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Introduction 

We consider the problem of the concurrent  reading 
and writing of a common data i tem by separate  proc- 
esses: the readers~writers problem. We assume that the 
hardware solves the problem for an atomic unit of 
data. However ,  the data i tem may be composed  of 
several atomic units. For example ,  suppose the atomic 
unit of data is a decimal digit and the data i tem is a 
three-digit number .  If  one process is reading the num- 
ber  while another  process is changing it f rom 99 to 
100, then the read could obtain the value 1 9 9 -  
whereas it presumably wants to obtain ei ther 99 or 
100. In practice, the atomic unit of data might be an 
individual memory  byte or a single disk track. 

Previous solutions [1, 3] have involved mutual 
exclusions: all other processes are denied access to the 
data i tem while one process is modifying it. They seem 
to have been motivated by the case of a fairly large 
data file. Like most multiprocess algorithms, they 
assumed an a pr{ori solution to the problem of concur- 
rent access to the program variables (or s e m a p h o r e s ) -  
presumably implemented  by the hardware and/or  
opening system. 

We are motivated by systems in which the processes 
may be running on separate  computers .  True concur- 
rent execution is then possible, and achieving mutual 
exclusion may require considerable overhead.  In addi- 
tion to the question of overhead,  there are two reasons 
for studying algorithms which do not involve mutual  
exclusions: (1) Mutual exclusion requires that a writer 
wait until all current read operat ions are completed.  
This may be undesirable if the writer has higher priority 
than the readers.  (2) The concurrent  reading and 
writing may be needed to implement  mutual  exclusion. 

We therefore consider the problem of concurrent  
reading and writing without introducing mutual  exclu- 
sion. We will assume that there are certain basic units 
of data,  called digits, whose reading and writing are 
indivisible, atomic operat ions;  i.e. we assume that the 
hardware automatically sequences concurrent  opera-  
tions to a single digit. However ,  a digit might contain 
just a single bit of data. A future paper  will consider 
the case in which truly concurrent  reading and writing 
is possible even at the level of the individual digit. 

We only consider the case in which no two proc- 
esses may try to write the same data concurrently.  
Mutual exclusion of writers seems unavoidable,  and 
some other  algorithm (such as the one in [5]) must be 
used to enforce this mutual  exclusion if several proc- 
esses can modify the same data.  

We prove two general theorems,  and then describe 
several sample applications. These include a simple 
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so lu t ion  to  the  gene ra l  r e a d e r s / w r i t e r  p r o b l e m  in which 
a r e a d  is r e p e a t e d  if it  might  have  o b t a i n e d  an incor rec t  
resu l t ,  and  two a lgor i thms  for  sending  messages  f rom 
one  process  to  a n o t h e r .  

Genera l  T h e o r e m s  

Le t  v deno t e  a da t a  i t em c o m p o s e d  of  one  o r  more  
digi ts .  W e  assume tha t  two d i f fe ren t  p rocesses  canno t  
concur ren t ly  modi fy  v. Le t  v t°~ d e n o t e  the  ini t ia l  va lue  
of  v, and  let  v m,  v t21, . . . d e n o t e  the  successive va lues  
a s sumed  by v; i .e .  each  o p e r a t i o n  which wr i tes  v begins  
with v equa l  to v u~, for  some  i >- 0, and  ends  with v 
equa l  to v t~+a~. F o r  conven i ence ,  we assume tha t  v t°~ is 
wr i t t en  by some  ini t ial  o p e r a t i o n  which p r e c e d e s  all 
r e a d  ope ra t i ons .  

W e  wri te  v = v~ . . .  Vm to d e n o t e  tha t  the  da ta  
i t em v is c o m p o s e d  of  the  da ta  i tems vj, and  tha t  each  
vj is only  wr i t t en  as par t  of  a wr i te  of  v. ~ F o r  conveni -  
ence ,  we assume that  a r e a d  (wri te)  o p e r a t i o n  of  v 
involves  r ead ing  (wri t ing)  each  vj. This  impl ies  tha t  v ul 
= v~ i~ . . . vtd, 1 for  all i -> 0. I f  a pa r t i cu la r  r ead  (wri te)  
o p e r a t i o n  to v does  not  r equ i r e  r ead ing  (wri t ing)  vj, 
then  we will jus t  p r e t e n d  tha t  a r ead  (wri te)  of  vi is 
p e r f o r m e d ;  e .g .  if the  wr i te  of  v t° does  not  involve  
wri t ing vj, then  we s imply  p r e t e n d  tha t  a wri te  o f  vj 
was p e r f o r m e d  which left  its va lue  unchanged .  

