
Operat ing R.S. Gaines
Systems Editor

Concurrent Reading
and Writing
L e s l i e L a m p o r t
M a s s a c h u s e t t s C o m p u t e r A s s o c i a t e s

The problem of sharing data among asynchronous
processes is considered. It is assumed that only one
process at a time can modify the data, but concurrent
reading and writing is permitted. Two general theorems
are proved, and some algorithms are presented to
illustrate their use. These include a solution to the
general problem in which a read is repeated if it might
have obtained an incorrect result, and two techniques
for transmitting messages between processes. These
solutions do not assume any synchronizing mechanism
other than data which can be written by one process
and read by other processes.

Key Words and Phrases: asynchronous multipro-
cessing, multiprocess synchronization, readers/writers
problem, shared data

CR Categories: 4 .32 , 5 .24

Copyright © 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by
permission of the Association for Computing Machinery.

This research was supported by the Advanced Research Projects
Agency of the Department of Defense and was monitored by the
Range Measurements Laboratory under contract number FO8606-
74-0068.

Author's address: Massachusetts Computer Associates, Inc., 26
Princess Street, Wakefield, MA 01880.

806

Introduction

We consider the problem of the concurrent reading
and writing of a common data i tem by separate proc-
esses: the readers~writers problem. We assume that the
hardware solves the problem for an atomic unit of
data. However , the data i tem may be composed of
several atomic units. For example , suppose the atomic
unit of data is a decimal digit and the data i tem is a
three-digit number . If one process is reading the num-
ber while another process is changing it f rom 99 to
100, then the read could obtain the value 1 9 9 -
whereas it presumably wants to obtain ei ther 99 or
100. In practice, the atomic unit of data might be an
individual memory byte or a single disk track.

Previous solutions [1, 3] have involved mutual
exclusions: all other processes are denied access to the
data i tem while one process is modifying it. They seem
to have been motivated by the case of a fairly large
data file. Like most multiprocess algorithms, they
assumed an a pr{ori solution to the problem of concur-
rent access to the program variables (or s e m a p h o r e s) -
presumably implemented by the hardware and/or
opening system.

We are motivated by systems in which the processes
may be running on separate computers . True concur-
rent execution is then possible, and achieving mutual
exclusion may require considerable overhead. In addi-
tion to the question of overhead, there are two reasons
for studying algorithms which do not involve mutual
exclusions: (1) Mutual exclusion requires that a writer
wait until all current read operat ions are completed.
This may be undesirable if the writer has higher priority
than the readers. (2) The concurrent reading and
writing may be needed to implement mutual exclusion.

We therefore consider the problem of concurrent
reading and writing without introducing mutual exclu-
sion. We will assume that there are certain basic units
of data, called digits, whose reading and writing are
indivisible, atomic operat ions; i.e. we assume that the
hardware automatically sequences concurrent opera-
tions to a single digit. However , a digit might contain
just a single bit of data. A future paper will consider
the case in which truly concurrent reading and writing
is possible even at the level of the individual digit.

We only consider the case in which no two proc-
esses may try to write the same data concurrently.
Mutual exclusion of writers seems unavoidable, and
some other algorithm (such as the one in [5]) must be
used to enforce this mutual exclusion if several proc-
esses can modify the same data.

We prove two general theorems, and then describe
several sample applications. These include a simple

Communications November 1977
of Volume 20
the ACM Number 11

so lu t ion to the gene ra l r e a d e r s / w r i t e r p r o b l e m in which
a r e a d is r e p e a t e d if it might have o b t a i n e d an incor rec t
resu l t , and two a lgor i thms for sending messages f rom
one process to a n o t h e r .

Genera l T h e o r e m s

Le t v deno t e a da t a i t em c o m p o s e d of one o r more
digi ts . W e assume tha t two d i f fe ren t p rocesses canno t
concur ren t ly modi fy v. Le t v t°~ d e n o t e the ini t ia l va lue
of v, and let v m, v t21, . . . d e n o t e the successive va lues
a s sumed by v; i .e . each o p e r a t i o n which wr i tes v begins
with v equa l to v u~, for some i >- 0, and ends with v
equa l to v t~+a~. F o r conven i ence , we assume tha t v t°~ is
wr i t t en by some ini t ial o p e r a t i o n which p r e c e d e s all
r e a d ope ra t i ons .

