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Figure 1: Natural video matting. (a) We use a camera array to capture a collection of images of a scene. Here we show a single camera’s
image. (b) We synthetically refocus the data and compute the variance of the refocused images (darker means lower variance). (c) From the
“variance image” we automatically compute a trimap. (d) We propagate the variances into the unknown region of the trimap and use these
measurements to solve for the alpha matte. (e) We then compute the alpha multiplied foreground and composite it with a new background.

Abstract

We present an algorithm and a system for high-quality natural
video matting using a camera array. The system uses high fre-
quencies present in natural scenes to compute mattes by creating
a synthetic aperture image that is focused on the foreground ob-
ject, which reduces the variance of pixels reprojected from the fore-
ground while increasing the variance of pixels reprojected from the
background. We modify the standard matting equation to work di-
rectly with variance measurements and show how these statistics
can be used to construct a trimap that is later upgraded to an alpha
matte. The entire process is completely automatic, including an
automatic method for focusing the synthetic aperture image on the
foreground object and an automatic method to compute the trimap
and the alpha matte. The proposed algorithm is very efficient and
has a per-pixel running time that is linear in the number of cam-
eras. Our current system runs at several frames per second, and we
believe that it is the first system capable of computing high-quality
alpha mattes at near real-time rates without the use of active illumi-
nation or special backgrounds.

Keywords: Alpha Matting and Compositing, Light Fields, Image-
Based Rendering

1 Introduction

Efficient and high-quality compositing is an important task in the
special effects industry. Typically, movie scenes are composited
from two different layers (foreground and background), where each
of these layers can be computer-generated or may be from real
footage filmed at different locations. To use the foreground con-
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tent of one sequence as the foreground layer in a composite video,
the foreground elements must be separated from the background in
the source video. This process, known as matting, separates a fore-
ground element from the background by estimating a color F and
an opacity o for each foreground pixel. With a single image, this
problem is highly underconstrained and can be posed as an equation
in seven unknowns (&, RGB foreground F, and RGB background
B) and three measurements (the RGB video frame ) at each pixel:

I=aF +(1—-a)B. (1)

The most widely used matting method, blue-screen matting, con-
strains the problem by filming actors in front of a known (blue or
green) background. While this simplifies the problem, the method
has significant limitations in that it can only be used in a movie
studio or a similarly controlled environment.

Ideally, one would like to compute an alpha matte from a reg-
ular video stream taken in a natural, uncontrolled environment — a
process known as natural video matting. Recently, there has been
significant progress in this area; however, many current methods
require user input, have potentially lengthy run-times, and have dif-
ficultly with highly textured scenes.

In this paper, we present an algorithm that uses a camera array
to compute mattes for natural scenes with textured backgrounds.
Relative parallax in the array images, due to separation between
the foreground and background, allows us to capture foreground
objects in front of different parts of the background. Given a suf-
ficiently textured background, we capture the foreground object in
front of several background colors, which constrains the matting
problem. We project the color values from each camera to the
depth of the foreground object and use mean and variance statis-
tics computed from these values to automatically compute a trimap
and subsequently o and F. We perform this projection using syn-
thetic refocusing [Isaksen et al. 2000] and sweep across depths near
the foreground object to optimize the focus per pixel; as a result, we
can generate mattes for non-planar objects. We compute alpha mat-
tes using a novel matting equation that works with pixel variance,
instead of working directly with pixel values. The result is a fast
and automatic algorithm that avoids the difficult problems of com-
puting the background depth and reconstructing the 3D scene and,
as a result, works with arbitrarily complex background scenes. An
additional benefit of our algorithm is that the per-pixel running time
is proportional to the number of cameras. This makes the algorithm
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extremely efficient and amenable to real-time performance, and it
is easily implemented on either a CPU or GPU.

