj see w

[l(j),r(j)]
j . By regularity of vj , there

is some k(j) with l(j) ≤ k(j) ≤ r(j) such that W [k(i)]
i writes a 1 and W [k(j)]

j

writes a 0 for 1 ≤ j < i. Thus, v[k(i)] is the value read by R, so it suffices to
show that l ≤ k(i) ≤ r.

Definition 9 applied to the read Ri of v implies W
[r(i)]
i ✮ Ri, which, by

equation (2) of Part I, implies V [r(i)] ∗
✮ R. This in turn implies r(i) ≤ r,

so k(i) ≤ r.
For any p with p ≤ l, Definition 9 implies that R ∗/ ✮ V [p], which implies

that R1 / ✮ W
[p]
1 , which in turn implies that p ≤ l(1). Hence, letting p = l,

we have l ≤ l(1).10 Since l(j) ≤ k(j), it suffices to prove that k(j) ≤ l(j+1)
for 1 ≤ j < i.

Since k(j) ≤ r(j), Definition 9 implies that W [k(j)]
j ✮ Rj . Because

W
[k(j)]
j writes a zero, W [k(j)]

j+1 exists, and we have

W
[k(j)]
j+1 −→ W

[k(j)]
j ✮ Rj −→ Rj+1

where the two −→ relations are implied by the order in which writing
and reading of the individual vj are performed. By A4, this implies that
W

[k(j)]
j+1 −→ Rj+1, which, by A2, implies Rj+1 / ✮ W

[k(j)]
j+1 . By Definition 9,

this implies that k(j) ≤ l(j + 1), completing the proof of property Y.
To complete the proof of the construction, it suffices to prove that every

read does return a value. Let R and the values l(j), k(j), and r(j) be as

10Note that the same argument does not prove that l ≤ l(i) because W
[p]
i does not

necessarily exist.

41

above, except let i = n and drop the assumption that Ri obtains the value
1. To prove B2, it is necessary to prove that Rn does obtain the value 1.

The same argument used above shows that, if Rj obtains a zero, then
that zero was written by some writeW [k(j)]

j , which implies thatW [k(j)]
j+1 exists

and k(j) ≤ l(j + 1). Since Rn obtains the value written by W
[k(n)]
n , it must

obtain a 1 unless k(n) = 0 and the initial value is not the nth one. Suppose
the initial value v[0] is the pth value, encoded with vp = 1, p < n. Since Rp
obtains the value 0, we must have k(p) > 0, which implies that k(n) > 0, so
Rn obtains the value 1. This completes the proof of the construction.

7.3 Proof of Construction 5

This construction defines a set H, consisting of reads and writes of v∗, that
is a higher-level view of a system execution 〈S,−→, ✮〉 whose operation
executions are reads and writes of the two shared registers v and c. As
usual, ∗−→ and ∗

✮ denote the induced precedence relations on S that are
defined by (2) of Part I.

In this construction, the write V ∗[k+1] of v∗, for k ≥ 0, is implemented
by the sequence

RC k −→ V [3k+1] −→ V [3k+2] −→ V [3k+3] (3)

where num(v[3k+i]) = i and RC k is a read of c that obtains the value
¬col(v[3k+i]), the colors col(v[3k+1]) being the same for the three values of
i. (Recall that V [p] is the pth write of v and v[p] is the value it writes.) The
initial write V ∗[0] of v∗ is just the initial write V [0] of v.

Since there is only one reader, the reads of v∗ are totally ordered by ∗−→.
The jth read R∗

j of v
∗ consists of the sequence RVj −→ C [j], where RVj is

the jth read of v and C [j] is the jth write of c.
The proof of correctness is based upon Proposition 5. Letting φ(j) denote

φ(R∗
j), to apply that proposition, it suffices to choose the φ(j) such that the

following three properties hold:

1. If R∗
j sees v

∗[l,r] then l ≤ φ(j) ≤ r.