W e wri te v = v~ . . . Vm to d e n o t e tha t the da ta
i t em v is c o m p o s e d of the da ta i tems vj, and tha t each
vj is only wr i t t en as par t of a wr i te of v. ~ F o r conveni -
ence , we assume that a r e a d (wri te) o p e r a t i o n of v
involves r ead ing (wri t ing) each vj. This impl ies tha t v ul
= v~ i~ . . . vtd, 1 for all i -> 0. I f a pa r t i cu la r r ead (wri te)
o p e r a t i o n to v does not r equ i r e r ead ing (wri t ing) vj,
then we will jus t p r e t e n d tha t a r ead (wri te) of vi is
p e r f o r m e d ; e .g . if the wr i te of v t° does not involve
wri t ing vj, then we s imply p r e t e n d tha t a wri te o f vj
was p e r f o r m e d which left its va lue unchanged .

I f a da t a i tem v is not a single digi t , then r ead ing
and wri t ing v may involve severa l s e p a r a t e o p e r a t i o n s .
A r ead of v which is p e r f o r m e d concur ren t ly with one
or m o r e wri tes to v may ob ta in a va lue d i f fe ren t f rom
any of the vers ions v t~. The va lue o b t a i n e d m a y con ta in
" t r a c e s " of severa l d i f fe ren t vers ions . I f a r e a d ob ta ins
t races of vers ions v t~,j, . . . , v u~l, then we say tha t it
o b t a i n e d a va lue of v tk,° whe re k = m i n i m u m (ia, . . . ,

ira) and l = m a x i m u m (i l , . . . , im), so 0 <- k -< I. I f k =
l , then v tk,o = v tkj and the r ead o b t a i n e d a cons i s ten t
vers ion of v.

A s an e x a m p l e , suppose v = d~ . . . d~, whe re the
dj a re digi ts . Since r ead ing and wri t ing a single digit
a re a s sumed to be a tomic o p e r a t i o n s , a r e a d of v
ob ta ins a va lue dt~ ,1 . . . d ~ j . The va lue d~ j is pa r t of
the vers ion vt*~ ~ of v, so the r ead o b t a i n e d a t race of
that vers ion . H e n c e the r e a d o b t a i n e d a va lue v tk,0
where k = m i n i m u m (i a , . . . , ira) and l = m a x i -

m u m (i l , im). If k = l , then the r e a d o b t a i n e d the
cons i s ten t vers ion d~ kl . . . d~ 1 = v tk~. No te tha t it is
poss ib le for the r ead to ob ta in a cons i s ten t ve rs ion
even if k :f l. F o r e x a m p l e , if d~ 5~ = d t6j , then a r e a d
could ob ta in the va lue V 5"el = d~ 5] d~ 01 . . .dtm el = vt°l~

F o r a m o r e c o m p l i c a t e d da t a i t em v, such as a list
s t ruc ture with va r i ab le po in t e r s , d i f fe ren t ve rs ions o f v
may consis t of d i f ferent sets of digi ts . A r ead o p e r a t i o n

1 We use boldface type to denote a data item such as v| which
can be concurrently read and written. With this convention, the
same number may be denoted by both ordinary and boldface type-
e.g. the number j in the expression vi~.

p e r f o r m e d while v is be ing wr i t t en could r e a d digits
which were never even par t of v. I t is not obv ious how
to def ine wha t it means in gene ra l for a r e a d to ob t a in
t races of vers ion v t~. H o w e v e r , to solve the r e a d e r s /
wr i t e r p r o b l e m for v, it suffices to insure tha t a r ead
does no t ob ta in t races of two d i f fe ren t vers ions of v.
W e t h e r e f o r e need only a necessa ry cond i t ion for a
r ead to ob ta in t races of ve rs ion v m. W e will use the
fo l lowing.