The main contributions of our paper are the following: extend-
ing the matting equation to deal with the variance of pixel measure-
ments, using a camera array for alpha matting, presenting an au-
tomatic method for computing a trimap and alpha matte, and con-
structing a real-time system for natural video matting. We show
results for a large range of objects (people, hair, trees, fluids, glass,
and smoke) captured against a variety of backgrounds (office envi-
ronments and trees) using our camera array.

In the next section, we will discuss some of the previous work in
this area. In section 3, we will present our alpha matting algorithm.
In section 4, we will present our alpha matting system. Lastly, we
present results for static and dynamic scenes in section 5, followed
by a discussion of our method and our conclusions.

2 Previous Work

The problem of alpha matting has been researched for almost half a
century. The first matting algorithms and systems can be attributed
to Vlahos [1958; 1971; 1978]. Blue-screen matting was mathe-
matically formalized by Smith and Blinn [1996], who also showed
that imaging a foreground against two different backgrounds gives
a robust solution for both the alpha and the foreground color. Their
method has been extended to work with more complex light trans-
port effects (e.g., refraction) by Zongker et al. [1999] and Chuang
et al. [2000]. However, these methods require active illumination
and multiple images.

Recently, there has been significant work in natural image mat-
ting. Bayesian Matting [Chuang et al. 2001], which is based on the
method of Ruzon and Tomasi [2000], uses a user specified trimap
and a probabilistic model of foreground and background colors to
compute a matte. This method has been extended to video [Chuang
et al. 2002]; however, trimaps still need to be specified manually for
keyframes. In a further extension, Zitnick et al. [2004] use a multi-
camera system to reconstruct 3D scene geometry and use Bayesian
Matting to compute alpha mattes at depth discontinuities. While
their depth computation is automatic, their system is not real-time
—itrequires off-line processing to compute both the depth and alpha
mattes. Our system, in contrast, is not dependent on scene recon-
struction and therefore can handle structurally complex scenes, and
itruns at 3 to 5 frames per second. Furthermore, as researchers have
noted [Li et al. 2005], Bayesian Matting fails for highly textured ar-
eas where local spatial coherence or smoothness assumptions are
violated. By contrast, our method makes no assumptions about the
foreground, while requiring the background to have at least some
texture, and performs very well even when both the foreground and
background are highly textured.

Poisson Matting [Sun et al. 2004] addresses some of the issues
of color based methods by posing matting as solving Poisson equa-
tions of the matte gradient field. This resembles our work in spirit,
in that it does not work directly on the image color but on a de-
rived measurement, but it differs from our method in that it works
on still images, requires some user input, and takes several minutes
to process a single frame.

McGuire et al. [2005] compute alpha mattes for natural scenes
using three video streams that share a common center of projection
but vary in depth of field and focal plane. While their method is
automatic, its running time is many minutes per frame. In addition,
the foreground object must be in the foreground focus range during
shooting, whereas our method can be used to compute mattes for
any depth plane after shooting, using synthetic refocusing.

A related area of work is that of object “cut and paste”, where
mattes are computed after performing binary segmentation with
minimal user input [Rother et al. 2004; Li et al. 2004]. These
methods have also been extended to video [Wang et al. 2005; Li
et al. 2005]. These methods tend to be limited to “border matting”,

where alpha is computed along the object border after hard segmen-
tation; it’s unclear if these methods can compute mattes for semi-
transparent objects such as fluids or smoke. Also, as they require
user input, the total amount of processing time can still be signif-
icant. Kolmogorov et al. [2005], on the other hand, describe an
automatic real-time system that uses graph cuts on a stereo video
to segment the foreground for a video conferencing scenario. How-
ever, this work also only computes alpha on object borders.

Our work is most similar to that of Wexler et al. [2002], which
also uses multiple images to compute an alpha matte. Where our
work differs is that Wexler et al. pose the problem in a Bayesian
framework and consider several different priors, including bounded
reconstruction, ¢ distribution, and spatial consistency. These priors
are derived from assumptions about alpha matte structure and thus
limits the types of objects that can be successfully matted. Wexler
et al. also assume that the background is mostly planar and that it is
known or can be estimated. In contrast, our method does not make
assumptions about alpha matte structure or the physical background
structure, and we do not explicitly estimate the entire background
color layer. Furthermore, Wexler et al. do not discuss real-time as-
pects of their system, while our system runs at near real-time rates.