I f  a da t a  i tem v is not  a single digi t ,  then  r ead ing  
and  wri t ing v may  involve  severa l  s e p a r a t e  o p e r a t i o n s .  
A r ead  of  v which is p e r f o r m e d  concur ren t ly  with one  
or  m o r e  wri tes  to v may  ob ta in  a va lue  d i f fe ren t  f rom 
any of  the  vers ions  v t~. The  va lue  o b t a i n e d  m a y  con ta in  
" t r a c e s "  of  severa l  d i f fe ren t  vers ions .  I f  a r e a d  ob ta ins  
t races  of  vers ions  v t~,j, . . . , v u~l, then  we say tha t  it 
o b t a i n e d  a va lue  of  v tk,° whe re  k = m i n i m u m  (ia,  . . . , 

ira) and  l = m a x i m u m ( i l , . . .  , im),  so 0 <- k -< I. I f k  = 
l ,  then  v tk,o = v tkj and  the  r ead  o b t a i n e d  a cons i s ten t  
vers ion  of  v. 

A s  an e x a m p l e ,  suppose  v = d~ . . . d~, whe re  the  
dj a re  digi ts .  Since r ead ing  and  wri t ing a single digit  
a re  a s sumed  to be  a tomic  o p e r a t i o n s ,  a r e a d  of  v 
ob ta ins  a va lue  dt~ ,1 . . . d ~  j . The  va lue  d~ j is pa r t  of  
the  vers ion  vt*~ ~ of  v, so the  r ead  o b t a i n e d  a t race  of  
that  vers ion .  H e n c e  the r e a d  o b t a i n e d  a va lue  v tk,0 
where  k = m i n i m u m ( i a , . . . ,  ira) and  l = m a x i -  

m u m ( i l  . . . .  , im). If  k = l ,  then  the  r e a d  o b t a i n e d  the  
cons i s ten t  vers ion  d~ kl . . .  d~  1 = v tk~. No te  tha t  it is 
poss ib le  for  the  r ead  to ob ta in  a cons i s ten t  ve rs ion  
even if k :f l. F o r  e x a m p l e ,  if d~ 5~ = d t6j , then  a r e a d  
could  ob ta in  the  va lue  V 5"el = d~ 5] d~ 01 . . .dtm el = vt°l~ 

F o r  a m o r e  c o m p l i c a t e d  da t a  i t em v, such as a list 
s t ruc ture  with va r i ab le  po in t e r s ,  d i f fe ren t  ve rs ions  o f  v 
may  consis t  of  d i f ferent  sets  of  digi ts .  A r ead  o p e r a t i o n  

1 We use boldface type to denote a data item such as v| which 
can be concurrently read and written. With this convention, the 
same number may be denoted by both ordinary and boldface type-  
e.g. the number j in the expression vi~. 

p e r f o r m e d  while  v is be ing  wr i t t en  could  r e a d  digits  
which were  never  even par t  of  v. I t  is not  obv ious  how 
to def ine  wha t  it means  in gene ra l  for  a r e a d  to ob t a in  
t races  of  vers ion  v t~. H o w e v e r ,  to solve the  r e a d e r s /  
wr i t e r  p r o b l e m  for  v, it suffices to insure  tha t  a r ead  
does  no t  ob ta in  t races  of  two d i f fe ren t  vers ions  of  v. 
W e  t h e r e f o r e  need  only  a necessa ry  cond i t ion  for  a 
r ead  to  ob ta in  t races  of  ve rs ion  v m. W e  will use the  
fo l lowing.  