If a r ead of v ob ta ins t races of vers ion v u~, then :

(i) The beg inn ing of the r e a d p r e c e d e d the end of the
wri te of v u+11.

(ii) The end of the r e a d fo l lowed the beg inn ing of the
wr i te of v "l.

I t is easy to show tha t this cond i t ion is sa t is f ied in the
case v = tl~ . . . d~ c o n s i d e r e d above . The r e a d e r
should convince h imse l f tha t it is a r e a s o n a b l e assump-
t ion in genera l . (In fact , by p r o p e r l y def in ing " p r e -
c e d e d " and " f o l l o w e d , " this cond i t ion could be used
to def ine wha t it m e a n s for v to ob t a in t races of
vers ion vm.)

C o m b i n i n g this cond i t ion with ou r def in i t ion of
v tk'o y ie lds the fo l lowing.
P r e m i s e . If a r ead of v o b t a i n e d the va lue v tk,tj, then:

(i) The beg inn ing of the r ead p r e c e d e d the end of the
wr i te of v tk+~j.

(ii) The end of the r ead fo l lowed the beg inn ing of the
wri te of v uj.

This p remise can be p r o v e d when v = d~ . . . d= for
digits dj. I t will be t a k e n as an ax iom for o t h e r types of
da ta . O u r resul ts will be b a s e d u p o n this p remise and
the a s sumpt ion tha t a va lue v tk,o is a cor rec t ve rs ion of
v i f k = l.

Le t v = Vl . • . Vm, where the vj need not be digi ts .
W e say tha t a r ead (wri te) of v is p e r f o r m e d f r o m le f t

to r i g h t if for each j , the r e a d (wri te) of vj is c o m p l e t e d
be fo re the r ead (wri te) of vj+l is begun . R e a d i n g o r
wri t ing f rom r ight to left is de f ined in the ana logous
way. No te that we have said no th ing a b o u t the o r d e r
in which the digits of any single vj a re r e a d o r wr i t t en .
W e now prove our first t h e o r e m .

THEOREM 1. L e t v = v~ . . . Vm, a n d a s s u m e t h a t v

is a l w a y s w r i t t e n f r o m r i g h t to le f t . A r e a d p e r f o r m e d

f r o m le f t to r i g h t o b t a i n s a v a l u e Vtl kl'h~ . . . vim km'lm] w i t h

k l <- 11 <- k2 <- • • • <- kra <-- lm.
PROOF. Since kj -< It, we n e e d only show tha t It -

kj+l if 1 <_ j < m. W e first show tha t the fo l lowing five
events mus t occur in the i nd i ca t ed o rder :

(1) end wri t ing vJ~

(2) beg in wri t ing v~ tjj

(3) e n d read ing v~ kj,l~j

(4) beg in r ead ing vJk+Jl~,zJ +~J

(5) end wri t ing V~/J~ 1-[-1] •

The o r d e r in which i t ems a re wr i t t en impl ies tha t
(1) p r e c e d e s (2). P remise (ii) impl ies tha t (2) p r e c e d e s
(3). The o r d e r in which i t ems are r e a d impl ies tha t (3)
p r e c e d e s (4) . P remise (i) impl i e s tha t (4) p r e c e d e s (5) .

807 Communications November 1977
of Volume 20
the ACM Number 11

We have thus proved that (1) precedes (5). By the
definition of the versions v ~ l , this implies that ls <
ks+ 1 + 1. []

Let v = d l . . . dm for digits dj. If the dj are
integers, then we call v an m-dig i t n u m b e r . We define
ft(v) to be the (m - 1)-digit number dl . . . din-1
composed of the leftmost m - 1 digits of v. If m = 1,
then we define /z(v) to equal zero. The usual relation
< on m-digit numbers is defined inductively by v < w
= e ~ . . . em if and only if either (i) /z(v) < / z (w) or (ii)
ft(v) = ft(w) and d m < era. For example , we can
represent a t ime and date by a five-digit number ,
where (- 4 8) (2) (7) (14) (39) represents 14:39 o 'clock
on February 7, 48 B.C. The relation < then means
earlier than.

