Navigation Made Personal:
Inferring Driving Preferences from GPS Traces:

Daniel Delling
Sunnyvale, USA
daniel.delling@gmail.com

Andrew V. Goldberg
Emerald Hills, USA
avg@alum.mit.edu

Moises Goldszmidt
. Palo Alto, USA .
moises.goldszmidt@gmail.com

John Krumm Kunal Talwar Renato F. Werneck
_ Microsoft Research San Francisco, USA San Francisco, USA
jckrumm@microsoft.com kunal@kunaltalwar.org rwerneck@acm.org

ABSTRACT

All current navigation systems return efficient source-to-
destination routes assuming a “one-size-fits-all” set of ob-
jectives, without addressing most personal preferences. Al-
though they allow some customization (like “avoid highways”
or “avoid tolls”), the choices are very limited and require
some sophistication on the part of the user. In this paper
we present, implement, and test a framework that generates
personalized driving directions by automatically analyzing
users’ GPS traces. Our approach learns cost functions us-
ing coordinate descent, leveraging a state-of-the-art route
planning engine for efficiency. In an extensive experimen-
tal study, we show that this framework infers user-specific
driving preferences, significantly improving the route qual-
ity. Our approach can handle continental-sized inputs (with
tens of millions of vertices and arcs) and is efficient enough
to be run on an autonomous device (such as a car navigation
system) preserving user privacy.

Categories and Subject Descriptors

G.2.1 [Combinatorics|: Combinatorial algorithms; 1.2.6
[Learning]: Parameter Learning

Keywords

shortest path, personalization, cost function, continental road
networks, machine learning

1. INTRODUCTION

Navigation systems have become ubiquitous, available on
the web, mobile devices, cars, and embedded systems from a
variety of providers, including Apple, Baidu, ESRI, Garmin,
Google, HERE, Microsoft, PTV, TomTom, and Yandex.

*This work was done while D. Delling, A. V. Goldberg,
M. Goldszmidt, K. Talwar, and R. F. Werneck were at Mi-
crosoft Research Silicon Valley.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SIGSPATIAL ’15 November 03 - 06, 2015, Bellevue, WA, USA

(© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-3967-4/15/11...$15.00

DOI: 10.1145/2820783.2820808

Given an origin and a destination, these systems generate
driving directions by computing shortest paths in a graph
modeling the road network. Each arc of the graph repre-
sents a road segment and each vertex models an intersection
with additional turn information. The notion of “shortest”
is more general than one based on distance alone. It is stan-
dard practice for these systems to have a cost function that
takes into account various considerations [23]. Each arc or
turn is assigned a nonnegative cost according to which the
routing engine computes shortest paths.

In current systems, the cost function is defined by the
vendor and depends on dozens of static properties of each
road segment (physical length, number of lanes, speed limit,
historical traffic data, road category, and so on) or turn type
(left, right, U-turn, etc.). The standard parameters of the
cost function, which determine how much weight to give to
each property of the cost function, are meant to be reason-
able for the “average” driver. In order to address idiosyn-

Figure 1: A GPS trace (flags) and routes (lines)
computed before (left) and after (right) our opti-
mization. The source of the trip is indicated by a
green (lower) flag and the destination by a red (up-
per) flag. A white flag is a GPS point that can be
reasonably matched to the computed route; a black
flag cannot. The route computed with default pa-
rameters (before optimization) differs significantly
from the trace, whereas the one computed after op-
timization is a perfect match.

cratic preferences, vendors sometimes expose a small subset
of these parameters to users, often in binary terms (such
as “avoid tolls” or “prefer highways”). This can be too lim-
ited, as drivers may have much finer preferences. Indeed,
our results allow us to distinguish between several different
driving habits. For example, delivery trucks famously avoid
making turns against traffic. Others avoid turns at all, pre-
ferring simple paths. Ideally, users should be free to specify
whatever tradeoffs they wish to make by adjusting all the
“knobs” (parameters) available in the underlying data rep-
resentation. Simply exposing these knobs, however, is not
realistic or even desirable. Most users would be unable to
express mathematically all the tradeoffs they make in prac-
tice, since this would require making quantitative compar-
isons between, say, making a U-turn and paying a toll. Also,
as there are dozens of parameters, most users would be un-
willing to tune them, even assuming that they could handle
this vast combinatorial space.

In this paper, we propose an unsupervised learning frame-
work that can automatically infer the preferences of a user
based on an analysis of how he or she actually drives. In
more formal terms, the problem we address is as follows:
given a parameterized function that assigns costs to arcs and
turns of a road network, together with a set of traces rep-
resenting specific driven routes (for example, from an indi-
vidual user), find a set of parameter values that best fits the
traces. We define “best” so as to ensure that as many traces
as possible correspond to shortest paths with respect to the
arc and turn costs. Figure 1 gives an example. We note that
our framework could be easily extended to take into account
other factors (such as traffic situation or weather) if we were
to have access to such data.

The main contributions of this work are as follows. First,
we customize a version of stochastic coordinate descent [4,
8, 27] in order to learn the parameters of our cost func-
tion. Second, we engineer the framework to make it scalable
to the large graphs required to represent continental road
networks (tens of millions of vertices) and to thousands of
traces. Third, we present an extensive experimental evalua-
tion of our techniques using real-world map data from Bing
Maps, as well as a large number of real traces from 85 vol-
unteer drivers. We show that we can (a) successfully recover
a cost function in a few minutes, and (b) generate personal-
ized cost functions (improving the route quality in almost all
cases) for individual users in about 30 seconds on a server.

