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Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data
in finite element analysis, and in these applications it is desirable to have as few obtuse
triangles as possible to reduce the discretization error. We present a variational approach to
suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal
Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of
the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant
properties of the CVT method with the newly introduced metric. Experiments show that
our algorithm produces anisotropic meshes with much fewer obtuse triangles than using
existing methods while maintaining mesh anisotropy.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Anisotropic meshes are used to approximate surfaces or flow fields for rendering and simulation (Cohen-Steiner et al.,
2004; Dey et al., 2007; Valette et al., 2008). For anisotropic triangle meshes to be used in finite element methods (FEM),
it has been well established (Babuska and Aziz, 1976; Bern and Eppstein, 1992a; Shewchuk, 2002) that the accuracy and
convergence of the interpolation function in FEM are greatly influenced by the maximal angle of a triangle element. Triangles
with large angles are also found to hamper the efficiency of some iterative algebraic solvers (Du et al., 2005). This implies
that obtuse triangles should be avoided as much as possible.1 The control of the maximum angle is difficult, however.
Existing methods for anisotropic triangulation always produce meshes that contain a large number of obtuse triangles.

There are a number of methods for computing anisotropic triangulations. The algorithms in Leibon and Letscher (2000),
Cheng et al. (2006), Labelle and Shewchuk (2003) compute an anisotropic Voronoi diagram of some fixed data points,
whose dual is an anisotropic triangulation. To allow unconstrained vertices, a number of methods have been proposed
(e.g., Bossen and Heckbert, 1996; Shimada, 1997; Du et al., 2005; Wang and Du, 2005; Jiao et al., 2006; Boissonnat et al.,
2008). Anisotropic triangulations that minimize interpolation errors of an underlying function or surface are characterized in
Simpson (1994), Rippa (1992). Based on similar considerations, data-dependent triangulation of fixed data points is studied
in Dyn et al. (1990, 2001). However, none of these methods consider avoiding obtuse triangles.
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While nonobtuse triangulation has been the topic of considerable research, little is known about how to remove or sup-
press obtuse triangles in anisotropic triangulations. Existing methods for computing nonobtuse triangulations (e.g., Baker et
al., 1988; Bern and Eppstein, 1992b; Li and Zhang, 2006; Brandts et al., 2009) are not applicable to anisotropic meshes as
they do not take the anisotropy requirement into consideration. In this paper, we present an effective method for suppress-
ing obtuse triangles in anisotropic triangle meshes while maintaining mesh anisotropy. Our contribution is the introduction
of a novel hexagonal Minkowski metric in the formulation of the centroidal Voronoi tessellation (CVT) method, based on
which a variational method is devised for computing anisotropic meshes. In addition, we also prove several properties of
the CVT method with the newly introduced metric. Our method is capable of producing anisotropic triangulations that have
much fewer obtuse triangles than using existing methods.

2. Preliminaries

A commonly used approach to anisotropic triangulation is based on anisotropic centroidal Voronoi tessellation (anisotropic
CVT). In this approach, an energy function is first defined for a set of points, called seeds, in a compact domain Ω . This
energy function is then minimized to determine the optimal distribution of the seeds. Finally, a triangle mesh is obtained
by taking the seeds as mesh vertices and using the dual of the Voronoi diagram of the seeds to determine edge connectivity
of the mesh. Two keys to successful application of such a CVT-based method are: 1) the formulation of an appropriate CVT
energy function reflecting the desired mesh quality criteria (e.g., anisotropy, orientation control, mesh density); and 2) the
development of effective optimization schemes for minimizing this function (e.g., initialization, convergence, avoidance of
poor local minima).

We will briefly introduce the concepts of anisotropic CVT, on which our triangulation algorithm is based. We first present
the basics about isotropic centroidal Voronoi tessellation (isotropic CVT) which are necessary for a good understanding of
anisotropic CVT. We assume a two-dimensional compact domain Ω for the simplicity of explanation, but the concepts to be
introduced apply also to the more general domains, including surfaces.