In order to prove our second theorem, we need the
following result.

LEMMA. L e t v = d l . . . dm be an m-d ig i t n u m b e r ,
a n d a s s u m e that i <- j impl ies v Ill <_ v u].

(a) I f k l <- . . . <- km <- k then d~ ~1] . . . d~ "1 <-- v tk].
(b) I l k 1 >- . . . >- km >- k then d~ kll . . . d~ ~1 ~ v [kl.

PROOF. (a) The proof is by induction on m. If m =
1 then the result is trivial. Assume that m > 1 and the
result holds for m - 1. Since v[i] _< v ul implies that
/x(v tiJ) --- /z(vUl), we can apply the induction hypothesis
to conclude that d~k~l.. , d~f~J _< /z(v t ~) =
d~ kin1 . . . d~_~]. This implies that d~ k~J . . . d~ m] _< v tk~l .
The result then follows from the hypothesis that km <-
k implies v tkmj <_ v tkl.

(b) The proof of (b) is obtained f rom that of (a)
by reversing the inequalities. []

THEOREM 2. L e t v be an m-d ig i t n u m b e r a n d as-
s u m e that i <- j impl ies v t~l <_ v ul.

(a) I f v is a lways wri t ten f r o m right to left, then a read
f r o m left to right ob ta ins a value v tk,tl <- v it1.

(b) I f v is a lways writ ten f r o m left to right, then a read

f r o m right to left ob ta ins a value v tk,II >_ v t~l.

PROOF. (a) Let v = dl . . . dm. Since reading and
writing a single digit are atomic operat ions, reading
the digit dj can give the value d~kJ.tJ j only if k s = Is.

Theorem 1 then implies that the value v tk,~l obtained
by the read must equal dt~ k~J . . . d~ ,,J with k~ -< . . . -<
kin. Since l = m a x i m u m (k ~ kin), the result follows
immediately from part (a) of the lemma.

(b) The proof of part (b) is similar, using the
"mir ror image" of Theorem 1 and part (b) of the
lemma. []

Applications

We now give some algorithms based upon the
preceding theorems. They will be described by Algol-
like programs, employing some additional notation.
We let : > mean Set greater t h a n , in the same way as
:= means set equa l to. Our algorithms will use m-digit
numbers. The value of m is unspecified, but it is
assumed to be the same for all variables in a single
algorithm. The order in which the digits of a multidigit

808

variable are to be read or written is indicated by an
arrow over the variable occurrence. Thus execution of
the s ta tement

i f ~ = y t h e n z : > z f i

reads the variable x by reading its digits from left to
right, reads y by reading its digits in any order , and
tests if the two values obtained are equal. I f they are,
then it sets z equal to some undetermined number
greater than its pr tv ious value:, writing the individual
digits from right to left. (Our algorithms will not allow
a variable to be set by two different processes, so it
does not mat ter how the old value of z is read.)

We define the s ta tement
wait until condition

to be equivalent to the following waiting loop:

L : i f n o t condition then goto L ft.

We will also use a

repeat body unt i l condition

loop, which has the obvious meaning.
Most of the following algorithms use Theorem 2,

so they require variables that can have arbitrarily large
values. However , practical considerations will always
allow a bound to be placed on these values. For
example, a variable whose value equals the current
year is theoretically unbounded, but it can be satisfac-
torily implemented with four decimal digits.

General Readers/Writer Solution

We first give a simple solution to the general
readers/writers problem in the case of a single writer.
The basic idea is to let processes read or write at any
time. After reading, a process checks to see if it might
have obtained an incorrect value, in which case it
repeats the operat ion. The algorithm might be used if
either (i) it is undesirable to make the writer wait for a
reader to finish reading, or (ii) the probabil i ty of
having to repeat a read is small enough so that it does
not pay to incur the overhead of a solution employing
mutual exclusion. Of course, it allows the possibility of a
reader looping forever if writing is done often enough.