In recent years, camera arrays have been used for a wide vari-
ety of applications in computer graphics and computer vision. For
an extensive list of citations and discussion of previous work we
encourage the reader to read Wilburn et al. [2005].

3 Alpha Matting Algorithm

Our algorithm resembles past approaches in that it computes a
trimap that is then upgraded to an alpha matte. However, there
are several relevant differences between our work and previous ap-
proaches. First, we compute the trimap automatically and do not
assume that a user supplies it interactively. Second, our algorithm
uses higher order statistics (i.e., variances) of image measurements
that we then propagate into the unknown region of the trimap. Pre-
vious methods propagate measurements into the unknown region;
however, they propagate pixel values directly which makes limit-
ing assumptions about the scene content. Propagating variances is
much less limiting, as we will show in the next section. Specifically,
our algorithm proceeds as follows:

1. Automatically find the dominant foreground depth plane and
then perform a local depth search to account for non-planarity

2. Compute the mean and variance of color values from each
camera projected to their corresponding depths

3. Automatically compute a trimap based on variance

4. Propagate the variance from the background and foreground
regions to the unknown region

5. Propagate the mean from the background to the unknown re-
gion
6. Compute ¢ and oF

The per-pixel running time of the algorithm (including the compu-
tation of the variances and the trimap) is linear in the number of
cameras in the array. We will first describe the last three steps of
our algorithm, as they form the core of our contribution. Discussion
of the first three steps of the algorithm is deferred to section 4.

3.1 Motivation

Given n images of a scene, we consider the following matting equa-
tion of a given scene point p:

Ii(p) = a(p)Fi(p) + (1 - a(p))Bi(p), )
where [;(p) corresponds to the intensity of point p recorded in im-
age i. F;(p) and B;(p) are the foreground and background values
that, as a function of the transparency o(p), are mixed to give I;(p).
We will drop the notation p wherever possible to improve readabil-
ity. Specifying a different F; for every image means that we allow
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Figure 2: Propagating image statistics. The three cameras on the
left I1,I,, and I3 observe a foreground object F and a background
object B. The point p has a trimap label of unknown, and pr and
pp are the points nearest to p labeled, respectively, foreground and
background. To solve for o and oF, we need the measurements
var(I(p)), var((p)). var(B(p)). mean(I(p))., and mean(B(p));
however, we can only measure var(I(p)) and mean(I(p)). We es-
timate var(F(p)), var(B(p)), and mean(B(p)) from the measure-
ments at pr and pp. We note that the rays going through the points
p and pp hit overlapping regions (indicated by the shaded trian-
gle) on the background and, as a result, the mean and variance of
the two points should indeed be similar. In practice, this overlap is
quite large. We only assume that the variance for the points p and
PF, not their mean, is the same, which is equivalent to saying that
they can have different albedo but their view-dependent statistics
(e.g., specularity level) are the same.

for view-dependent effects, such as specularity. However, we as-
sume that the transparency of the point is view-independent and
hence « is fixed across all images.

We consider {I;(p) }/_,. {Fi(p)}/_,. and {B;(p)}}_, as sampling
the random variables I, F, and B, respectively, and rewrite the mat-
ting equation using these variables:

I=0aF+(1-a)B, 3)

We wish to solve for & and aF using these random variables
and do this by using second-order moments of I, F and B (i.e., vari-
ances) to solve for « and first-order moments (i.e., means) of I and
B to solve for F. Note that we do not use the mean of F.

Recall that the fourth and fifth steps of our algorithm propagate
image measurements from the foreground and background labeled
pixels to the unknown pixels. While one could propagate the mean
pixel values of the foreground object and solve for an alpha matte
using mean statistics alone, this assumes that foreground objects
have low spatial frequency albedo, which is a very limiting assump-
tion, whereas propagating the variances allows objects with both
low and high spatial frequency albedo. This is an important point
and is one of the key components of our algorithm.