2. R∗
j returns the value v

∗[φ(j)].

3. If j′ < j then φ(j′) ≤ φ(j).

42

Intuitively, the existence of such a function φ means we can pretend that
the read R∗

j occurred after the φ(j)
th write and before the φ(j) + 1st write

of v∗.
To construct such a φ, a function ψ is first defined such that RVj returns

the value v[ψ(j)] and, if RVj sees v[l,r], then l ≤ ψ(j) ≤ r. Since v is regular,
such a ψ exists. From part (c) of Proposition 3, we have:

j′ < j implies ψ(j′) ≤ ψ(j) + 1 (4)

We define φ(j) as follows. If ψ(j) = 3k + i, with 1 ≤ i ≤ 3, then φ(j)
equals k if R∗

j returns the value old(rv) (by executing the innermost else
clause of the reader’s algorithm) and it equals k + 1 if R∗

j returns the value
new(rv). We must now prove that φ satisfies properties 1–3.

By Proposition 4, to prove property 1 it suffices to prove:

V ∗[φ(j)] ∗
✮ R∗

j
∗

✮ V ∗[φ(j)+1] (5)

Proposition 4 implies that

V [ψ(j)] ✮ RVj ✮ V [ψ(j)+1] (6)

If ψ(j) = 3k + 3, then V [ψ(j)] is part of V ∗[k+1] and V [ψ(j)+1] is part of
V ∗[k+2], so (6) and the definition of ∗

✮ imply

V ∗[k+1] ∗
✮ R∗

j
∗

✮ V ∗[k+2]

But ψ(j) = 3k + 3 implies that R∗
j obtains num(rv) = 3 and therefore

returns new(rv), so, by definition of φ, φ(j) = k + 1, which proves (5).
If ψ(j) = 3k + i with 1 ≤ i ≤ 3, then V [ψ(j)] and V [ψ(j)+1] are both part

of V ∗[k+1], so (6) and the definition of ∗
✮ imply

V ∗[k+1] ∗
✮ R∗

j
∗

✮ V ∗[k+1]

Since V ∗[k] ∗−→ V ∗[k+1] ∗−→ V ∗[k+2], (5) follows from Axiom A3 when φ(j)
equals either k or k+1, which, by definition of φ, are the only two possibil-
ities. This finishes the proof of (5), which proves property 1.

Property 2 follows immediately from the definition of φ and the obser-
vation that if 1 ≤ i ≤ 3, then v∗[k] = old(v[3k+i]) and v∗[k+1] = new(v[3k+i]).

To prove property 3, it suffices to show that, for every j, φ(j−1) ≤ φ(j).
By (4), ψ(j − 1) ≤ ψ(j) + 1. It therefore follows from the definition of φ
that there are only two situations in which φ(j − 1) could be greater than
φ(j):

43

(a) ψ(j) = 3k + i, 1 ≤ i ≤ 3, and R∗
j returns old(rv), and

ψ(j − 1) = 3k + i′, 1 ≤ i′ ≤ 3, and R∗
j−1 returns new(rv).

(b) ψ(j) = 3k, ψ(j − 1) = 3k + 1, and R∗
j−1 returns new(rv).

We first show that case (a) is impossible. Since ψ(j − 1) ≤ ψ(j) + 1, we
have i′ ≤ i+ 1. However, i is the value of num(rv) obtained by R∗

j , while i
′

is the value of num(rv) obtained by R∗
j−1 and hence the value of num(rv′)

during the execution of R∗
j (after it executes the first assignment statement).

Therefore, when executing R∗
j , the reader finds nuret true (because R∗

j−1

returned new(rv)), col(rv) = col(rv′) (because both R∗
j and R∗

j−1 obtained
values written by the same write V ∗[k+1]), and num(rv) ≥ num(rv′) − 1
(because i′ ≤ i+1). Hence R∗

j must return new(rv), so case (a) is impossible.
Finally, we show the impossibility of case (b). This is the most difficult

part of the proof, and essentially involves proving the assertion made in
Section 5 that, if a read obtains the value (µ, ν, 1, κ) and returns the value
ν, then it and a preceding read both overlap a write of the value (µ, ν, 2, κ).