2.1. Isotropic CVT

Let X = (xi)
n
i=1 be an ordered set of points, called seeds or generators, in Ω . The Voronoi cell Ωi , also called the CVT cell,

of a seed xi is

Ωi = {
x ∈ Ω

∣∣ d(x,xi) � d(x,x j), ∀ j �= i, j = 1,2, . . . ,n
}

where d(x,y) is the Euclidean distance between the points x and y. The collection of the Voronoi cells Ωi of all the seeds xi
constitutes a Voronoi tessellation (or Voronoi diagram) of Ω . A constrained centroid of Ωi is the point in Ωi that is closest to
the centroid (i.e., the centre of mass) of Ωi ; note that the constrained centroid agrees with the centroid when the centroid
is inside Ωi . A centroidal Voronoi tessellation, or CVT, is a special Voronoi tessellation in which each seed xi coincides with
the constrained centroid ci of its Voronoi cell Ωi (Du et al., 1999).

From a variational standpoint, a CVT is characterized by a critical point (i.e., a gradient-vanishing point) of the following
isotropic CVT energy function (Du et al., 1999)

F (X) =
n∑

i=1

Fi(X) =
n∑

i=1

∫
Ωi

d2(x,xi)dσ (1)

where dσ is the differential area element of Ω . In practice, we seek to compute a CVT corresponding to a local minimizer
of F (X) and such a CVT will be called a stable CVT. Furthermore, a CVT given by a global minimizer of F (X) will be called
an optimal CVT. The most commonly used method for minimizing the CVT energy function is the Lloyd’s method (Du et al.,
1999), and a more efficient quasi-Newton method is recently proposed by Liu et al. (2009).

According to the celebrated Gersho’s conjecture (Gersho, 1979), as the number of seeds increases, the Voronoi cells {Ωi}
of an optimal CVT generated by the isotropic CVT energy function F (X) in Eq. (1) are asymptotically congruent regular
hexagons. Gersho’s conjecture has been proved in two dimensions by Gruber (1999) and supported by strong evidences in
three dimensions (Du and Wang, 2005). Consequently, for an optimal CVT, the energy values Fi(X) of all the CVT cells in
Eq. (1) are asymptotically equal. Taking the dual of such a hexagonal mesh yields an isotropic triangle mesh with nearly
equilateral triangle faces.

2.2. Anisotropic CVT

An anisotropic triangulation is computed with the CVT framework using a Riemannian metric in place of the Euclidean
metric in the CVT energy function.

A Riemannian metric tensor M is defined by a positive definite quadratic form Q (p;v) = vt M(p)v : Tp → R in the two-
dimensional tangent space Tp of each point p ∈ Ω , where v ∈ Tp . Since the metric M in F E (X) has an elliptic form, the iso-
distance curves under this metric are ellipses centred at p. The figure below shows the so-called unit ellipse E : v̄T M(p)v̄ = 1
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Fig. 1. An anisotropic CVT and its dual triangulation.

(in solid line), on the tangent plane of a point p, with the dashed lines being iso-distance curves which are called the metric
ellipses. Equipped with the metric M , the domain Ω becomes a two-dimensional Riemannian manifold. Then the anisotropic
CVT energy function is

F E(X) =
n∑

i=1

∫
Ωi

d2
E(x,xi)dσ (2)

where dE (x,y) is the geodesic distance between the points x and y on Ω with respect to the metric M , and Ωi is the
Voronoi cell of the seed xi defined with respect to M . A CVT computed by minimizing F E (X) is an anisotropic CVT, since its
Voronoi cells are elongated along the direction dictated by the metric M . To distinguish it from another type of anisotropic
CVT we are going to introduce, we will call it the elliptic CVT. Similarly, we may define the stable elliptic CVT and the
optimal elliptic CVT, corresponding to the local and global minimizers of F E (X), respectively. Taking the dual of an elliptic
CVT yields an anisotropic triangulation (see Fig. 1).

The shape of the Voronoi cells in an elliptic CVT can be deduced via the correspondence between an elliptic CVT of a two-
dimensional Riemannian manifold Ω and an isotropic CVT of a two-dimensional manifold Ω̂ in some higher-dimensional
Euclidean space, which is established by Nash’s embedding theorem (Nash, 1956). According to this correspondence (see Ap-
pendix A for details), within the corresponding tangent planes of Ω and Ω̂ , a Voronoi cell of the elliptic CVT of a seed point
p ∈ Ω is locally the image under an affine mapping of a regular hexagonal Voronoi cell of the isotropic CVT of Ω̂ . The
linear part of this affine mapping is given by a matrix G such that GT G = M−1(p), where M(p) is the metric at p. Hence,
each Voronoi cell of an elliptic CVT of a seed p is asymptotically an affinely regular hexagon (i.e., a regular hexagon under an
affine mapping) inscribed to some metric ellipse E ′ at p. Furthermore, the triangles in the dual anisotropic triangulation of
an elliptic CVT have the same anisotropy defined by E ′ (see Fig. 1).