If  a r ead  of  v ob ta ins  t races  of  vers ion  v u~, then :  

(i) The  beg inn ing  of  the  r e a d  p r e c e d e d  the  end  of  the  
wri te  of  v u+11. 

(ii) The  end  of  the  r e a d  fo l lowed  the beg inn ing  of  the  
wr i te  of  v "l. 

I t  is easy  to show tha t  this  cond i t ion  is sa t is f ied in the  
case v = tl~ . . .  d~ c o n s i d e r e d  above .  The  r e a d e r  
should  convince  h imse l f  tha t  it is a r e a s o n a b l e  assump-  
t ion in genera l .  (In fact ,  by  p r o p e r l y  def in ing  " p r e -  
c e d e d "  and  " f o l l o w e d , "  this cond i t ion  could  be  used  
to def ine  wha t  it m e a n s  for  v to ob t a in  t races  of  
vers ion  vm.) 

C o m b i n i n g  this cond i t ion  with ou r  def in i t ion  of  
v tk'o y ie lds  the  fo l lowing.  
P r e m i s e .  If  a r ead  of  v o b t a i n e d  the  va lue  v tk,tj, then:  

(i) The  beg inn ing  of  the  r ead  p r e c e d e d  the  end  of  the  
wr i te  of  v tk+~j. 

(ii) The  end  of  the  r ead  fo l lowed  the  beg inn ing  of  the  
wri te  of  v uj. 

This  p remise  can be  p r o v e d  when  v = d~ . . .  d= for  
digits  dj. I t  will be  t a k e n  as an ax iom for o t h e r  types  of  
da ta .  O u r  resul ts  will be  b a s e d  u p o n  this p remise  and  
the  a s sumpt ion  tha t  a va lue  v tk,o is a cor rec t  ve rs ion  of  
v i f k  = l. 

Le t  v = Vl . • . Vm, where  the  vj need  not  be  digi ts .  
W e  say tha t  a r ead  (wri te)  of  v is p e r f o r m e d  f r o m  le f t  

to  r i g h t  if for  each  j ,  the  r e a d  (wri te)  of  vj is c o m p l e t e d  
be fo re  the  r ead  (wri te)  of  vj+l is begun .  R e a d i n g  o r  
wri t ing f rom r ight  to left  is de f ined  in the  ana logous  
way.  No te  that  we have  said no th ing  a b o u t  the  o r d e r  
in which the  digits of  any  single vj a re  r e a d  o r  wr i t t en .  
W e  now prove  our  first  t h e o r e m .  

THEOREM 1. L e t  v = v~ . . . Vm, a n d  a s s u m e  t h a t  v 

is a l w a y s  w r i t t e n  f r o m  r i g h t  to  le f t .  A r e a d  p e r f o r m e d  

f r o m  le f t  to  r i g h t  o b t a i n s  a v a l u e  Vtl kl'h~ . . . vim km'lm] w i t h  

k l  <- 11 <- k2 <- • • • <- kra <-- lm. 
PROOF. Since kj -< It, we n e e d  only  show tha t  It - 

kj+l if 1 <_ j < m.  W e  first  show tha t  the  fo l lowing five 
events  mus t  occur  in the  i nd i ca t ed  o rder :  

(1)  end  wri t ing vJ~  

(2)  beg in  wri t ing v~ tjj 

(3)  e n d  read ing  v~ kj,l~j 

(4) beg in  r ead ing  vJk+Jl~,zJ +~J 

(5)  end  wri t ing V~/J~  1-[-1] • 

The  o r d e r  in which i t ems  a re  wr i t t en  impl ies  tha t  
(1) p r e c e d e s  (2).  P remise  (ii) impl ies  tha t  (2) p r e c e d e s  
(3).  The  o r d e r  in which  i t ems  are  r e a d  impl ies  tha t  (3)  
p r e c e d e s  (4) .  P remise  (i) impl i e s  tha t  (4)  p r e c e d e s  (5) .  
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We have thus proved that (1) precedes (5). By the 
definition of the versions v ~ l ,  this implies that ls < 
ks+ 1 + 1. [] 