Examination of the reader’s algorithm reveals that for case (b) to occur,
there must exist reads R∗

j3
and R∗

j2
such that (i) j3 < j2 < j − 1, (ii) each

R∗
ji
obtains a value of rv with num(rv) = i and col(rv) equal to the value

of col(rv) obtained by R∗
j−1, and (iii) every read between R

∗
j3 and R

∗
j−1 also

obtains the same value of col(rv) as R∗
j−1. For notational convenience, let

j1 = j − 1 and let κ denote the value of col(rv) obtained by the reads R∗
ji
.

We then have:

RVj3 −→ C [j3] −→ RVj2 −→ C [j2] −→ RVj1 −→ C [j1] (7)

j3 ≤ j ≤ j1 implies c[j] = κ (8)

Since R∗
ji
obtains num(rv) = i, ψ(ji) equals 3ki + i for some ki. Since R∗

ji
obtains col(rv) = κ, RC ki

reads the value ¬κ. (Remember that RC k is the
read of c that is part of the write V ∗[k+1].

Since ψ(ji) = 3ki + i, substituting ji for j in (6) yields

V [3ki+i] ✮ RVji (9)

RVji ✮ V [3ki+i+1] (10)

We show now that k1 = k2, which shows that R∗
j2 and R∗

j1 overlap the
same write of v∗. The proof is by contradiction. First, assume that k2 > k1.
This implies that V [3k1+2] −→ V [3k2+2], which, with (7) and (10), yields

RVj2 −→ RVj1 ✮ V [3k1+2] −→ V [3k2+2]

44

Applying Axiom A4, we get RVj2 −→ V [3k2+2], and, by Axiom A2, this
contradicts (9), so we must have k2 ≤ k1.

Next, assume that k2 < k1. This implies that V [k2+3] −→ RC k1 . Com-
bining this with (7) and (10) gives

C [j3] −→ RVj2 ✮ V [k2+3] −→ RC k1

and Axiom A4 implies
C [j3] −→ RC k1 (11)

Let l and r be integers such that RC k1 sees c
[l,r]. By part (b) of Propo-

sition 3, (11) implies that j3 ≤ l. Since RC k1 obtains the value ¬κ, (8) and
the regularity of c (Axiom B4) imply that r > j1. Part (a) of Proposition 4
(substituting j1 + 1 for k and r for j) then implies C [j1+1] ✮ RC k1. Since
C [j1+1] is part of a later read operation execution than is RVj1, we have
RVj1 −→ C [j1+1]. Combining these two relations with (3) gives

RVj1 −→ C [j1+1] ✮ RC k1 −→ V [3k1+1]

which by A4 implies RVj1 −→ V [3k1+1]. Axiom A2 and (9) imply that this
is impossible, so we have the contradiction that completes the proof that
k1 = k2.

Returning to (b), recall that j1 = j − 1 and k1 = k. We have ψ(j) = 3k,
ψ(j2) = 3k2 +2 = 3k+2, and j2 < j − 1 < j, which contradicts (4). Hence,
this shows that (b) is impossible, which completes the proof of property 3,
completing the proof of correctness of the construction.

8 Conclusion

I have defined three classes of shared registers for asynchronous interpro-
cess communication and have provided algorithms for implementing stronger
classes in terms of weaker ones. For single-writer registers, the only unsolved
problem is implementing a multireader atomic register. A solution probably
exists, but it undoubtedly requires that a reader communicate with all other
readers as well as with the writer. Also, more efficient implementations than
Constructions 4 and 5 probably exist. For multivalued registers, Peterson’s
algorithm [14] combined with Construction 5 provides a more efficient im-
plementation of a regular register than Construction 4, and a more efficient
implementation of a single-reader atomic register than Construction 5. How-
ever, in this solution, Construction 4 is still needed to implement the regular
register used in Construction 5.