Note that the factorization GT G = M−1(p) above is not unique, since there is also (QG)T (QG) = M−1(p) for any orthogonal
matrix Q. It means that any affinely regular hexagonal regions H of different orientations inscribed to a metric ellipse at p
in Ω corresponds to a regular hexagon (of different orientations) inscribed to the same metric circle in Ω̂ . Since the
embedding of Ω as Ω̂ preserves the CVT energy of each Voronoi cell, all H ’s of different orientations thus have the same
elliptic CVT energy (Fig. 2(a)). The elliptic CVT energy function F E (X) is therefore oblivious to the orientation of the Voronoi
cells in an elliptic CVT and minimizing F E (X) does not have any control over the orientations of the anisotropic CVT cells
that it generates.

The orientation of a Voronoi cell in an anisotropic CVT, however, can greatly affect the shape of the dual triangle. Fig. 3
shows two sets of hexagonal cells with different orientations inscribed to some metric ellipse of the same anisotropy. It can
be seen that while the cells in Fig. 3(a) generate obtuse triangles in the dual mesh, those in Fig. 3(b) yield acute triangles.
Consequently, the lack of orientation control in an elliptic CVT generally leads to the larger number of obtuse triangles in
the resulting anisotropic triangulation.

3. Hexagonal Minkowski metric

To enable the control of orientations of CVT cells, we introduce the hexagonal Minkowski metric in the CVT energy func-
tion. This metric is a special case of the Minkowski metric, also known as convex metric (Valentine, 1964). It can represent
the same mesh anisotropy as the Riemannian metric and is sensitive to CVT cell orientations.

Given an ellipse E in E
2 centred at the origin o, let H be an affinely regular hexagon inscribed in E (see the figure

below). The hexagon H defines a vector norm, denoted by ‖v‖H , for vectors v ∈ R
2—H is the “unit disk” in the sense that
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Fig. 2. (a) The elliptic CVT energy remains constant for hexagonal cells with different orientations. (b) The HM CVT energy varies with the orientation of
the hexagonal CVT cell. The dashed lines in black and in grey are the unit ellipse and metric ellipses in (a), and the unit hexagon and metric hexagons
in (b), respectively.

‖v̄‖H = 1 for any vector v̄ on H , and ‖kv‖H = |k| · ‖v‖H , ∀k ∈ R and ∀v ∈ E
2; hence, H is called a unit hexagon. The norm

‖v‖H will be called the hexagonal Minkowski metric or HM metric for short. For any two points x and y in E
2, their distance

induced by the HM metric is dH (x,y) = ‖x − y‖H , and is called the HM distance. All the points y having the same HM
distance to x lie on the same metric hexagon that is a uniformly scaled image of H centred at x (the dashed hexagons in
the figure below).

The CVT energy function based on the HM metric, called the HM CVT energy, is defined as

F H (X) =
n∑

i=1

F H,i(X) =
n∑

i=1

∫
Ωi

d2
H (x,xi)dσ . (3)

The CVT computed by minimizing F H (X) will be called the HM CVT, which is a new kind of anisotropic CVT. Fig. 2(b)
shows that the CVT energy F H,i(X) ≡ ∫

Ωi
d2

H (x,xi)dσ of a hexagonal cell Ωi (in red) has different values when the CVT
cell assumes different orientations. The energy reaches its minimum when the CVT cell has the same orientation as H .
This suggests that we may control the orientation of CVT cells by minimizing the energy function F H (X) defined with an
appropriate HM metric.

Let F̄c(s) = ∫
U (s,c) d2

H (x, c)dσ denote the CVT energy of a seed c with a Voronoi cell U (s, c) which is a uniformly scaled

image of H centred at a point c and has area s. It is shown in Sun et al. (2010) that F̄c(s) is indeed the minimum CVT energy
among all regions of area s and that F̄c(s) is convex. Therefore, F H (X) has a lower bound mF̄c(

|Ω|
m ) when m, the number of

seeds, is fixed. Moreover, when m approaches infinity, the affect due to the boundary of the domain Ω becomes negligible.
The following theorem depicts the CVT pattern induced by the HM metric when the CVT energy F H (X) approaches its lower
bound.