Let v = d l  . . .  dm for digits dj. If  the dj are 
integers, then we call v an m-dig i t  n u m b e r .  We define 
ft(v) to be the (m - 1)-digit number  dl . . .  din-1 
composed of the leftmost m - 1 digits of v. If  m = 1, 
then we define /z(v) to equal zero. The usual relation 
< on m-digit numbers  is defined inductively by v < w 
= e ~ . . .  em if and only if either ( i ) /z(v)  < / z ( w )  or (ii) 
ft(v) = ft(w) and d m <  era. For  example ,  we can 
represent  a t ime and date by a five-digit number ,  
where ( - 4 8 )  (2) (7) (14) (39) represents 14:39 o 'clock 
on February  7, 48 B.C.  The relation < then means 
earlier than.  

In order  to prove our second theorem,  we need the 
following result. 

LEMMA. L e t  v = d l .  . . dm be  an m-d ig i t  n u m b e r ,  
a n d  a s s u m e  that  i <- j impl ies  v Ill <_ v u]. 

(a) I f  k l  <- . . . <- km <- k then  d~ ~1] . . . d~  "1 <-- v tk]. 
(b) I l k 1  >- . . . >- km >- k then  d~ kll  . . . d~ ~1 ~ v [kl. 

PROOF. (a) The proof  is by induction on m.  If  m = 
1 then the result is trivial. Assume that m > 1 and the 
result holds for m - 1. Since v[i] _< v ul implies that 
/x(v tiJ) --- /z(vUl), we can apply the induction hypothesis 
to conclude that d~k~l.. ,  d~f~J _< /z(v t ~ )  = 
d~ kin1 . . . d~_~]. This implies that d~ k~J . . . d~ m] _< v tk~l . 
The result then follows from the hypothesis that km <- 
k implies v tkmj <_ v tkl. 

(b) The proof  of (b) is obtained f rom that of (a) 
by reversing the inequalities. [] 

THEOREM 2. L e t  v be an m-d ig i t  n u m b e r  a n d  as- 
s u m e  that  i <- j impl ies  v t~l <_ v ul. 

(a) I f  v is a lways  wri t ten f r o m  right  to left, then a read 
f r o m  left  to right ob ta ins  a value  v tk,tl <- v it1. 

(b) I f  v is a lways  writ ten f r o m  left  to right,  then a read 

f r o m  right  to left  ob ta ins  a value  v tk,II >_ v t~l. 

PROOF. (a) Let v = dl . . .  dm. Since reading and 
writing a single digit are atomic operat ions,  reading 
the digit dj can give the value d~kJ.tJ j only if k s = Is. 

Theorem 1 then implies that the value v tk,~l obtained 
by the read must equal dt~ k~J . . . d~ ,,J with k~ -< . . . -< 
kin. Since l = m a x i m u m ( k ~  . . . . .  kin), the result follows 
immediately from part  (a) of the lemma.  

(b) The proof  of  part  (b) is similar, using the 
"mir ror  image"  of Theorem 1 and part  (b) of the 
lemma.  [] 

Applications 

We now give some algorithms based upon the 
preceding theorems.  They will be described by Algol- 
like programs,  employing some additional notation.  
We let : > mean Set greater  t h a n ,  in the same way as 
:= means set equa l  to. Our  algorithms will use m-digit 
numbers.  The value of m is unspecified, but it is 
assumed to be the same for all variables in a single 
algorithm. The order  in which the digits of  a multidigit 
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variable are to be read or written is indicated by an 
arrow over  the variable occurrence.  Thus execution of 
the s ta tement  

i f ~  = y t h e n z  : > z f i  

reads the variable x by reading its digits from left to 
right, reads y by reading its digits in any order ,  and 
tests if the two values obtained are equal.  I f  they are,  
then it sets z equal to some undetermined number  
greater  than its pr tv ious  value:, writing the individual 
digits from right to left. (Our  algorithms will not allow 
a variable to be set by two different processes,  so it 
does not mat ter  how the old value of z is read.)  

We define the s ta tement  
wait until condition 

to be equivalent to the following waiting loop: 

L :  i f  n o t  condition then goto L ft. 