The reader (of this paper) should convince himself
that finding such a solution is a nontrivial problem.
For example , a simple " I am writing" flag will not
work. Our algorithm maintains two version numbers
for the data: v l and v2. The writer increments v l
before writing the data i tem and increments v2 after
writing. The reader reads v2 before reading the data
item and v l after reading it. If it finds them equal,
then it knows that it read a single version of the data.

We let v l and v2 be multidigit common variables,
and assume that initially v l = v2. The algorithms for
reading and writing are given below. There may be
any number of readers, each executing its own copy of
the readers ' algorithm. The writing algorithm may only
be executed by one writer at a time.

C o m m u n i c a t i o n s N o v e m b e r 1 9 7 7
of V o l u m e 2 0
the A C M N u m b e r 11

writer reader

vl : > v l ; repeat temp := v2;
write; read
v2 : = v l until ~ = temp

We now prove that the algorithm is correct. Let D
denote the data i tem which is being read and written,
and let v2 tk,,zl~, Dt~2.s j, vltks,t3 ~ denote the values of v2,
D, vl read by a reader during a single iteration of the
reading loop. We must show that if the reader decides
not to read again, then this read of D obtained a
correct value; i.e. we must show that if v2 tkt,hl =
v l tk3,/~J, then ks = Is.

Applying Theorem 2 to the reading and writing of
v l and v2, we obtain

v2 tk~'~,l -< v2 tz,j and v l t ~ ~ v l [ka'/a]. (1)

Applying Theorem 1 to v2 D v l , we see that

kl -< ll --- k2-< 12-< k3-< 13. (2)

Since v2 t°l = v l t°l, examination of the writing algorithm
shows that 11 -< k3 implies v2 tzlJ _< v l tk~l, and equality
holds if and only if 11 = k3. Combining this inequality
with (1), we obtain

V2tk,,l~] < v2tt~] __< vltk3] __< vltk~.t3].

Hence, v2 tkl,z,J = vltk3.za I implies that v2 ull = v l tk3j,
which in turn implies that ll = k3. By (2), this implies
that kz = 12, completing the proof of correctness.

Note that the converse is not true. We could have
k2 = 12 even though V2 tk~'tl] :/: vltk3'/31; i.e. a reader
could decide to read again even though it actually
obtained a correct version of D.

If reading D is an expensive operat ion, then the
reader 's temp := v-'-2' s tatement should be changed to

4 - - -
repeat temp := v2 until v l = temp.

This keeps a reader from performing a read operat ion
if the writer has already begun writing.

Suppose we know that at most P write operat ions
can occur during a single iteration of the reading loop,
and a single digit can assume P + 1 distinct values.
Then we can let v l and v2 be single-digit variables
which cycle through P + 1 or more values rather than
assuming a (theoretically) unbounded number of dif-
ferent values. However , if D is a data file kept in
secondary storage, then it is likely to have a version
number (or creation date) associated with it anyway.
The algorithm just requires maintaining an extra copy
of this version number .

A method similar to our algorithm was introduced
in [4]. However , it uses a single version number and
assumes that reading is inhibited while writing is in
progress. A referee has pointed out that similar appli-
cations also appear in [7] and [8].

8 0 9

M e s s a g e B u f f e r

We now consider the problem of transmitting mes-
sages f rom one process to another . Assume that there
is a sender process which transmits a sequence of
messages to a receiver process. The sender deposits
the messages one at a t ime in a buffer , and the receiver
reads them from the buffer one at a time. Assume a
buffer B which can hold P messages in locations B [0],
. . . , B [P - 1]. If the buffer is empty , then the
receiver must wait for the next message to arrive. If
the buffer is full, then the sender must wait until the
receiver empties a buffer position by reading the mes-
sage in it. This is also known as the producer /consumer
problem [2].