Theorem 1. Let Ω be a convex compact region in E
2 and (Xm) be a finite set of points in E

2 with |Xm| = m, for m = 1,2, . . . , such
that

F H (Xm) ∼ mF̄c

( |Ω|)
as m → ∞,
m
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Fig. 3. (a) The CVT and its dual triangulation generated by the unit hexagon H1. (b) The CVT and its dual triangulation generated by the unit hexagon H2.
It can be seen that the resulting triangle mesh contains obtuse triangles in (a) and contains acute triangles in (b).

where H represents a regular hexagonal Minkowski metric. Then Xm is asymptotically a regular hexagonal pattern of edge length
(

2|Ω|
3
√

3m
)1/2 , in which the hexagons are with the same orientation as H.

The proof is given in Sun et al. (2010). In fact, it can also be shown that when H is an affinely regular hexagon,
Xm asymptotically assumes a hexagonal pattern in which each hexagon has the same shape and orientation as H . The
anisotropy of H is therefore inherited in the hexagonal pattern and its dual triangle mesh.

We now consider choosing a unit hexagon to avoid obtuse triangles. Suppose that a part of a planar domain is endowed
uniformly with HM metrics specified by the two unit hexagons H1 and H2 of different orientations as shown in Fig. 3,
respectively. As H1 and H2 are inscribed to the same metric ellipse, they define the same mesh anisotropy. It can be seen
that the triangulation corresponding to H1 consists of obtuse triangles (Fig. 3(a)), while the triangulation corresponding
to H2 consists of acute triangles only (Fig. 3(b)). Therefore in order to suppress obtuse triangles, we opt to use the unit
hexagon H2 in Fig. 3(b), which is characterized by having one of its diagonals aligned with the major axis of the metric
ellipse.

In general, the Riemannian metric M is inconstant and varies over the domain. The shape of the optimal triangle mesh
that maintains the anisotropy of the domain with minimal number of obtuse triangles is therefore unknown in theory.
In this case, we may define an H2 metric that adapts with M. When the metric M varies smoothly, it can be considered
as locally approximately constant, and it is expected that the H2 metric should lead to a triangle mesh which maintains
anisotropy locally and at the same time suppresses obtuse triangles. Our experimental results in Section 5 indeed demon-
strate that the triangle mesh thus obtained with the H2 metric not only maintains the varying anisotropy well, but also
contains much fewer obtuse triangles, as compared with that using the elliptic metric M.

4. Algorithm

We assume the input is a domain Ω endowed with an HM metric tensor H , with proper orientations as shown in
Fig. 3(b) to suppress obtuse triangles. Our algorithm comprises the following steps:

Main algorithm

Step 1: Initialization—Randomly distribute a set of n initial seeds X = {xi} on Ω .
Step 2: Perform an HM CVT optimization.
Step 3: Perform k passes of the following refinement step (or until a specific target reduction in

the number of obtuse triangles is met):
3.1) Carry out an elliptic CVT optimization to cluster obtuse triangles.
3.2) Randomly perturb the seeds which are incident to obtuse triangles.
3.3) Carry out an HM CVT optimization to suppress obtuse triangles.

Step 4: Return the dual triangle mesh of the final optimized Voronoi tessellation as the resulting
mesh.

Step 3 of the main algorithm serves to help the optimization to escape from a poor local minimum through perturbation,
and hence to further reduce the number of obtuse triangles. Our tests show that a typical number of k is 10 which works
well for a moderate number of seeds. This refinement step will be explained in detail in subsequent subsections.

Both the HM CVT and the elliptic CVT optimizations in the main algorithm are computed using the same framework as
follows:
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Fig. 4. Computing the Voronoi cell boundaries in an input mesh triangle T . Each triangle vertex is labelled with its closest seed and LT is the number of
different labels at the vertices of T . (a) LT = 1 and no boundary should lie in T . (b) LT = 2 and the Voronoi cell boundary is a line connecting the bisection
points on the edges of T . (c) LT = 3 and a Voronoi cell vertex w is found in T . (d) If w /∈ T , we locate w on a neighbouring triangle T ′ with LT ′ = 2.
(e) Further if w /∈ T ′ , the tracking stops and w is snapped to an edge of T ′ . (f) The tracking also stops if LT ′ = 3.

CVT optimization framework

Perform m iterations of the following optimization steps:

Step 1: Compute the Voronoi cells of X, the energy terms Fi(X) and the gradient ∇ Fi(X) of each
seed xi .

Step 2: Use the L-BFGS algorithm, an effective quasi-Newton method, to obtain a new set of
seeds X′ . Project X′ to Ω . Replace X by X′ .