We will also use a 

repeat body unt i l  condition 

loop, which has the obvious meaning.  
Most of the following algorithms use Theorem 2, 

so they require variables that can have arbitrarily large 
values. However ,  practical considerations will always 
allow a bound to be placed on these values. For 
example,  a variable whose value equals the current 
year is theoretically unbounded,  but it can be satisfac- 
torily implemented  with four decimal digits. 

General Readers/Writer Solution 

We first give a simple solution to the general 
readers/writers problem in the case of a single writer. 
The basic idea is to let processes read or write at any 
time. After  reading, a process checks to see if it might 
have obtained an incorrect value, in which case it 
repeats  the operat ion.  The algorithm might be used if 
either (i) it is undesirable to make the writer wait for a 
reader  to finish reading, or (ii) the probabil i ty of 
having to repeat  a read is small enough so that it does 
not pay to incur the overhead of a solution employing 
mutual exclusion. Of  course, it allows the possibility of a 
reader looping forever if writing is done often enough. 

The reader  (of this paper)  should convince himself 
that finding such a solution is a nontrivial problem.  
For example ,  a simple " I  am writing" flag will not 
work. Our  algorithm maintains two version numbers  
for the data: v l  and v2. The writer increments v l  
before writing the data i tem and increments v2 after 
writing. The reader  reads v2 before reading the data 
item and v l  after reading it. If  it finds them equal, 
then it knows that it read a single version of the data. 

We let v l  and v2 be multidigit common variables,  
and assume that initially v l  = v2. The algorithms for 
reading and writing are given below. There  may be 
any number  of readers,  each executing its own copy of 
the readers '  algorithm. The writing algorithm may only 
be executed by one writer at a time. 
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writer reader 

vl  : >  v l ;  repeat temp := v2; 
write; read 
v2 : = v l  until ~ = temp 

We now prove that the algorithm is correct.  Let  D 
denote the data i tem which is being read and written, 
and let v2 tk,,zl~, Dt~2.s j, vltks,t3 ~ denote the values of v2, 
D,  vl read by a reader  during a single iteration of the 
reading loop. We must show that if the reader  decides 
not to read again, then this read of D obtained a 
correct value; i.e. we must show that if v2 tkt,hl = 
v l  tk3,/~J, then ks = Is. 

Applying Theorem 2 to the reading and writing of 
v l  and v2, we obtain 

v2 tk~'~,l -< v2 tz,j and v l  t ~  ~ v l  [ka'/a]. (1) 

Applying Theorem 1 to v2 D v l ,  we see that 

kl -< ll --- k2-< 12-< k3-< 13. (2) 

Since v2 t°l = v l  t°l, examination of the writing algorithm 
shows that 11 -< k3 implies v2 tzlJ _< v l  tk~l, and equality 
holds if and only if 11 = k3. Combining this inequality 
with (1), we obtain 

V2tk,,l~] < v2tt~] __< vltk3] __< vltk~.t3]. 

Hence,  v2 tkl,z,J = vltk3.za I implies that v2 ull = v l  tk3j, 
which in turn implies that ll = k3. By (2), this implies 
that kz = 12, completing the proof  of correctness. 

Note that the converse is not true. We could have 
k2 = 12 even though V2 tk~'tl] :/: vltk3'/31; i.e. a reader  
could decide to read again even though it actually 
obtained a correct version of D. 

If reading D is  an expensive operat ion,  then the 
reader 's  temp := v-'-2' s tatement  should be changed to 

4 - - -  
repeat temp := v2 until v l  = temp. 

This keeps a reader from performing a read operat ion 
if the writer has already begun writing. 

Suppose we know that at most P write operat ions 
can occur during a single iteration of the reading loop, 
and a single digit can assume P + 1 distinct values. 
Then we can let v l  and v2 be single-digit variables 
which cycle through P + 1 or more values rather  than 
assuming a (theoretically) unbounded number  of dif- 
ferent values. However ,  if D is a data file kept in 
secondary storage, then it is likely to have a version 
number  (or creation date) associated with it anyway. 
The algorithm just requires maintaining an extra copy 
of this version number .  

A method similar to our algorithm was introduced 
in [4]. However ,  it uses a single version number  and 
assumes that reading is inhibited while writing is in 
progress. A referee has pointed out that similar appli- 
cations also appear  in [7] and [8]. 