2. PRELIMINARIES

As is standard in this domain, we model a road network
as a directed graph G = (V, A), where each vertex v € V
represents an intersection and each arc a € A corresponds to
a (directed) road segment. In addition, each intersection has
associated turns between its incoming and outgoing arcs. A
cost function F' maps each arc a or turn ¢ into a nonnegative
cost reflecting the effort to traverse it. A path in the graph
is a sequence of arcs of the form (vo,v1), (v1,v2), (v2,vs),

.+, (Uk—1,vk). The cost of a path is the sum of the costs of
its arcs and of the turns between them. The shortest path
problem takes as input the graph G and two arcs as and ay,
and returns the shortest (minimum-cost) path that starts at
as and ends at a; in G.

The cost function F' maps the static properties of any arc
(road category, number of lanes, speed, etc.) or turn type
(left, right, U-turn, etc.) into the cost of traversing it. Each

vendor uses a particular proprietary F' to provide routes to
its users. Regardless of the particular form and shape of F,
we will make the reasonable assumption that it is defined by
a vector of parameters 8. To make this dependence clear, we
refer to a cost function F instantiated by a vector 8 as Fp.

As an example, assume each road segment has a physical
length (in meters) plus indicator (0/1) variables for three
road categories (local, arterial, freeway). Moreover, there
exist four types of turns (left, right, straight, U-turn). We
can define the function F' to use average speeds for each
road category and fixed values (times) for each turn type.
A vector 8 can then specify the numerical values of the cor-
responding coefficients in F. As an example of 8, we can
set 20, 40, and 60 kph for the three road categories; for the
turns, we could use Os for straight, 5s for right, 10s for left,
and 15s for U-turns. This vector of parameters would be a
reasonable choice for an average driver. For ambulances, we
could have a different 8’ with higher average speeds (say, 30,
50, and 80kph) and fixed small costs for all turns (3s). For
trucks, we could have a third vector 5" with reduced aver-
age speeds and higher costs for left and U-turns. Note that
these examples are simplified and not necessarily realistic;
a real-world data set has many more static properties (and
coefficients to set).

In this work, we use the cost function F' actually used by
Bing Maps. It has a few dozen parameters §; and is non-
linear; its precise form is proprietary. It correlates well with
driving times, using additional penalties to avoid, in vary-
ing degree, undesirable elements (such as unpaved roads,
U-turns, and tolls). Only a subset of all parameters is “ac-
tive” for any individual arc or turn. For example, the cost of
a freeway arc does not depend on the parameter associated
with the category “unpaved roads”. We note that we use the
real-world cost function used by Bing Maps as of 2014, with
no simplifications. This function has one order of magnitude
more parameters compared to previous work [22, 23]. The
flipside of using such a function is that some specifics are
proprietary. However, our algorithm works for other reason-
able cost functions.

A trace is a sequence of points, given by latitude and longi-
tude. Road networks are embedded into the same geometric
space E, and each vertex in G has an associated point in
E. An arc (v,w) is represented as a polyline (sequence of
straight segments) between the points corresponding to v
and w. Besides v and w themselves, the polyline may have
additional interpolation points to model curved roads. The
closest arc to a given point is the arc whose polyline has
minimum distance (in the geometric space) to the point.
The point-to-point shortest path problem takes as input the
graph GG, the embedding F, and two points ps and p;. It first
finds the closest arcs as and a: to ps and p:, respectively,
and then solves the (arc-to-arc) shortest path problem.

2.1 CRP

Our framework relies on the customizable route planning
(CRP) technique [15] for computing shortest paths. Al-
though CRP can be used as a black box within our al-
gorithm, we outline how it works for completeness. (The
reader can find more details in the original article [15].) The
distinguishing feature of CRP is that it splits the usual pre-
processing phase in two subphases.

The first subphase creates multiple (typically no more
than five) levels of nested partitions. Within each level,

CRP partitions the vertices into cells of bounded size (num-
ber of vertices) while minimizing the number of edges be-
tween them. Crucially, this phase does not depend on the
cost function, and therefore only needs to be run once (in a
few minutes) on continental road networks.

The second preprocessing subphase (called customization)
then takes as input the partition (from the first phase) as
well as a cost function (Fj3 in our case), and builds an over-
lay. For each cell in the partition, it computes shortcuts
representing the shortest paths between its boundary ver-
tices. Although the customization subphase must be rerun
for every new vector 8 we test, it is quite fast, particularly
when run on GPUs [16].

A query from a source as to a target a; runs a bidirec-
tional version of Dijkstra’s algorithm, but using shortcuts
to skip cells that contain neither as nor a;. On continental
road networks, even long-range queries visit only a couple of
thousand vertices on average.

3. BASIC FRAMEWORK

In a nutshell, our learning task is as follows. We are given
as input a road network G, a cost function F' with an initial
vector B° of parameters, and a set of traces 7. Our goal
is to find a vector 8* such that the paths produced by a
navigation engine using F+ “match” T' as well as possible.
The real-life cost function we have access to has over 50
parameters; this is the number of components in the vector
B* we must learn.

Our basic approach to learn these parameters is to use a
version of stochastic coordinate descent [4, 8, 27]. We main-
tain a current vector 8, which we steadily try to improve as
the algorithm progresses. The main building block of our
approach is a local search procedure, which systematically
explores the parameter space to find improvement steps, and
keeps moving towards improving solutions until it reaches a
local optimum. To escape local optima, we use two strate-
gies: perturbation and specialized sampling. The first allows
the algorithm to explore “plateaus” in the search space, i.e.,
different parameter values that do not lead to strictly better
solutions. Those are quite common in our application, as
multiple vectors 5 can lead to the same shortest path be-
tween a given source and a given destination. (Intuitively,
although the ; parameters are continuous, the actual paths
they induce are discrete.) To escape deeper valleys in the
search space, we rely on specialized sampling to focus the at-
tention of the algorithm on traces that are not well matched
by the current g8 value.