In the above CVT framework, the difference between computing an elliptic CVT and computing an HM CVT is that they
use different ways of computing the Voronoi cells, the energy terms and the gradient terms, according to their respective
metrics. This framework differs from the conventional CVT optimization framework in that instead of looping through until
convergence of Fi(X), we perform only a specific number of iterations (m) for the optimization steps out of efficiency
consideration. The termination of the optimization is determined by the number of refinement steps taken in the main
algorithm. Our implementation uses m = 50 iterations for all CVT optimizations which has demonstrated a satisfactory
performance in our framework.

In the following we will present some implementation details of our method.

4.1. Computing Voronoi diagram

The existence of Delaunay triangulations on Riemannian manifolds has been established in Leibon and Letscher (2000),
assuming sufficiently dense seeds. An anisotropic Voronoi diagram on a Riemannian manifold is so defined that the distance
between points is given by the length of the shortest geodesics with respect to a Riemannian metric. To facilitate compu-
tation, this distance is usually approximated so that the bisectors between two seeds can be simplified as conic sections or
quadric surfaces (Jiao et al., 2006). Different methods for computing anisotropic Voronoi diagrams have been presented in
Cheng et al. (2006), Labelle and Shewchuk (2003), Boissonnat et al. (2008). However, no practical implementations of these
methods are known that work for mesh surfaces.

Our method computes a discrete approximation of anisotropic Voronoi diagrams on a triangulation of the input do-
main Ω . The number of triangle elements of the input mesh needs to be high enough, as compared with the size of the
output mesh, to ensure sufficient accuracy. A ratio of about 10 : 1 is generally recommended. We also adopt the convention
in Du and Wang (2005) in which the metric tensor is defined at the input mesh vertices.

To determine the Voronoi tessellation given seeds X on Ω , we compute an approximation to the Voronoi cell boundaries,
each of which is the bisector of two seeds x1, x2 ∈ X. A point x ∈ Ω on the bisector has equal distances to x1 and x2, that
is, dH (x,x1) = dH (x,x2). Vertex-flooding as in Cohen-Steiner et al. (2004) is first used to label each vertex in Ω with its
nearest seed point with respect to H . Our idea is to process each triangle T to locate any bisector that it may intersect.

For each triangle T , we locate the bisection points zi on the sides of T whose endpoints have different labels using the
bisection method (Fig. 4). If the vertices of T are of three different labels, we first determine a bisecting line l equidistant
to two seeds x1 and x2, and attempt to locate a Voronoi vertex w in T equidistant to all three seeds on l. If w is not in T ,
we shall seek its location in a neighbouring triangle T ′ (Fig. 4(d)–(f)). Out of computational efficiency consideration, these
treatments are not exhaustive and only serve to approximate the Voronoi boundaries.
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4.2. Iterative solver

We use the limited memory BFGS method, also called the L-BFGS method (Liu and Nocedal, 1989), to minimize the CVT
energy function F H (X). The L-BFGS method is a variant of the classical BFGS, which is an iterative quasi-Newton method.
The L-BFGS method takes as an input a set of seeds X, the CVT energy F H (X) and its gradient ∇ F H (X), and returns the
new positions for X. To compute the CVT energy F H,i(X) of each Voronoi cell Ωi , we use a triangulation Ti of Ωi from the
preceding computation of the Voronoi diagram. Let � j be a triangle in Ti . The energy term F H,i(X) is approximated as:

F H,i(X) =
∑

� j∈Ti

∫
� j

d2
H (x,xi)dσ ≈

∑
� j∈Ti

f (� j)

where f (� j) is the approximate CVT energy contributed by the triangle � j , given by the quadrature (Hillion, 1977)

f (� j) = A j

3

(
d2

H (m1,xi) + d2
H (m2,xi) + d2

H (m3,xi)
)

(4)

where A j is the area of � j and mi , i = 1,2,3, are the mid-points on the sides of � j . The gradient ∇ F H (X) is then computed
approximately based on the expression of f (� j) in Eq. (4).

4.3. Escaping from a poor local minimum

The optimization of the CVT energy function with the HM metric may be trapped at a poor local minimum which results
in an undesirable CVT, as shown by the following theorem.

Definition 1 (Centrosymmetric seed). A seed s is called a centrosymmetric seed (CS) if its neighbouring seeds (i.e., those seeds
sharing at least one Voronoi edge with s) in the Voronoi diagram is centrosymmetric with respect to s. The figure below
illustrates a CS s and its six neighbouring seeds in the dual triangulation.