8 0 9  

M e s s a g e  B u f f e r  

We now consider the problem of transmitting mes- 
sages f rom one process to another .  Assume that there 
is a sender process which transmits a sequence of 
messages to a receiver process. The sender deposits 
the messages one at a t ime in a buffer ,  and the receiver 
reads them from the buffer one at a time. Assume a 
buffer B which can hold P messages in locations B [0], 
. . . , B [ P  - 1]. If  the buffer is empty ,  then the 
receiver must wait for the next message to arrive. If  
the buffer is full, then the sender must wait until the 
receiver empties a buffer position by reading the mes- 
sage in it. This is also known as the producer /consumer  
problem [2]. 

The following solution uses multidigit variables m s  

and mr to hold the total number  of messages sent and 
received, respectively. We assume that they are both 
initialized to zero. 

sender 

w a i t  unti l  m s  < ~rr + P;  
put message in B[ms rood/5]; 
m s  : =  m s  + 1 

receiver 

w a i t  unti l  m r  < ms ;  

read message in B[mr rood P]; 
m r  : =  m r  W ] 

The algorithm is quite straightforward, and its 
correctness is clear if the values of m r  read by the 
sender and of m s  read by the receiver are always 
correct. It is also easy to see that the algorithm is still 
correct if the values obtained by these reads are always 
less than or equal to the correct values, and part  (a) of 
Theorem 2 guarantees that this is true. (Note that the 
sender always reads the correct value of m s  and the 
receiver always reads the correct value of mr.)  

If a digit can assume 2P distinct values, then this 
solution can be modified to make mr a n d  m s  single 
digit variables. The resulting algorithm, and a proof  of 
its correctness, can be found in [6]. 

M a i l b o x  

In the preceding algorithm, a message which has 
been sent is not destroyed until it has been received. 
This is undesirable if a process may want to cancel an 
unreceived message. For example ,  suppose the mes- 
sage is " I  want to write file X . "  The sender would like 
to cancel this message when it has finished writing. 
Using the preceding algorithm, it could simply transmit 
the message " I  no longer want to write file X . "  
However ,  this is unsatisfactory because the sender 
may have to wait for the receiver to empty the message 
buffer. The receiver should not have to look at that 
message buffer unless it wishes to use file X. 

For  such cases we want a mai lbox  that holds one 
message which can be written and rewritten by the 
sender,  and read by the receiver. We are not concerned 
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with insuring that the receiver reads a correct version 
of the mailbox. If that is necessary, it can be done with 
any solution to the reader/wri ter  problem,  such as the 
one given above.  Instead we will only consider the 
problem of letting the sender know that the current 
message in the mailbox has been received. For exam- 
pie, knowing that an " I  want to write file X "  message 
was received may allow a process to safely write file X.  

This problem is easily solved by implementing 
mutual exclusion of accesses to the mailbox. However ,  
mutual exclusion can be avoided by using the following 
technique. The sender writes a unique message number  
in the variable msg.uo, and the receiver puts the 
number  of the message it has just read into the variable 
msg.rd. More precisely, the following algorithms are 
used for sending and receiving. We assume that msg.uo 
and msg.rd are multidigit numbers  which are initially 
equal to one another.  

sender 

put  message in mailbox; 

~nsg.no :> msg.no 

receiver 
) 

temp := msg .no ;  

read  message in mailbox;  

nlsg.rd := temp 

To find out if the most  recent message has been re- 
ceived, the sender performs the following test: 

if msg.no = msg. rd  then  most  recent  message  was received ft. 

To prove the correctness of this test, let mailbox 
denote the mailbox and assume that the receiver reads 
the message in mailbox by executing the s ta tement  msg  
:= mailbox. Let  mailbox u] be the current value of the 
mailbox, and let msg.rd tp.q) be the value of msg.rd 
obtained by the sender when executing the testing 
statement.  We must show that if msg.rd tp,q] = 
msg.no u], then the current value of m s g  is mailbox lz]. It 
suffices to prove that m s g  tq] = mailbox m, since the fact 
that the sender read msg.rd n°. q] implies by premise (ii) 
that the receiver has already written m s g  lq~. I f  the qth 
version of m s g  already contained the current version 
of mailbox, then any subsequent versions of m s g  must 
also contain this version. 