The following solution uses multidigit variables m s

and mr to hold the total number of messages sent and
received, respectively. We assume that they are both
initialized to zero.

sender

w a i t unti l m s < ~rr + P;
put message in B[ms rood/5];
m s : = m s + 1

receiver

w a i t unti l m r < ms ;

read message in B[mr rood P];
m r : = m r W]

The algorithm is quite straightforward, and its
correctness is clear if the values of m r read by the
sender and of m s read by the receiver are always
correct. It is also easy to see that the algorithm is still
correct if the values obtained by these reads are always
less than or equal to the correct values, and part (a) of
Theorem 2 guarantees that this is true. (Note that the
sender always reads the correct value of m s and the
receiver always reads the correct value of mr.)

If a digit can assume 2P distinct values, then this
solution can be modified to make mr a n d m s single
digit variables. The resulting algorithm, and a proof of
its correctness, can be found in [6].

M a i l b o x

In the preceding algorithm, a message which has
been sent is not destroyed until it has been received.
This is undesirable if a process may want to cancel an
unreceived message. For example , suppose the mes-
sage is " I want to write file X . " The sender would like
to cancel this message when it has finished writing.
Using the preceding algorithm, it could simply transmit
the message " I no longer want to write file X . "
However , this is unsatisfactory because the sender
may have to wait for the receiver to empty the message
buffer. The receiver should not have to look at that
message buffer unless it wishes to use file X.

For such cases we want a mai lbox that holds one
message which can be written and rewritten by the
sender, and read by the receiver. We are not concerned

Communications November 1977
of Volume 20
the ACM Number 11

with insuring that the receiver reads a correct version
of the mailbox. If that is necessary, it can be done with
any solution to the reader/wri ter problem, such as the
one given above. Instead we will only consider the
problem of letting the sender know that the current
message in the mailbox has been received. For exam-
pie, knowing that an " I want to write file X " message
was received may allow a process to safely write file X.

This problem is easily solved by implementing
mutual exclusion of accesses to the mailbox. However ,
mutual exclusion can be avoided by using the following
technique. The sender writes a unique message number
in the variable msg.uo, and the receiver puts the
number of the message it has just read into the variable
msg.rd. More precisely, the following algorithms are
used for sending and receiving. We assume that msg.uo
and msg.rd are multidigit numbers which are initially
equal to one another.

sender

put message in mailbox;

~nsg.no :> msg.no

receiver
)

temp := msg .no ;

read message in mailbox;

nlsg.rd := temp

To find out if the most recent message has been re-
ceived, the sender performs the following test:

if msg.no = msg. rd then most recent message was received ft.

To prove the correctness of this test, let mailbox
denote the mailbox and assume that the receiver reads
the message in mailbox by executing the s ta tement msg
:= mailbox. Let mailbox u] be the current value of the
mailbox, and let msg.rd tp.q) be the value of msg.rd
obtained by the sender when executing the testing
statement. We must show that if msg.rd tp,q] =
msg.no u], then the current value of m s g is mailbox lz]. It
suffices to prove that m s g tq] = mailbox m, since the fact
that the sender read msg.rd n°. q] implies by premise (ii)
that the receiver has already written m s g lq~. I f the qth
version of m s g already contained the current version
of mailbox, then any subsequent versions of m s g must
also contain this version.

The receiving algorithm implies that msg.rd tq] =
msg.nolkl. 11] and m s g lq] = mailbox tk~, 12] for some k,, li.
We must show that msg.rd tp, ~] = msg.no u] implies that
k2 = 12 = l. Applying Theorem 1 to the pair of data
items msg.no, mailbox, we have

kl --< ll ----- k2 ---- lz --< l, (3)

where the last inequality follows from the fact that
mailbox u] is the current value of mailbox. From part
(a) of Theorem 2 and the fact that ll - l, we obtain

msg.rdtp, q] _< msg.rdtq] = msg.notk,, z,~
_< msg.noU,) _< msg.no tt].

Therefore msg. rd tp, q] = msg.no u] implies that
msg.no u,] = msg.no u], which in turn implies that ll =
1. By (3), this shows that kz = 12 = l , which completes
the proof.