Theorem 2. Given a set of seeds Y, if Y consists of only centrosymmetric seeds, the partial derivative of F H (Y) with respect to each
seed in Y is zero.

The proof of the theorem is given in Appendix B.
Theorem 2 means that when a region R consists solely of CS, the gradient-based optimization of F H (X) cannot improve

further locally in R due to the zero gradient. However, the CS seeds may be arranged in such a way that the dual trian-
gulation of the CVT contains solely of obtuse triangles (as is shown in the triangulation in Fig. 3(a)). We also observe that
obtuse triangles often scatter over the domain after an HM CVT optimization, which renders it hard to further decrease the
number of obtuse triangles due to the difficulty in fixing an isolated obtuse triangle in an optimization manner. Therefore,
we devise a refinement step (Step 3 of the main algorithm) in order to keep the optimization from being trapped at such
poor local minima. We note that the isotropic CVT energy function in a convex two-dimensional domain with C2 density
is proved to be C2 smooth in Liu et al. (2009). Elliptic CVT energy function with a unique elliptic metric inherits the C2

smoothness and in this case the L-BFGS method converges faster. Also, elliptic CVT is shown to have the ability to cluster
nearby obtuse triangles together by our experiments. Therefore, we use the elliptic CVT in an interleaved manner to cluster
scattered obtuse triangles together to form connected regions of them. The positions of those seeds incident to an obtuse
triangle are then randomly perturbed by at most 0.3 times the average length of their incident edges. Next, an HM CVT op-
timization is run again to obtain an enhanced result. Multiple passes of this refinement step can be performed if necessary.
In this regard, our framework, apart from using a randomly distributed set of points on Ω as the initial seeds, may also
accept a partial or complete remeshing result, such as that of an elliptic CVT of Ω as the input.

5. Validation

In this section, we present some experimental results to demonstrate the effectiveness of our method in suppressing
obtuse triangles as well as maintaining the anisotropy of a triangulation. All tests are conducted on a PC with a 3.16 GHz
Xeon CPU with 8 GB RAM. Also, we use k = 10 for our main algorithm which is given in Section 4.



544 F. Sun et al. / Computer Aided Geometric Design 28 (2011) 537–548
Fig. 5. Triangulation computed by (a) the elliptic CVT method; (b) our method, of 1000 vertices in a square with uniform anisotropy 1 : 2.

Fig. 6. Triangulations of 2000 points on a two-dimensional domain with varying anisotropy. (a) The input vector field. (b) An elliptic metric tensor is defined
based on the vector field. (c) The elliptic CVT generates an anisotropic mesh with 59.9% obtuse triangles. (d) Our method generates an anisotropic mesh of
the same anisotropy with 17.3% obtuse triangles. The meshes in (c) and (d) follow the same anisotropy defined in (b).

Fig. 5(a) shows the triangulation of 1000 seeds in a square computed with elliptic CVT, that is, by minimizing F E (X)

in Eq. (2). The mesh has a uniform anisotropy of aspect ratio of 1 : 2, and 41.5% of the triangles are obtuse (marked in
blue). In comparison, the triangulation computed with our method has only 4.9% of its triangles being obtuse. Note that,
due to boundary effects and difficulty in reaching a global minimum, the obtuse triangles in general cannot be removed
completely. The input square domain in this example is a mesh of 19,044 triangles. The computation takes 69 s.

Next, we aim to produce a triangulation of a two-dimensional domain associated with a vector field indicating the
desired triangle alignments and elongations (Fig. 6(a)). An anisotropic metric tensor is defined based on the vector field as
shown in Fig. 6(b). The input domain is discretized as a mesh of 56,644 triangles and 1000 seeds are used. The elliptic CVT
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Fig. 7. Anisotropic meshes of 3000 vertices on a bone model. (a) The elliptic CVT generates a mesh with 20.1% obtuse triangles. (b) Our method generates
a mesh with 4.6% obtuse triangles, using the result in (a) as the initial input.

Fig. 8. The number of obtuse triangles after each pass of refinement step for the three examples given in Figs. 5–7. There are a total of k = 10 passes.

produces a mesh with 59.9% obtuse triangles (Fig. 6(c)), which is greatly reduced to 17.3% by our method (Fig. 6(d)). Our
method takes 261 seconds for generating the triangulation.