The receiving algorithm implies that msg.rd tq] = 
msg.nolkl. 11] and m s g  lq] = mailbox tk~, 12] for some k,, li. 
We must show that msg.rd tp, ~] = msg.no u] implies that 
k2 = 12 = l. Applying Theorem 1 to the pair of data 
items msg.no,  mailbox, we have 

kl --< ll ----- k2 ---- lz --< l, (3) 

where the last inequality follows from the fact that 
mailbox u] is the current value of mailbox. From part 
(a) of Theorem 2 and the fact that ll - l, we obtain 

msg.rdtp, q] _< msg.rdtq] = msg.notk,, z,~ 
_< msg.noU,) _< msg.no tt]. 

Therefore  msg. rd  tp, q] = msg.no u] implies that 
msg.no u,] = msg.no u], which in turn implies that ll = 
1. By (3), this shows that kz = 12 = l ,  which completes  
the proof.  

Note  that our algorithm gives the sender a sufficient 
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condition for the current message to have been read, 
but not a necessary one. The receiver could have read 
the current message and the prior message number ,  in 
which case the sender will not discover that the current 
message has been read until the; receiver reads it again. 
This limits the applicability of this algorithm. 

As an example of how such a mailbox can be used, 
we give a new solution to a generalized readers/writer  
problem (with a single writer),  in which a read (write) 
operat ion consists of reading (writing) f rom some set 
of files. We assume that this set is chosen before the 
operat ion begins. We will insure that a file is not 
written while it is being read,  so this is a mutual  
exclusion approach.  A read operat ion may be per- 
formed concurrently with a write operat ion if it does 
not use any of the files being written. 

Our  solution gives the writer highest priority, so a 
reader  must wait if it wants to use a file which the 
writer is waiting for. This allows the possibility of a 
reader  waiting forever if writing is done very fre- 
quently. 

The solution uses a single mailbox which is written 
by the writer and read by all the readers.  The mailbox 
contains a set of file names.  The e lement  " X "  in the 
mailbox represents an " I  want to write file X "  message.  
The variables msg.rd and t emp  of our algorithm be- 
come arrays. We also use an array r [ l : N l  of sets of file 
names,  where N is the number  of readers.  We let 
mailbox and each r/i] be initially equal to the empty  
set, which is denoted by ~b. 

The following are the algorithms for the writer and 
for reader  number  i. Note that each program variable 
is written by only one process. 
writer 

mailbox := set of  names  of  files to be  wri t ten;  

msg.no :> msg.no; 
for j := 1 s tep 1 until  N do 

wait until msg .no  = msg . rdU]  or  r l i ]  N mailbox = 4, od; 
write; 
mailbox := q5 

ith reader 

rlil  := set  of  names  of files to be read;  

repeat temp[i] := msg.n~; 
msg[i] := mai lbox;  

msg.rdlil := temp[i] 
until rli] rl msg[i] = ~; 

read; 
r[il  := tb 

We first prove that a file cannot  be read while it is 
being written. To do this, we assume that the ith 
reader  is reading and the writer is writing, and show 
that this implies r/i] f3 mailbox = ~b. Consider the ith 
iteration of the writer 's for loop before it began writing. 
While executing the wait until s ta tement ,  the writer 
must have found (a) msg.no = msg.rd[i], or (b) r/i] A 
mailbox = ~b. We consider these two cases separately.  

I f  the writer found (a) to be true, then the correct- 
ness of our mailbox algorithm implies that the ith 
reader  must have read the current value of mailbox. 
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Hence,  the reader  must have used this current value 
when it last evaluated the until condition of its repeat 
statement ,  at which time it found r[i] fq mailbox = ~b. 
This proves the desired result. 