Note that we have kept the notion of “matching” measured
traces to computed paths deliberately vague in our problem
formulation, since our fitting procedure is in general agnostic
to this choice. All it assumes is the availability of a quality
oracle Q(G, T, Fg) capable of evaluating a set of parameters
[on a set of traces T'. Our convention is that higher scores
mean greater quality; our objective is thus to maximize the
sum of the scores of all traces. Note that if we want to bias
the cost function towards certain traces, we could assign a
weight to each trace and maximize the weighted sum of the
scores of all traces.

4. LEARNING PROCEDURE

We next describe in detail the elements of our learning
procedure: coordinate descent and the two procedures to

escape local minima. Then we present an overview of how
these three parts interact.

4.1 Local Search

Following a basic stochastic coordinate descent approach,
local search proceeds in rounds and terminates when several
consecutive rounds fail to improve the quality score. Each
round first selects a random permutation of the parameters
(components) in 3, then searches for a better value for each
one in the order given by the permutation. After processing
a parameter, we update 8 (if needed) and proceed to the
next one.

Coordinate descent has been developed in the context of
nonlinear optimization [4, 8, 27], where a change in a given
coordinate is computed using line search. In our case, the
objective function is discrete (and thus non-differentiable),
so we use sampling instead of line search to find a coordi-
nate change that improves the objective function. Our ex-
periments show that the sampling approach works well for
our problem.

Formally, to find a better value for 3;, we take a sample
set of alternative values for §;, biased towards the current
value. For each value in the sample, we compute the quality
score of the solution obtained from /5 by changing (; to the
sample value. If the mazimum score value is greater than
the current one, we change 3; to a sample value that gives
the maximum score. Otherwise 8; remains unchanged.

4.2 Perturbation

Since many parameter values may induce the same short-
est path, there are many plateaus in the multi-dimensional
surface defined by Fjs (we verified this experimentally). If 8
is on a plateau, no change in a single parameter value leads
to a score improvement. However, a simultaneous change in
several parameters may yield a better score. The perturba-
tion phase attempts to escape a plateau. It is similar to the
local search phase, but allows “sideways” moves: changes in
a parameter value with no change in quality score.

More precisely, the perturbation phase processes the pa-
rameters in random order. For each parameter 3;, it samples
a few values (biased towards the initial value), just as in the
local search phase. Let v, and vy be the minimum and max-
imum sampled values that achieve the same quality score as
the initial 8; value. We sample uniformly at random from
[va, vs] until we find a value that also matches this score (on
rare occasions, values in [vq, vp] can lead to a worse score),
and set (3; to it. Occasionally, a value tested during this pro-
cedure will lead to an improved quality score. In such cases,
we set (; to that value and end the perturbation phase.

We experimented with combining the local search and per-
turbation phases into one, by allowing the local search phase
to move sideways when an improvement is not found for a
parameter. Separating these two phases led to slightly bet-
ter results.

4.3 Specialized Sampling

The goal of this phase is to escape deep valleys in the
search space in order to explore alternative local minima.
To perform a “drastic” move and explore a different sec-
tion of the search space, we identify the traces that are not
fully matched (i.e., that are not assigned the highest possi-
ble score by the quality oracle). To emphasize these traces
when evaluating the overall score, we increase their weights

and maximize the weighted sum of the scores of all traces.
We found that this extreme perturbation is most successful
when we increase the weight by a factor of 10. For simplic-
ity, we refer to this specialized sampling as boosting in the
remainder of this paper, although it is technically not the
same as the usual definition [30].

4.4 The Algorithm in Full

Our final algorithm has three parameters (ML, MS, MP). It
repeatedly performs rounds of local search (stochastic coor-
dinated descent) until it sees ML consecutive rounds in which
the quality score does not improve. The algorithm then uses
up to MP rounds of perturbation to try to escape the local
optimum; if it succeeds, it restarts from the current solution.
Otherwise, the algorithm uses specialized sampling, i.e., it
penalizes unmatched traces and restarts as soon as an im-
provement is found for the weighted trace set. At most Ms
rounds of specialized sampling are allowed. Eventually, the
algorithm returns the solution with the highest score (un-
der the non-boosted sets evaluated) found during the entire
process. By default, we set Ms = 10, ML = 3, and MP = 10.
We also consider a faster economical mode of our algorithm,
which uses MS = 3, ML = 2, and MP = 3.

5. QUALITY ORACLE

A basic operation of our algorithm (executed in various
places) is to evaluate the quality score Q(G, T, F;3) of the cost
function F' with a set of parameter values § with respect to a
set of traces T'. We first define the precise score function we
use in our experiments, then explain how it can be computed
efficiently.

5.1 Quality Score

A fundamental operation is to assign a quality score to
each individual trace t € T, given a vector S of parameters.
We do so by determining how many points of the trace can
be mapped to the corresponding shortest path (according to
the cost function Fp).

More precisely, to evaluate the trace ¢, we first run a point-
to-point shortest-path query from its first to its last point.
Let P be the corresponding shortest path. We say that a
point p in t is matched if its (Euclidean) distance to P is
within a certain threshold x, which depends on the quality
of the map data and the device used to obtain traces. For
our data, we found that setting x to 10 meters works well.
The quality score for track t is the fraction of its points that
are matched.

The overall quality score Q(G, T, Fg) is the average score
over all ¢ € T. (If specialized sampling is used, the average
is weighted appropriately.) A score of 1.0 (or 100%) means
that all traces in T can be perfectly matched. For conve-
nience, we sometimes refer to the matching error, defined as
(1 -Q(G, T, Fg)), instead of to the score itself.