Fig. 7 shows another example in which an anisotropic triangulation is generated for a bone-like freeform surface. The
anisotropy metric M is defined to depend on the principal curvature directions and the principal curvature magnitudes on
the surface. The ratio of the two eigenvalues of the metric M is the largest (about 5 : 1) in the middle part of the bone.
The input mesh is of 47,936 triangles and a total of 3000 seeds is used. The elliptic CVT results in 20.1% obtuse triangles
which are mainly found on the bone shaft (Fig. 7(a)). Our method based on the HM CVT produces a triangle mesh with 4.6%
obtuse triangles (Fig. 7(b)). The total time taken by our method is 244 seconds.

As we have mentioned in Section 4, the refinement procedure, that is, Step 3 of our main algorithm, helps further
reduce the number of obtuse triangles. The percentage of obtuse triangles after each pass of the refinement step for all the
above three examples are shown in Fig. 8. Generally speaking, the number of obtuse triangles decreases with respect to
the number of passes. However, since our framework is variational, the number of obtuse triangle is not strictly decreasing.
Nevertheless, after 10 passes of the refinement steps, the number of obtuse triangles can further be reduced by 5% to 15%
in the three examples.

We also evaluate how well our resulting triangulation can maintain the anisotropy of a given domain. To evaluate the
anisotropy quality of a triangle T at a point p, we transform T by G−1 to obtain T ′ , where GT G = M−1(p) and M(p)
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Fig. 9. The affine transformation G−1 transforms the metric tensor ellipse to a circle. (a) A triangle, T , adapting the metric anisotropy well, is transformed
to a regular triangle T ′ . (b) For a triangle T which does not maintain the anisotropy of the metric tensor, the same affine transformation G−1 maps T to
a nonregular triangle. The minimal angle θ of the transformed triangle T ′ thereby provides an anisotropy measure of T .

Table 1
The running time of our algorithm and the anisotropy quality measure of the output triangulations of the three examples given in Figs. 5–7. The qualitative
measures for the elliptic CVT method are also provided for comparison. Both the elliptic CVT and our methods capture the anisotropy well. Our method
can suppress obtuse triangles effectively while not compromising the anisotropy quality of the triangulations.

Our method Elliptic CVT

Time (seconds) Anisotropy quality # obtuse triangles Anisotropy quality # obtuse triangles

θmin θavg θmin θavg

Square
(uniform anisotropy)

69 27.1◦ 53.6◦ 4.9% 25.2◦ 52.4◦ 41.5%

Square
(varying anisotropy)

261 20.2◦ 53.4◦ 17.3% 8.6◦ 52.0◦ 59.9%

Bone 244 27.7◦ 50.6◦ 4.6% 21.4◦ 49.4◦ 20.1%

is the metric at p. See Fig. 9 for an illustration. Since G−1 transforms the metric ellipse to a circle which is isotropic, a
triangle T that adapts to the anisotropy of the metric ellipse well will be mapped to a triangle T ′ that is close to a regular
triangle. Otherwise, if T does not maintain the anisotropy of the metric ellipse, T ′ will deviate much from a regular triangle.
Hence, we use a common isotropy quality measure of the triangle T ′ , the minimal angle (denoted by θ ) of T ′ (Frey and
Borouchaki, 1997), as the measure of the anisotropy quality of T . It is clear that θ is at most 60 degrees, and the closer θ

is to this maximal value, the better the anisotropy quality of T . Of all minimal angles in the transformed triangles (i.e., in
the isotropic space), we denote the smallest one as θmin and their average as θavg, and use these two values as a measure
of the anisotropy quality of a triangulation. The anisotropy quality of the results generated by our method in the above
three examples is also shown in Table 1. We note that the anisotropy quality is good, with an average minimal angle of
around 50 degrees and a worst case minimal angle of about 20 degrees, which happens in the case of a 2D domain with
varying anisotropy. The bone surface example manifests a superior worst case performance with the smallest minimal angle
being 27.7 degrees. By comparing with the anisotropy quality of the triangulations generated by the elliptic CVT method, it
can be seen that our method can effectively suppress obtuse triangles while not compromising the anisotropy quality of the
triangulations.

6. Conclusions

Our method can greatly reduce the number of obtuse triangles in anisotropic meshes, as compared with the conventional
CVT-based method. However, because our method is an optimization method, it does not have the ability to reduce the
maximal angle of the triangles. Besides that, it still cannot remove obtuse triangles completely. There are at least two
reasons for this. The first is due to the boundary effect, that is, obtuse triangles tend to persist along domain boundaries,
as shown in the examples in Figs. 5 and 6. The second reason is the difficulty in reaching the global minimizer of the HM
CVT energy function, despite our careful optimization strategy that has kept us from getting trapped in poor local minima.
Hence, further research is needed to improve the result of the optimization.