Note that our algorithm gives the sender a sufficient

810

condition for the current message to have been read,
but not a necessary one. The receiver could have read
the current message and the prior message number , in
which case the sender will not discover that the current
message has been read until the; receiver reads it again.
This limits the applicability of this algorithm.

As an example of how such a mailbox can be used,
we give a new solution to a generalized readers/writer
problem (with a single writer), in which a read (write)
operat ion consists of reading (writing) f rom some set
of files. We assume that this set is chosen before the
operat ion begins. We will insure that a file is not
written while it is being read, so this is a mutual
exclusion approach. A read operat ion may be per-
formed concurrently with a write operat ion if it does
not use any of the files being written.

Our solution gives the writer highest priority, so a
reader must wait if it wants to use a file which the
writer is waiting for. This allows the possibility of a
reader waiting forever if writing is done very fre-
quently.

The solution uses a single mailbox which is written
by the writer and read by all the readers. The mailbox
contains a set of file names. The e lement " X " in the
mailbox represents an " I want to write file X " message.
The variables msg.rd and t emp of our algorithm be-
come arrays. We also use an array r [l : N l of sets of file
names, where N is the number of readers. We let
mailbox and each r/i] be initially equal to the empty
set, which is denoted by ~b.

The following are the algorithms for the writer and
for reader number i. Note that each program variable
is written by only one process.
writer

mailbox := set of names of files to be wri t ten;

msg.no :> msg.no;
for j := 1 s tep 1 until N do

wait until msg .no = msg . rdU] or r l i] N mailbox = 4, od;
write;
mailbox := q5

ith reader

rlil := set of names of files to be read;

repeat temp[i] := msg.n~;
msg[i] := mai lbox;

msg.rdlil := temp[i]
until rli] rl msg[i] = ~;

read;
r[il := tb

We first prove that a file cannot be read while it is
being written. To do this, we assume that the ith
reader is reading and the writer is writing, and show
that this implies r/i] f3 mailbox = ~b. Consider the ith
iteration of the writer 's for loop before it began writing.
While executing the wait until s ta tement , the writer
must have found (a) msg.no = msg.rd[i], or (b) r/i] A
mailbox = ~b. We consider these two cases separately.

I f the writer found (a) to be true, then the correct-
ness of our mailbox algorithm implies that the ith
reader must have read the current value of mailbox.

Communica t ions N o v e m b e r 1977
of Vo lume 20
the A C M N u m b e r 11

Hence, the reader must have used this current value
when it last evaluated the until condition of its repeat
statement , at which time it found r[i] fq mailbox = ~b.
This proves the desired result.

Next, assume that the writer found (b) to be true.
The writer either (i) did or (ii) did not use the current
version of r[i] when it found r[i] A mailbox = ~b. In
case (i), the desired result is immediate . In case (ii),
the writer must have read r[i] before the reader fin-
ished writing its current value. Hence the writer was
already in its for loop before the reader began to read
mailbox. This implies that the reader read the current
version of mailbox, and the result follows as in case (a).

It is easy to see that once the writer has finished
writing mailbox, it has priority over any reader which
then begins executing its algorithm. A reader wishing
to read a file whose name is in mailbox must then wait
until the writer has finished writing. If every read
operat ion must terminate , then the writer will even-
tually be able to write. However , a reader might have
to wait forever.

It is interesting to observe that no precaution is
taken to insure that a correct value is read when the
writer reads r[j] or a reader reads mailbox. A read of
any of these variables which occurs while it is being
written is allowed to obtain any arbitrary value. How-
ever, without some assumption about concurrent read-
ing and writing of mailbox, it is possible for a reader
to wait forever even though the writer never writes
any of the files it wishes to read. This can be prevented
if the value mailbox tk, 0 obtained by a reader always
satisfies the condition mailbox tk, ~1 _C mailbox tkl t_l mail-
boxtk + x~ U . . . U mailbox m. It is not hard to devise
ways of reading and writing mailbox which satisfy this
condition.