Next,  assume that the writer found (b) to be true. 
The writer either (i) did or (ii) did not use the current 
version of r[i] when it found r[i] A mailbox = ~b. In 
case (i), the desired result is immediate .  In case (ii), 
the writer must have read r[i] before the reader  fin- 
ished writing its current value. Hence the writer was 
already in its for loop before the reader  began to read 
mailbox. This implies that the reader  read the current 
version of mailbox, and the result follows as in case (a). 

It is easy to see that once the writer has finished 
writing mailbox, it has priority over  any reader  which 
then begins executing its algorithm. A reader  wishing 
to read a file whose name is in mailbox must then wait 
until the writer has finished writing. If  every read 
operat ion must terminate ,  then the writer will even- 
tually be able to write. However ,  a reader  might have 
to wait forever.  

It is interesting to observe that no precaution is 
taken to insure that a correct value is read when the 
writer reads r[j] or a reader  reads mailbox. A read of 
any of these variables which occurs while it is being 
written is allowed to obtain any arbitrary value. How- 
ever, without some assumption about  concurrent  read- 
ing and writing of mailbox, it is possible for a reader  
to wait forever even though the writer never  writes 
any of the files it wishes to read. This can be prevented 
if the value mailbox tk, 0 obtained by a reader  always 
satisfies the condition mailbox tk, ~1 _C mailbox tkl t_l mail- 
boxtk + x~ U . . .  U mailbox m. It is not hard to devise 
ways of reading and writing mailbox which satisfy this 
condition. 

Mutual Exclusion 

The "bakery  algori thm" described in [5] provides 
a solution to the mutual exclusion problem for N 
processes without assuming any hardware implemented 
mutual exclusion. To enter  its critical section, process i 
sets number[i] (which is initially zero) greater  than 
every other number[ j ] .  It  is allowed to enter  when for 
each nonzero number[j] :  either number[i] < num- 
ber[j], or number[i] = number[ j ]  and i <- j. 

This algorithm requires a (theoretically) unbounded 
amount  of storage for number[ i] .  We now show how 
to insure a practical bound on the amount  of storage 
needed.  It suffices to insure that the value chosen for 
number[i] is at most one greater  than a previously 
chosen value of number[ j ]  for some j;  e.g. if values 
are chosen at the rate of one per microsecond, then 
this guarantees that number[i]  will remain less than 2 55 
for over  a century. To do this, we assume that num- 
ber[i] is stored as a multidigit number  with non-nega- 
tive digits. We then modify the algorithm so that: 

(1) Process i chooses the (nonzero) value of number[i] 
to be greater  than or equal to its previous nonzero 
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value, as well as greater  than number[ j ]  for al l j  :~ 
i. 

(2) The value of number[i]  is always written from 
right to left and read from left to right. 

Theorem 2 easily proves that this modification has the 
desired effect. (One need only consider the nonzero 
values of number[ i] ,  since introducing zero digits can 
only decrease the value which is read.)  Moreover ,  it is 
easy to verify that this does not alter the validity of the 
three assertions proved in [5] which imply the correct- 
ness of the original algorithm. 

Conclusion 

We proved two theorems and then gave several 
algorithms to demonstra te  their use. The algorithms 
were actually developed first in order to solve some 
problems in "theoretical  p rogramming ."  We abstracted 
the essential aspects of the algorithms to form the 
theorems.  The decreasing cost of hardware has encour- 
aged the development  of systems composed of inde- 
pendent  computers  sharing common data. The prob- 
lems which arise in designing such systems will often 
be more complex than the theoretical problems which 
inspired our algorithms, and they may require different 
algorithms for their solution. However ,  they will in- 
clude problems of concurrent  reading and writing of 
shared data. When mult iprogramming a single com- 
puter,  such problems have traditionally been solved by 
using mutual exclusion, which is easily implemented 
with an "inhibit interrupts" operat ion.  Such a simple 
approach does not work for a true mult icomputer  
system. We hope our theorems will be useful in the 
problems of sharing data among different computers .  

Finally, we wish to point out the common thread 
that runs through all of our results: writing data ele- 
ments in one order and reading them in the opposite 
order.  It is this technique which allows our algorithms 
to work without assuming mutual exclusion of access 
to shared data. The technique may have more applica- 
tions than are suggested by our theorems.  
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