Another issue is efficiency. Our current implementation needs several minutes to compute a mesh of moderate size
(of several thousand vertices). While slow convergence in CVT computation is certainly a factor, we note that in each
iteration, most of the time is spent on computing the anisotropic Voronoi diagram on a mesh. It is envisioned that consid-
erable speedup might be achieved by using surface parametrization with multi-charts and GPU acceleration for computing
anisotropic Voronoi diagrams.
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Appendix A. Correspondence between an ACVT of a two-dimensional manifold and a CVT of a higher-dimensional
Euclidean space

Here we will discuss how the shape of a Voronoi cell of an optimal anisotropic CVT (or ACVT) is determined by a Rieman-
nian metric M . First we will establish the correspondence between an ACVT on a two-dimensional Riemannian manifold Ω

and an isotropic CVT in a higher-dimensional Euclidean space. According to Nash’s embedding theorem (Nash, 1956), the
surface Ω , as a two-dimensional Riemannian manifold, can be embedded isometrically as a two-dimensional manifold Ω̂

in a Euclidean space E
k , which is not necessarily three-dimensional—that is, Ω̂ ⊂ E

k is equipped with Euclidean metric.
Denote this mapping (or embedding) by R(x) = x̂ : Ω → Ω̂ . Clearly, R maps the original anisotropic CVT function F (X) in
Eq. (2) to

F̂ ( X̂) =
n∑

i=1

∫

Ω̂i

d2
E(x̂, x̂i)dσ ,

which is the conventional CVT function on Ω̂ with Euclidean metric. It follows that F̂ i( X̂) ≡ Fi(X) for all i and F̂ ( X̂) ≡ F (X).
Hence, the minimization of F (X) is equivalent to that of F̂ (X̂) under R .

As proved in Gruber (2001), the Voronoi cell Ω̂i of the CVT on the two-dimensional manifold Ω̂ with Euclidean metric is
asymptotically a regular hexagon Ĥ . Let H and Ĥ be corresponding optimal CVTs on Ω and Ω̂ . Consider the corresponding
seeds xi of H and x̂i of Ĥ . Between the tangent spaces Ti of Ω at xi and T̂i of Ω̂ at x̂i , the metric M(xi) = (G−1)T G−1

at xi induces a linear mapping v = Gv̂ : T̂i → Ti , which is the linearization of the stretching of the embedding R(x) of Ω

as Ω̂ . The linear mapping G−1 maps the regular hexagonal Voronoi cell Ĥ of the CVT at x̂i to an affinely scaled (anisotropic)
hexagonal cell H of the ACVT at xi , which is inscribed in the ellipse vt Mv = c in the tangent plane Ti , for some constant
c > 0. Thus, we have determined asymptotically the shape the Voronoi cells of a CVT produced by the anisotropic CVT
energy function F (X) in Eq. (2). Furthermore, because F̂ i( X̂) ≡ Fi(X) for all i, it follows from the isotropic case that the
anisotropic CVT energy terms Fi(X) are equal for all i asymptotically in an optimal anisotropic CVT.

Appendix B. Proof of Theorem 2

We assume the Riemannian metric defined on the domain Ω is the same everywhere.

Definition 1 (Centrosymmetric seed). A seed s is called a centrosymmetric seed (CS) if its neighbouring seeds (i.e., those seeds
sharing at least one Voronoi edge with s) in the Voronoi diagram is centrosymmetric with respect to s.

Definition 2 (Centrosymmetric Voronoi cell). A Voronoi cell is called a centrosymmetric Voronoi cell (CVC) if it is centrosym-
metric with respect to the seed of the cell.

Definition 3 (Centrosymmetric pattern). Given a set of seeds Y, if each Voronoi cell of Y is a CVC, then Y form a centrosym-
metric pattern (CP).

Lemma 1. If a seed is a CS, its Voronoi cell is a CVC.

The proof is simple and is omitted here.

Theorem 2. Given a set of seeds Y, if Y consists of only centrosymmetric seeds, the partial derivative of F H (Y) with respect to each
seed in Y is zero.

Proof. Since each seed in Y is a CS, its Voronoi cell is a CVC. A simple calculation shows that the partial derivative with
respect to such a seed is zero. �
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