Specifically, let p be the scene point under consideration and
denote pr and pp as the closest points that are labeled as foreground
and background, respectively, in the trimap. We make the following
approximations:

var(F(p)) ~ var(F(pr))
var(B(p)) ~ var(B(pg)) S
mean(B(p)) ~ mean(B(pp))

These approximations make the two following assumptions. The
first and second-order statistics (e.g., mean and variance) of the
closest background point pp are the same as the statistics of the cor-
responding background colors that scene point p is viewed against.
This is a plausible assumption because the rays going from the cam-
era centers through the points p and pp will hit similar parts of the

background, as illustrated in Figure 2. In practice, as the back-
ground is significantly far from the foreground object and the dis-
tance between p and pp is small, the ray bundles going through
these two points overlap significantly. The second-order statistics
of the closest foreground point pr are the same as the second-order
statistics of the scene point p. This is equivalent to stating that
view-independent properties (e.g., albedo) of the scene point and
its closest foreground point can be completely different but their
view-dependent statistics (e.g., specularity level) are the same.

3.2 Mathematical Derivation
We now derive a new variance-based matting equation to solve for
o and then F. We first take the variance of equation 3:

var(I) = var[aF + (1 — @)B]. Q)

If we assume that B and F are statistically independent then:

var(I) = var[aF+ (1 —a)B]

= ([(aF+(1—0a)B) — (aF + (1 — a)B)]?)

= ([a(F —(F)+ (1 - a)(B~ (B))])

= Q{(F—(F))+ (1 - a)(B— (B)?)

= o’var(F)+ (1 — a)*var(B) (6)
where (X) denotes the mean value of X. The assumption that B
and F are statistically independent is manifested in going from the
third to the fourth line of equation 6 where the expected value of

term (1 — a)(F — (F))(B — (B)) is assumed to be equal to zero.
In order to compute o, we need to solve a quadratic equation in «:

[var(F) + var(B)] o> — 2var(B)o + [var(B) — var(I)] = 0. (7)

The solutions to this quadratic equation are:

_ var(B)+/A
where “= var(F) + var(B)’ ®
A = var(I)[var(F) 4 var(B)] — var(F)var(B). ©)

Equation 8 provides two algebraic solutions; however, when
var(B) > var(F), as is the case in practice, then one of the so-
lutions is often greater than 1 making it inconsistent with the con-
straint that o € [0, 1]. In case both solutions are valid and consistent,
we take their average. Algebraic analysis reveals all possible cases
and can be summarized as follows:

0 var(I) > max(var(B),var(F));
% var(B) < var(I) < var(F);
a= %}raﬁﬂ) var(F) < var(I) < var(B);
var(B) var(B)var(F)

var(B)+var(F) var(B)+var(F) < var(I) < min(var(F),var(B));

_var(B)var(F)
var(B)-+var(F) * (10)

1 var(I) <

The first and last lines of equation 10 represent the cases in which
no valid solutions exist, and we clip o appropriately. Lines 2 and 3
represent the case in which one of the solutions is outside the range
[0,1], and we can safely choose the other solution. In practice, we
only encounter the case shown in line three. Line 4 is when both
solutions are valid, and we set o to be their average.

Note that two discontinuities occur. One occurs when the value
of var(I) switches the solution from lines 2 or 3 to line 4, and the
second is from line 4 to 5. These are due to switching from an
exact solution to an approximate solution. For both solutions the
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. C var(F) _ 1
discontinuity is no more than o= T(B)tvar(F) — The

fined as the ratio between background and foreground variances,
i.e., var(B) = cvar(F). In the worst case ¢ = 1 (the background
and foreground variances are the same), and the error is 0.5 (i.e.,
we set @ to 0.5 where, in fact, it should have been either O or 1). In
practice we found that ¢ is on the order of 100, which makes for a
roughly 0.01 error in alpha estimation.