45

The only closely related work that I know of is that of Misra [13]. Misra’s
main result is a generalization of a restricted version of Proposition 5 of
Section 6. It generalizes the proposition to multiple writers, but assumes a
global-time model rather than using the more general formalism of Part I.

I have not addressed the question of multiwriter shared registers. It is
not clear what assumptions one should make about the effect of overlapping
writes. The one case that is straightforward is that of an atomic multiwriter
register—the kind of register traditionally assumed in shared-variable con-
current programs. This raises the problem of implementing a multiwriter
atomic register from single-writer ones. An unpublished algorithm of Bard
Bloom implements a two-writer atomic register using single-writer atomic
registers.

The definitions and proofs have all employed the general formalism devel-
oped in Part I. Instead of the more traditional approach of considering start-
ing and stopping times of the operation executions, this formalism is based
upon two abstract precedence relations satisfying Axioms A1–A5. These
axioms embody the fundamental properties of temporal relations among
operation executions that are needed to analyze concurrent algorithms.

46

Acknowledgements

The algorithms described here were derived many years ago, although they
have never before appeared in print. Carel Scholten provided much of the
intellectual stimulation that led to their discovery. Jay Misra is largely
responsible for persuading me to finally publish them, and Fred Schneider
helped make the current version less unreadable than previous ones.

47

48

References

[1] Philip A. Bernstein and Nathan Goodman. Concurrency control in
distributed database systems. ACM Computing Surveys, 13(2):185–
222, June 1981.

[2] W. Brauer, editor. Net Theory and Applications. Springer-Verlag,
Berlin, 1980.

[3] P. J. Courtois, F. Heymans, and David L. Parnas. Concurrent con-
trol with “readers” and “writers”. Communications of the ACM,
14(10):190–199, October 1971.

[4] Leslie Lamport. Concurrent reading and writing. Communications of
the ACM, 20(11):806–811, November 1977.

[5] Leslie Lamport. Interprocess Communication. Technical Report, SRI
International, March 1985.

[6] Leslie Lamport. The mutual exclusion problem. To appear in JACM .

[7] Leslie Lamport. A new approach to proving the correctness of multi-
process programs. ACM Transactions on Programming Languages and
Systems, 1(1):84–97, July 1979.

[8] Leslie Lamport. Time, clocks and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, July 1978.

[9] Leslie Lamport. What it means for a concurrent program to satisfy a
specification: why no one has specified priority. In Proceedings of the
Twelfth ACM Symposium on Principles of Programming Languages,
ACM SIGACT-SIGPLAN, New Orleans, January 1985.

[10] Peter E. Lauer, Michael W. Shields, and Eike Best. Formal Theory
of the Basic COSY Notation. Technical Report TR143, Computing
Laboratory, University of Newcastle upon Tyne, 1979.

[11] A. Mazurkiewicz. Semantics of Concurrent Systems: A Modular Fixed
Point Trace Approach. Technical Report 84–19, Institute of Applied
Mathematics and Computer Science, University of Leiden, 1984.

[12] R. Milner. A Calculus of Communicating Systems. Springer-Verlag,
Berlin, 1980.

49

[13] J. Misra. Axioms for memory access in asynchronous hardware systems.
1984. To appear in ACM Transactions on Programming Languages and
Systems.

[14] Gary L. Peterson. Concurrent reading while writing. ACM Transactions
on Programming Languages and Systems, 5(1):46–55, January 1983.

[15] A. Pnueli. The temporal logic of programs. In Proc. of the 18th Sympo-
sium on the Foundations of Computer Science, ACM, November 1977.

[16] Glynn Winskel. Events in Computation. PhD thesis, Edinburgh Uni-
versity, 1980.

50