5.2 Efficient Shortest-Path Computation

To compute the quality score for each trace ¢, we must first
compute the point-to-point shortest path (according to the
cost function induced by the current 3) between the first and
last points of ¢. One could do so by simply running Dijkstra’s
algorithm [18]. Starting from the source, it visits vertices in
increasing order of distance until the target is processed.
Although this is reasonably fast if traces are short, it is not
robust enough for our purposes: a single long-range shortest

path computation on a continental road network can take
seconds, since it visits almost the entire graph [31].

Many recent techniques can bring worst-case (exact) query
times down to a microsecond or less [1, 7] after a few min-
utes of preprocessing; see Bast et al. [6] for a survey of such
methods. Unfortunately, however, the preprocessing rou-
tines of most methods must know the cost function in ad-
vance. Since our application changes the cost function fre-
quently, it cannot benefit from these accelerations. A recent
technique can set the cost function at query time [22], but
its queries are too slow in our setting.

The best fit for our application is the customizable route
planning (CRP) approach [14, 17, 15] outlined in Section 2.1.
It still uses preprocessing, but it can incorporate a new cost
function for a full continental road network (with tens of
millions of vertices) in seconds on CPUs [15] or fractions
of a second on GPUs [16]. The time to incorporate a new
cost function depends linearly on graph size, which makes
it much faster on smaller networks, such as metropolitan
areas. Arbitrary queries take a couple of milliseconds (even
on continental scale) on a commodity CPU, which is fast
enough for our needs. We use CRP as a black box.

5.3 Efficient Matching

We now consider the problem of deciding whether each
point p from an input trace t can be matched to a given
path P in the graph, typically resulting from a shortest-path
computation. For this purpose, we interpret the path P as a
polyline, i.e., a sequence of adjacent straight line segments.

Our goal is to determine, for each point p in the trace,
whether the distance from p to the polyline P is at most
x. This can be trivially accomplished by computing the
distance from each p to each segment in P, but this would
be too slow. We therefore propose some optimizations.

First, we use simpler geometry. Instead of computing ge-
ographical distances (along the surface of the Earth), we
assume an embedding on the plane, with the longitude of
a point indicating its x-coordinate and the latitude its y-
coordinate. This avoids expensive trigonometric functions,
and our preliminary tests indicate that the number of mis-
matches is negligible, since we deal with very small distances.
To avoid computing square roots, we evaluate the square of
distances instead and set our threshold accordingly.

Even with this acceleration, explicitly computing the dis-
tances from each point p in the trace to each segment of
the polyline P would be too expensive, considering that we
would have to do this for every point in each trace. To
reduce the number of segments of P, we run the Douglas-
Peucker [20] polyline simplification algorithm, while still re-
taining accuracy within one meter. To further reduce the
time per point to logarithmic (in practice), we use bounding
boz indexing. For a polyline P with |P| segments, we use
log(|P|) levels of axis-aligned bounding boxes. The highest
level has one bounding box containing the full polyline; the
second highest level has two boxes, one for each half of P;
and so on. This bounding box index can be built by one
sweep over all segments of P. When querying a point, we
use this index top-down, quickly discarding large chunks of
the polyline. If the distance from the point to a bounding
box is larger than z, all segments in the box can be dis-
carded. If paths do not fold too much onto themselves (as
is usually the case for real shortest paths), the effect is very
similar to a binary search.

Note that the index is built once for each path P, and
reused for each point in the trace. With all accelerations,
evaluating all points of a trace is roughly as expensive as
computing the shortest path with CRP.

5.4 Oracle Approximation

The quality oracle described so far is fast enough to handle
a large number of traces on continental-sized road networks,
but we can improve efficiency further.

The idea is to keep for each trace t a candidate path pool
C', which is a collection of paths between the endpoints of ¢.
Whenever we evaluate a new (8 within our two subroutines
(local search or perturbation), we evaluate it on the pool, as
follows. For each trace ¢, we check which path P in C; has
the lowest cost according to §; we take the score of this path
as the score for t. Then, after running the full subroutine
(which evaluates many different 3), if we find a 8’ that im-
proves the overall score with respect to the candidate pools,
we evaluate 8’ with the “exact” oracle we described before
(which invokes shortest-path computations on the graph and
matching points to the resulting paths). We only make the
move if 8’ also improves the score according to the exact
oracle.

The pool for each trace t is initialized with two paths. The
first is the shortest path according to 8°, the initial param-
eters. For the second, we split ¢ into five equal-sized sub-
traces, compute the shortest paths between their start and
end points according to 8%, and concatenate them. When-
ever the exact oracle produces a previously unseen path for
a trace t, we add it to the pool C;. In our experiments, a
candidate pool typically ends up with about ten paths.

Since it does not require shortest-path computations, the
approximate oracle is much faster than the exact one. For
further acceleration, we store the quality score of each candi-
date path in C; added to the pool, thus avoiding subsequent
redundant matching computations.

Finally, we keep a summary of each candidate path (how
many meters on freeways, how many left turns, etc.), which
allows us to determine its cost for a new 8 without looking
at the entire path. Note that this requires two assumptions
on the cost function: (1) the contribution of each edge/turn
type is independent (i.e., they can be added up); and (2) for
a particular edge type, its contribution depends linearly on
the length (which means storing the total length is enough).
These assumptions hold for the Bing cost function (and
maybe for most reasonable functions), but we stress that
some cost functions cannot be expressed with this summary.