Note that if we assume that our scene is diffuse (var(F) = 0),
then equation 8 has no ambiguity:

where c is de-

var(I)

a=1- .
var(B)

1)

We compute o.F using the following equation:
aF =(I) - (1-a)(B), (12)

where (I) is the mean of the corresponding pixel value in all im-
ages, « is recovered from equation 10, and (B) is the mean of the
background pixel values. To visually preserve view dependent ef-
fects, such as highlights, without blurring them in the computed
oF, we compute (I) and (B) using a weighted mean with the high-
est weight placed on the central reference camera with the weight
dropping for cameras that are farther away. To summarize, we esti-
mate mean and variance statistics using equation 4 and compute o
and oF using equations 10 and 12, and our result is most accurate
when var(B) > var(F).!

4 Alpha Matting System

Our system works with an array of synchronized video cameras that
capture the scene of interest. The central camera is defined as the
reference camera and our goal is to compute an alpha matte on the
reference camera using information from the rest of the cameras.
The algorithm requires the mean and variance statistics, as well as
the trimap, to be computed at the foreground depth. We will now
describe how we compute these values.

4.1 Automatically Selecting the Foreground Depth

To compute the mean and variance statistics, it is necessary to iden-
tify corresponding pixels in each camera image for each foreground
scene point p. We do this by synthetically refocusing [Isaksen et al.
2000] the array images to the foreground object’s depth plane. To
automatically pick this plane, we have developed an “autofocus” al-
gorithm. Our method is similar in spirit to autofocus in a consumer
camera, where a camera varies its focus and picks the setting that
gives the strongest gradients in pre-defined regions (often appearing
as red-rectangles in the viewfinder). We instead sweep a synthetic
focal plane through the scene, sum the variance at each plane within
each of 9 10x10 pixel focus regions, and pick the depth that gives
the minimum variance in one of these regions. Low variance at a
depth plane implies that a number of features are aligned and thus
an object is present; we use 9 focus regions distributed about the
image since the foreground object could appear in different parts
of the image. We limit the depth range during the sweep such that
we do not autofocus on the background. Currently, our autofocus
method is “on-demand”. We typically run it once at the beginning
of a sequence and use this depth for the entire sequence; however,
if the foreground object moves significantly off this depth, we run
the method again.

We also provide a “manual focus” interface that allows the user
to override the automatic focusing when necessary. The user can
pick the foreground depth by interactively sliding the synthetic
plane of focus through the scene; the synthetic aperture image is
displayed in real-time, so that the user can choose the plane where

!'As a point of clarification, aF is an RGB value, while o is a single-
channel value; therefore, the mean values are RGB values, while the vari-
ance values we use are the lengths of the RGB variance vectors.

Figure 3: Camera array and real-time system. We use a linear array
of 8 video cameras. We can compute alpha mattes at several frames
per second at quarter-VGA resolution and generate VGA results
offline at about a second per frame.

the foreground object is best focused. We have found that this
method is a relatively simple and intuitive way to select the fore-
ground depth.

Once the array images are aligned to a depth plane, features on
this plane have minimal variance, while features off this plane, such
as the background have high variance, which is the desired effect.
However, if the foreground is non-planar, textured areas off the
plane will also exhibit higher variance, which could cause erro-
neous « values. Fortunately, it is relatively simple to handle this
non-planarity by adjusting the per-pixel depth. We perform a local
search by sweeping a plane over a small depth range near the fore-
ground reference plane and store the minimum variance value and
corresponding mean per-pixel over that range. 2 This allows us to
automatically adjust the focus slightly on a per-pixel basis.

4.2 Automatic Trimap Computation

As described in section 3.1, since we only observe I, we have to
approximate the variance of F and B using nearby scene points. For
each point labeled as unknown in the trimap, we use the variance
of its nearest foreground and background points to estimate var(F)
and var(B). We then compute alpha using equation 10.