Mutual Exclusion

The "bakery algori thm" described in [5] provides
a solution to the mutual exclusion problem for N
processes without assuming any hardware implemented
mutual exclusion. To enter its critical section, process i
sets number[i] (which is initially zero) greater than
every other number[j] . It is allowed to enter when for
each nonzero number[j] : either number[i] < num-
ber[j], or number[i] = number[j] and i <- j.

This algorithm requires a (theoretically) unbounded
amount of storage for number[i] . We now show how
to insure a practical bound on the amount of storage
needed. It suffices to insure that the value chosen for
number[i] is at most one greater than a previously
chosen value of number[j] for some j; e.g. if values
are chosen at the rate of one per microsecond, then
this guarantees that number[i] will remain less than 2 55
for over a century. To do this, we assume that num-
ber[i] is stored as a multidigit number with non-nega-
tive digits. We then modify the algorithm so that:

(1) Process i chooses the (nonzero) value of number[i]
to be greater than or equal to its previous nonzero

811

value, as well as greater than number[j] for al l j :~
i.

(2) The value of number[i] is always written from
right to left and read from left to right.

Theorem 2 easily proves that this modification has the
desired effect. (One need only consider the nonzero
values of number[i] , since introducing zero digits can
only decrease the value which is read.) Moreover , it is
easy to verify that this does not alter the validity of the
three assertions proved in [5] which imply the correct-
ness of the original algorithm.

Conclusion

We proved two theorems and then gave several
algorithms to demonstra te their use. The algorithms
were actually developed first in order to solve some
problems in "theoretical p rogramming ." We abstracted
the essential aspects of the algorithms to form the
theorems. The decreasing cost of hardware has encour-
aged the development of systems composed of inde-
pendent computers sharing common data. The prob-
lems which arise in designing such systems will often
be more complex than the theoretical problems which
inspired our algorithms, and they may require different
algorithms for their solution. However , they will in-
clude problems of concurrent reading and writing of
shared data. When mult iprogramming a single com-
puter, such problems have traditionally been solved by
using mutual exclusion, which is easily implemented
with an "inhibit interrupts" operat ion. Such a simple
approach does not work for a true mult icomputer
system. We hope our theorems will be useful in the
problems of sharing data among different computers .

Finally, we wish to point out the common thread
that runs through all of our results: writing data ele-
ments in one order and reading them in the opposite
order. It is this technique which allows our algorithms
to work without assuming mutual exclusion of access
to shared data. The technique may have more applica-
tions than are suggested by our theorems.

Received September 1974; revised September 1976

References
1. Brinch Hansen, P. A comparison of two synchronizing concepts.
Acta lnformatica 1, 3 (1972), 190-199.
2. Brinch Hansen, P, Concurrent programming concepts. Comput-
ing Surveys 5, 4 (Dec. 1973), 223-245.
3. Courtois, P.J., Heymans, F., and Parnas, D.L. Concurrent
control with "readers" and "writers." Comm. ACM 14, 10 (Oct.
1971), 667-668.
4. Easton, W.B. Process synchronization without long-term inter-
lock. Proc. Third ACM Symp. on Operating System Principles,
Operating Syst. Rev. (ACM) 6, 1 and 2 (June 1972), 95-100.
5. Lamport, L. A new solution of Dijkstra's concurrent program-
ming problem. Comm. ACM 17, 8 (Aug. 1974), 453-455.
6. Lamport, L. Proving the correctness of multiprocess programs.
1EEE Trans. on Software Engineering SE-3 , 2 (Mar. 1977), 125-
143.
7. Schaefer, M. Quasi-synchronization of readers and writers in a
secure multi-level environment. TM-5407/003, System Development
Corp., Santa Monica, Calif., Sept. 1974.
8. White, J.C.C. Design of a secure file management system.
MTR-2931, The Mitre Corp., Bedford, Mass., June 1974.

Communications November 1977
of Volume 20
the ACM Number 11