Overall, using the approximate oracle within our subrou-
tines accelerates our framework by three orders of magni-
tude, with a negligible effect on quality. We therefore use it
by default in our experiments.

5.5 Alternative Oracles

We have focused on one particular score function, based
on the fraction of trace points that are close enough to the
shortest paths between its endpoints. We note, however,
that our learning procedure only needs “oracle access” to
the score function: it only needs the quality score itself, and
assumes nothing about how it is computed. Therefore, we
could easily consider other functions as well.

In particular, in our preliminary experiments we consid-
ered a continuous quality measure that depends on how close
each point is to the shortest path. Even if a point is not

perfectly matched to the path, being nearby should intu-
itively be better than being far away. This measure, how-
ever, turned out to be less effective than our default quality
score function, in which a point is either perfectly matched
or not. The main reason is the discrete nature of short-
est paths: by completely disregarding points that are not
matched (rather than trying to break ties among them), the
learning procedure is more focused.

Another score function we considered is as follows. Instead
of trying to match the trace to a single path (the shortest),
we could consider a small number of alternative paths as
well. If a system can offer (say) three alternatives [5, 2, 24]
in response to a query (as many commercial systems do), the
user will be happy as long as at least one of them reflects his
preferences. It is trivial to extend our approach to handle
alternatives; we simply consider a point from the trace as
“matched” if it is close enough to at least one line segment
from any of the alternative paths. This would capture users
that take different paths depending on traffic conditions, for
example.

6. RELATED WORK

To the best of our knowledge, we are the first to use GPS
traces to learn a cost function of multiple variables that can
be used by a navigation engine. Up to now, GPS traces
have mainly been used to reconstruct the path a user has
taken [10, 28], or to improve (or even construct) maps [29,
12, 33, 32, 9]. Most closely related to our work are previous
projects for personalized routing. The Coolest router [13] al-
lows users to manually set the importance of distance, time,
nearby points of interest, and path simplicity. Duckham
and Kulik [21] developed a technique to compute the sim-
plest path between two points as an alternative to the short-
est or fastest route, which they argue could be preferable.
Agrawala and Stolte [3] showed how to visualize so-called
“wedding maps,” which are spatially distorted route maps
that emphasize details at turns and landmarks. After ex-
amining routes from GPS logs, Letchner et al. [26] found
that drivers took the fastest route, as given by a commer-
cial routing engine, only 35% of the time. They went on to
create a router that better matched drivers’ chosen routes
by taking into account actual measured road speeds and by
biasing the router to prefer a driver’s more familiar roads.
Similarly, Chang et al. [11] created a personalized router by
noting which roads were most familiar to the driver, pro-
ducing routes that use these familiar roads. Compared to
previous work, ours is more general. We infer preferences
even in areas not previously visited by a user.

7. EXPERIMENTS

We implemented all algorithms in C++ and CUDA, and
compiled them with Visual C4++ 2012 and CUDA 5.5. We
performed all timed tests on a workstation running Windows
8.1. It has an Intel Core-i7 4770 CPU (4 cores, 8 threads,
3.4GHz, 4x64KB L1, 4x256 KB L2, and 8 MB L3 cache)
and 32 GiB of 1600-DDR3 RAM. It also has four EVGA
NVIDIA GTX 780 Ti OC GPUs, each with 15 multiproces-
sors, 2880 CUDA cores, 1.2 GHz core clock rate, and 3 GiB
of 7GHz memory. The GPUs are solely used for accelerating
the customization phase of CRP [16]. We use, unless oth-
erwise mentioned, the default parameters for our learning
procedure (Ms = 10, ML = 3, and MP = 10; see Section 4.4).

We use the road network of North America as input, with
about 32 million vertices. We also use a smaller subgraph of
this network representing the state of Washington, with 810
thousand vertices and 955 thousand road segments. CRP
needs 7 ms to incorporate a new cost function in Washington
and 70 ms in North America.

The input road network data of Bing Maps (based on
Navteq data) has several dozen parameters, which can be
grouped into three types: speed-related (about three dozen),
delay-related (about a dozen), and turn-related (about a
dozen). We cannot reveal the exact parameters, but its de-
fault cost function correlates well with travel times in light
traffic.

7.1 Controlled Experiments

Our first set of experiments is in a controlled environment.
The idea is to generate traces from shortest paths computed
using a cost function instantiated with known parameters,
then hide these parameters from our algorithm. This setup
is meant to evaluate the extent to which we can reconstruct
the original parameters of the cost function. The advantage
of this approach is that we know that a perfect solution
(ground truth) exists, allowing us to calibrate our algorithm.

7.1.1 Methodology

We generate a set of k traces by running k arc-to-arc
shortest-path queries (with the source and target arc cho-
sen uniformly at random), using the default cost function of
Bing Maps. We produce a trace from each resulting route
by sampling it at regular intervals (measured in seconds).
Our controlled experiments use 10000 traces to evaluate the
quality of a parameter set 3. These evaluation traces are
never seen by the learning procedure, which uses a separate
set of training (or learning) traces.

The speed parameters in 3 give the average speed for each
of the possible road types, such as arterial, highway, and
ramp. Our algorithm has two modes, depending on whether
or not these average speeds are known in advance. In the
known-speeds mode, we initialize our framework with a cost
function where all delay parameters are set to 1.0 (neutral)
and turn costs are set to 0, but provide the correct average
speeds and do not allow the learning procedure to change
them. This leaves us with about two dozen parameters to
optimize. Since average speeds can be obtained from other
sources (such as speed limits or GPS tracks with timing in-
formation), the known-speeds setup is very relevant in prac-
tice.