We construct the trimap by filtering var(I) with a 9x9 pixel me-
dian filter to smooth out small fluctuations due to noise. We then
use a relatively standard approach of erosion and dilation com-
bined with double-thresholding to create a trimap with conserva-
tively wide unknown regions. Variances less than 100 are consid-
ered foreground, greater than 5000 are background, and the rest
are unknown. We erode the foreground and background regions
to remove small disconnected areas and dilate the unknown pixels
inwards and outwards by 5 pixels.

4.3 Implementation

We use a linear array of 8 Basler cameras shown in Figure 3. The
resolution of each camera is 640x480 pixels (Bayer pattern). The
cameras have external hardware triggers and can provide synchro-
nized video capture up to 30 frames per second. All cameras are
connected to one 3GHz PC over Firewire. We geometrically cal-
ibrate our camera array (both extrinsics and intrinsics) using stan-
dard computer vision methods. We assume that the centers of pro-
jection of our cameras lie on a line. Furthermore, we compute ho-
mographies that rectify all camera planes. We perform basic color
calibration by placing a Macbeth color checker in the scene so it
is viewable by all cameras and then compute a color transform for

2For our experiments the depth range is about a foot around the plane.
While the range only has to be narrow enough to avoid including the back-
ground, a relatively narrow range is desirable for faster computation.
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Figure 4: Results for a tree in front of a background of trees. A horizontally translating camera captures 30 images of a static scene. Our
algorithm automatically pulls out the matte. (a) Central image. (b) Trimap. (c) Alpha matte. (d) Zoom in on the alpha matte. (¢) Zoom in on
the ground truth.

each camera to match its image of the color checker to that of the
central reference camera. We also perform vignetting calibration
and have found this to significantly improve the quality of our vari-
ance estimates and, by extension, our trimaps and alpha mattes.

In our implementation, we distinguish between two scenarios.
The first is an online system that can process quarter-VGA images
at several frames per second, and the second is an offline system that
can produce high-quality VGA results at about one frame per sec-
ond. The distinction between the two methods is in the search stage.
Specifically, in the offline system we perform our depth search for
every pixel, whereas in the online system we compute the variance
for one plane only, filter it to remove high variances due to non-
planarity of the foreground, and then perform our depth search only
for the pixels in the unknown region of the trimap.

5 Results

In this section, we present results using our algorithm. First, we
show results for static scenes. For the static results, we acquired
a sequence of images of each object with a horizontally translating
camera. Each object is captured by 30 to 40 images. In Figure 4, we
show results for a tree filmed in front of several other trees. Pulling
a matte for this scene is very challenging as the foreground and
background structure is complex. Furthermore the colors in both
layers are similar. A matting method that assumes low-frequency
backgrounds would have difficulty with such a scene as would any
3D reconstruction method. Our method, however, recovers a high-
quality alpha matte. In Figure 4, we compare our result to a ground
truth result obtained using triangulation matting [Smith and Blinn
1996]. Note that our result recovers details such as single pine nee-
dles, which are also seen in the ground truth matte.

In Figure 5, we show results for an object that has high-frequency
content. The fur on the doll is various shades of pink and white.
For this object, our use of variance statistics is very important as
the colors for neighboring foreground pixels can vary significantly.

Our method can pull mattes for foreground objects filmed over
a wide variety of backgrounds. In Figure 5, we show results for a
Santa doll filmed in an office corridor. The background structure in
this scene is significantly different than that of the previous results;
the background depth range is large and it also includes a glass
door with strong specular reflections, yet we can successfully pull
a matte for the intricate hair structure on Santa’s beard.

In our final static result, we explore how the number of images
affects the alpha matte quality. To do this, we captured a sequence
of 120 images of a stuffed gorilla and applied our algorithm to vary-
ing subsets of images ranging from 8 up to 120 images. Figure 6
shows the resulting alpha mattes for different numbers of images.
As we drop the number of images used, the alpha matte quality is
retained. In general, the number of cameras needed to get good
results is a function of scene content and camera spacing. While
there is no magic number of cameras needed for our method, we
have obtained good results with as few as eight cameras.