Under some conditions, however, it might be useful to
learn the speed-related parameters as well. In the unknown-
speeds mode, we initialize each speed parameter with the
same arbitrary value (10 kph), and allow them to be adjusted
by the learning function. We still provide the algorithm with
a hint regarding the order among the roads (from slowest to
fastest). So we create a parameter 3y corresponding to the
average speed on the slowest roads but, for any other speed
parameter i, 8; represents the (nonnegative) speed difference
between the i-th and (i — 1)-th slowest road type. So, except
for the slowest roads, the algorithm must learn the “deltas”
rather than the absolute value.

For both modes, we provide the algorithm with upper and
lower bounds for each parameter. Turn-related parameters
cannot exceed more than 10 minutes, delay factors are at
least 1.0 and at most 5.0, and the minimum and maximum

10

BB sat 2,
L

O 100s

error [%]
1
!
—ill
—

1L

_ i i

T T T T T T T
20 22 24 26 28 210 212
number of traces

0.1

Figure 2: Quality of the learned cost function, de-
pending on the sample size (number of traces).
Speeds are known, but the sampling rate for each
trace varies.

traversal speeds are 5 kph and 150 kph, respectively.

We note that a real system would likely start from a better
initial set of parameters, such as the default one used by the
vendor, but our goal here is to stress-test the algorithm.

7.1.2 Learning Requirements

We first evaluate the tradeoff between the amount of learn-
ing data we have and the quality of the solution we find. We
vary both the number of training traces and the sampling
rates for each one.

Figure 2 reports, over 10 runs, the median as well as the
75% (box) and 95% (whisker) confidence intervals for the
matching error 1—Q of the parameters we learn as a function
of the number of learning traces (1, 4, 64, 256, 1024, 4096)
with different sampling rates (1, 10, 100 seconds) used to
generate synthetic traces. This experiment uses the known-
speeds mode.

The figure shows that, with as few as 64 traces, we can
find a cost function that is almost 99% similar to the ground
truth (as given by the 10000 evaluation traces). More train-
ing traces help. With 4096 traces, we bring the matching
error well below 0.1% compared to the 10000 evaluation
traces. In fact, in almost all cases we can match 100% of
the training traces (as opposed to the evaluation traces).

The experiment also suggests that a sampling rate of 100s
is sufficient to achieve good results. If drivers log their loca-
tion only every 100 seconds, we can reconstruct the under-
lying cost function almost as well as when sampling every
second. Note that we vary the sampling rate only for the
training traces; the evaluation traces have a sampling rate of
1 second in all cases. Note that our algorithm does not use
the timestamps of the GPS points at all. For the remain-
der of this paper, we use a sampling rate of 10 seconds for
training traces by default. The real-world traces we evaluate
later have a similar sampling rate.

7.1.3 Learning Speeds

Next, we evaluate how much it helps to know average
speeds. Figure 3 compares the quality of the cost function
we learn for our two modes (known- and unknown-speeds).
Although having the correct speeds as input leads to a bet-
ter learned cost function, the overall solution quality is still

17 s

10

=l

error [%]
1
!
il
=l
Hill

0.1

B unknown-speeds *
B known-speeds

T T T T T T T
20 22 24 26 28 210 212
number of traces

Figure 3: Quality of the learned cost function, de-
pending on the sample size (number of traces). The
sample rate is fixed to 10s, but speeds either are
given (and fixed) or must be learned (initialized to
10 kph).

quite high even if we have to learn the speeds. For 1024
traces, we obtain scores of about 99.5%.

7.1.4 Other Inputs

Table 1 reports the quality of the parameters we compute
if we use different cost functions to generate the training
traces. The parameterizations we use correspond to travel
times (all delay factors neutral, no turn costs), trucks (lower
top speed, turns more expensive), and ambulances (higher
average speed on all arcs and lower turn costs). In this
experiment, we also test the faster economical (Ms = 3, ML =
2, and MP = 3; see Section 4.4) mode of our algorithm.
Finally, we test our default cost function for the full North
America data set.

We observe that in all cases we can reconstruct the under-
lying hidden cost function quite accurately. Moreover, the
economical variant is two to four times faster, with little loss
in quality. In fact, it learns fully-fledged cost functions from
a large number of traces on continental-sized networks in a
few minutes.

We note that, even if we did not use the GPUs in our sys-
tem at all, the learning system would be only slightly slower.
Over a complete run (with GPUs), about 75% of the time
is spent in evaluating the candidate pool, 12% in computing
shortest paths (using CRP queries), 10% in evaluating how

KNOWN-SPEEDS UNKNOWN-SPEEDS
quality time quality time

input function eco. start end [s] start end [s]
WA default x 0.9166 0.9983 519 0.4474 0.9948 577
default v 0.9166 0.9975 205 0.4474 0.9916 175
truck v 0.7690 0.9904 186 0.4212 0.9863 224
time v/ 1.0000 1.0000 0 0.4736 0.9881 111
v
X
v

ambul. 0.9438 0.9970 104 0.4565 0.9911 160
NA default 0.8370 0.9977 1329 0.3074 0.9915 2476
default 0.8370 0.9960 342 0.3074 0.9883 662

Table 1: Results using 1024 traces as learning sam-
ple, 10,000 traces to evaluate, frequency of the learn-
ing sample set to 10 seconds. Note that we can re-
cover any cost function in a few minutes.

many GPS points match them, and only about 3% in run-
ning the CRP customization phase (updating the CRP data
structures on the GPU). Even if we ran customization on the
CPU, it still would not be the bottleneck of our framework.
However, the system would be considerably slower if we used
Dijkstra instead of CRP. With Dijkstra, random queries on
Washington would be 350 times slower (174 ms per arc-to-
arc query for Dijkstra, as opposed to 0.52ms for CRP). For
North America, CRP is 3100 times faster (13750 ms for Di-
jkstra, 4.4 ms for CRP).

7.2 User-Specific Traces

We now evaluate how well we can learn the driving habits
of real drivers. For this purpose, we evaluated GPS traces
from 85 volunteers from the Washington state area. Each
user was observed for a median of 57 days (ranging from
15 to 1748 days), with actual GPS data for a median of 48
days (ranging from 13 to 1252 days). To avoid under- or
over-segmentation, we need to split each driver’s GPS log
into discrete trips. As suggested by previous work [19], we
end a trip if a driver stayed within 17.2 meters for at least
90 seconds. Krumm and Rouhana [25] show that this gives
a recall rate of 99% in detecting a non-moving GPS logger.
According to data from the 2009 U.S. National Household
Travel Survey (http://nhts.ornl.gov/), 99% of driving trips
are either at least 483 meters long or 3 minutes long. Thus,
we eliminate any trips shorter than these amounts. After
processing the trips from our 85 drivers, the median number
of trips per driver is 188 (ranging from 37 to 8 608), and the
total number trips for all drivers is 34 708.

For these 85 drivers, we evaluate the route quality with re-
spect to the standard cost function (provided by Bing Maps)
and compare it with the cost function our algorithm com-
putes. We used the Washington instance as the underlying
road network. We initialize our framework with the param-
eters of Bing’s standard cost function.

Figure 4 shows the quality score of the parameters for
each driver before (x-axis) and after (y-axis) optimization.
We report the median as well as the 75% (box) and 95%
(whisker) confidence intervals of a 10-fold cross-validation.
We consider our unknown-speeds scenario. For 95% of the
users, the median is above the main diagonal, indicating
that our method indeed leads to routes that fit the driving
habits of each user better. On average, we increase the route
quality by an additive factor of 0.054, which is an improve-
ment of 7.5% over Bing’s cost function. In the best case,
the average quality score increases from 0.479 to 0.713, an
improvement of 49%.

An interesting observation is that we can identify different
driver types from analyzing the individual cost function we
obtain. Some drivers prefer freeways, some minimize their
travel distance, some do not mind making left turns, and
others avoid turns as much as possible.

Recall that in this experiment we initialize our framework
with a reasonable cost function. Combined with the fact
that real-world traces normally are shorter than our syn-
thetic ones, the algorithm here is much faster than reported
in Table 1. The running time stays below 30 seconds for al-
most all users. Moreover, in a closed environment like a car,
new traces could be processed incrementally (each new trace
can start from the set of parameters learned from previous
traces), reducing the computational effort even further.

1.0

0.9
|

0.7

score after optimization

0.6
|

0.5

I I I I
0.50 0.55 0.60 0.65

0.70 0.75 0.80 0.85 0.90

score before optimization

Figure 4: Route quality before and after our optimization, using as input the parameters provided by Bing
Maps. Note that 95% of the medians are above the diagonal, indicating a significant improvement.

8. CONCLUSION

We have introduced a framework for personalizing driving
directions by automatically analyzing the GPS traces from
the driver. To our knowledge, this is the first approach of
this kind that is validated by controlled experiments on a
continental road network, as well as by using real-life per-
sonal traces from a relatively large population.

Our results indicate that, given the structure of the cost
function used by a routing engine, our algorithm can recover
the parameters of the function with close to 100% accuracy.
Moreover, GPS trace sampling can be as infrequent as once
every 100 seconds. For personalization, we obtain an im-
provement of 7.5% over Bing’s cost function on average, with
some cases reaching 49%. This provides strong evidence of
the benefits of our approach. Preliminary tests indicate that
we can further increase the route quality if we store multiple
cost functions per user, depending on the time of the day.

Moreover, the approach is efficient enough to be performed
in a closed environment, such as a car or a standard PC, en-
suring that highly sensitive personal information does not
leave the control of the user.

9. REFERENCES

[1] I. Abraham, D. Delling, A. V. Goldberg, and R. F.
Werneck. Hierarchical hub labelings for shortest paths.
In Proceedings of the 20th Annual European
Symposium on Algorithms (ESA’12), volume 7501 of
Lecture Notes in Computer Science, pages 24-35.
Springer, 2012.

[2] 1. Abraham, D. Delling, A. V. Goldberg, and R. F.
Werneck. Alternative Routes in Road Networks. ACM
Journal of Ezperimental Algorithmics, 18(1):1-17,
2013.

[3] M. Agrawala and C. Stolte. Rendering effective route
maps: improving usability through generalization. In
Proceedings of the 28th Annual Conference on

Computer Graphics and Interactive Techniques, pages
241-249. ACM, 2001.

[4] A. Auslender. Optimisation Métodes Numériques.
Masson, Paris, 1976.

[5] R. Bader, J. Dees, R. Geisberger, and P. Sanders.
Alternative Route Graphs in Road Networks. In
A. Marchetti-Spaccamela and M. Segal, editors,
Proceedings of the 1st International ICST Conference
on Theory and Practice of Algorithms in (Computer)
Systems (TAPAS’11), volume 6595 of Lecture Notes in
Computer Science, pages 21-32. Springer, 2011.

[6] H. Bast, D. Delling, A. V. Goldberg,

M. Miiller-Hannemann, T. Pajor, P. Sanders,

D. Wagner, and R. F. Werneck. Route Planning in
Transportation Networks. CoRR, abs/1504.05140,
2015.

[7] H. Bast, S. Funke, P. Sanders, and D. Schultes. Fast
Routing in Road Networks with Transit Nodes.
Science, 316(5824):566, 2007.

[8] D. P. Bertsekas. Nonlinear Programming. Athena
Scientific, Belmont, Massachusetts, second edition,
1999.

[9] J. Biagioni and J. Eriksson. Map inference in the face
of noise and disparity. In Proceedings of the 20th
International Conference on Advances in Geographic
Information Systems, pages 79-88. ACM, 2012.

[10] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On
map-matching vehicle tracking data. In Proceedings of
the 31st International Conference on Very Large Data
Bases, pages 853-864. VLDB Endowment, 2005.

[11] K.-P. Chang, L.-Y. Wei, M.-Y. Yeh, and W.-C. Peng.
Discovering personalized routes from trajectories. In
Proceedings of the 3rd ACM SIGSPATIAL
International Workshop on Location-Based Social
Networks, pages 33—40. ACM, 2011.

[12] N. Cohn. Real-time traffic information and navigation.

[17]

[18]

[19]

[20]

[21]

22]

[23]

[24]

[25]

[26]

Transportation Research Record: Journal of the
Transportation Research Board, 2129(1):129-135, 2009.
E. R. da Silva, C. de Baptista, L. Menezes, and

A. Paiva. Personalized path finding in road networks.
In Proceedings of the Fourth International Conference
on Networked Computing and Advanced Information
Management, volume 2, pages 586—591. IEEE, 2008.
D. Delling, A. V. Goldberg, T. Pajor, and R. F.
Werneck. Customizable route planning. In Proceedings
of the 10th International Symposium on FExperimental
Algorithms (SEA’11), volume 6630 of Lecture Notes in
Computer Science, pages 376-387. Springer, 2011.

D. Delling, A. V. Goldberg, T. Pajor, and R. F.
Werneck. Customizable Route Planning in Road
Networks. Transportation Science, 2015. online
preprint.

D. Delling, M. Kobitzsch, and R. F. Werneck.
Customizing driving directions with GPUs. In
Proceedings of the 20th International Conference on
Parallel Processing (Euro-Par 201/), volume 8632 of
Lecture Notes in Computer Science, pages 728-739.
Springer, 2014.

D. Delling and R. F. Werneck. Faster customization of
road networks. In Proceedings of the 12th
International Symposium on Experimental Algorithms
(SEA’18), volume 7933 of Lecture Notes in Computer
Science, pages 30—42. Springer, 2013.

E. W. Dijkstra. A Note on Two Problems in
Connexion with Graphs. Numer. Math., 1:269-271,
1959.

M. Dimond, G. Smith, and J. Goulding. Improving
route prediction through user journey detection. In
Proceedings of the 21st ACM SIGSPATIAL
International Conference on Advances in Geographic
Information Systems, pages 466-469. ACM, 2013.

D. H. Douglas and T. K. Peucker. Algorithms for the
reduction of the number of points required to represent
a digitized line or its caricature. Cartographica: The
International Journal for Geographic Information and
Geovisualization, 10:112-122, 1973.

M. Duckham and L. Kulik. “simplest” paths:
Automated route selection for navigation. In Spatial
Information Theory. Foundations of Geographic
Information Science, pages 169—185. Springer, 2003.
S. Funke, A. Nusser, and S. Storandt. On k-path
covers and their applications. In Proceedings of the
40th International Conference on Very Large
Databases (VLDB 2014), pages 893-902, 2014.

R. Geisberger, M. Rice, P. Sanders, and V. Tsotras.
Route Planning with Flexible Edge Restrictions. ACM
Journal of Experimental Algorithmics, 17(1):1-20,
2012.

M. Kobitzsch. HIDAR: An alternative approach to
alternative routes. In Proceedings of the 21st Annual
European Symposium on Algorithms (ESA’13),
volume 8125 of Lecture Notes in Computer Science,
pages 613—624. Springer, 2013.

J. Krumm and D. Rouhana. Placer: semantic place
labels from diary data. In Proceedings of the 2013
ACM international Joint Conference on Pervasive and
Ubiquitous Computing, pages 163-172. ACM, 2013.

J. Letchner, J. Krumm, and E. Horvitz. Trip router

27]

(28]

29]

(30]
(31]

32]

33]

with individualized preferences (trip): Incorporating
personalization into route planning. In Proceedings of
the National Conference on Artificial Intelligence,
volume 21, page 1795. Menlo Park, CA; Cambridge,
MA; London; AAAIT Press; MIT Press; 1999, 2006.
R. Maxunder, J. H. Friedman, and T. Hastie.
SparseNet: Coordinate descent with nonconvex
penalties. Journal of the American Statistical
Association, 106(495), 2011.

P. Newson and J. Krumm. Hidden markov map
matching through noise and sparseness. In Proceedings
of the 17th ACM SIGSPATIAL International
Conference on Advances in Geographic Information
Systems, pages 336-343. ACM, 2009.

S. Rogers, P. Langley, and C. Wilson. Mining GPS
data to augment road models. In Proceedings of the
Fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages
104-113. ACM, 1999.

R. E. Schapire. The strength of weak learnability.
Machine Learning, 5(2):197-227, 1990.

C. Sommer. Shortest-path queries in static networks.
ACM Computing Surveys, 46:547-560, 2014.

J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun,
and Y. Huang. T-drive: driving directions based on
taxi trajectories. In Proceedings of the 18th
SIGSPATIAL International Conference on Advances
in Geographic Information Systems, pages 99—108.
ACM, 2010.

B. D. Ziebart, A. L. Maas, A. K. Dey, and J. A.
Bagnell. Navigate like a cabbie: Probabilistic
reasoning from observed context-aware behavior. In
Proceedings of the 10th International Conference on
Ubiquitous Computing, pages 322-331. ACM, 2008.