We now show single-frame snapshots for results computed for

dynamic scenes. The reader is encouraged to view the video clips
of these scenes and several additional scenes in our supplementary
materials. Figure 7 shows two examples of pulling a matte for in-
tricate hair structure at two frames per second. The first case is a
snapshot from a video sequence of an actor talking and moving his
head. Of interest is the fact that there is a person moving in the
background. The actor is correctly pulled from the scene, as can be
seen in the composite. The second case shows results for an actor
filmed with a moving camera array. This case is difficult because
the statistics of the background constantly change as the camera is
panning. Figure 8 shows a zoom-in on a VGA result.

Our algorithm can handle not only hair and trees, but can pull
mattes for transparent objects, such as fluids and smoke, without
any special modifications to the algorithm. In Figure 9, we show
a VGA result for coffee being poured into a glass pot. This scene
is very challenging due to highlights on the coffee pot, the trans-
parency of the glass, and bubbles from the liquid being poured. In
Figure 1, we show a VGA result for a video sequence of smoke.
Another frame from this sequence is shown in Figure 10. Note that
both results accurately capture a single ring of smoke. The objects
in these scenes are difficult to model, yet the alpha mattes are sur-
prisingly good.

We envision that in a movie studio a director would wish to pull
an alpha matte for a high-quality movie camera that was not directly
integrated into our system. For such a setup, we would use the cam-
eras from our system to generate an alpha matte for the viewpoint
of the movie camera. For this application, we need to generate an
alpha matte for a virtual viewpoint. As our camera positions are
known, and our alpha matte is computed for a single foreground
depth, computing alpha for a virtual view is trivial using simple
image-based rendering techniques. In Figure 10, we show a vali-
dation of this by computing a matte, using only the data from the
seven outer cameras, for the viewpoint of the central camera. This
result is virtually identical to the result that uses all eight cameras.

6 Discussion and Future Work

While we have achieved good results with our method, our system
does suffer from several limitations. First, we assume that alpha
is fixed and not view-dependent. While true in practice for many
objects, some materials exhibit view-dependent alpha due to self-
occlusion. Self-occlusion causes a high variance for pixels in the
synthetically refocused image. This results in an incorrect alpha
value. Using a narrow baseline for our cameras limits these errors.
For our scenes, where the background was a couple meters from the
foreground, we found that a half-meter baseline worked well. Ad-
ditionally, using a per-camera weighting term designed to preserve
view-dependent effects [Buehler et al. 2001] could reduce these
errors. By weighting cameras closer to the reference view more
heavily, we can limit the effects of self-occlusion.

Second, we are limited by aliasing in our light fields. In prac-
tice, we have found errors due to aliasing to be significant only for
our measurements for pixels on the background. Aliasing causes
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the variance measurements to be incorrect due to periodic textures
being aligned when we synthetically refocus our data. This causes
a background pixel to have non-zero alpha. There are several de-
sign improvements that could alleviate these problems. The first is
to use more cameras. We believe our algorithm would work well
with a large, dense camera array such as that shown by Wilburn er
al. [2005]. Even with a small number of cameras, different camera
distributions could reduce aliasing artifacts. For example, cameras
could be concentrated more towards the center reference camera.
If one were to use a 2D grid, the system would benefit from back-
ground color variation that occurs both horizontally and vertically.
Furthermore, in man-made settings, as background structures are
primarily horizontal and vertical, using a diagonal cross arrange-
ment could be useful, as it would maximally spread these features
in the synthetically refocused images.

Third, we assume that the variance of the background is several
orders of magnitude larger than that of the foreground, when this is
not the case, our method will fail. Fortunately, this is true for many
scenes, and even very specular surfaces have var(F) a few orders of
magnitude lower than var(B).> Furthermore, var(B) can be high
even for scenes that do not have high-frequency backgrounds. Even
a background with a very low spatial frequency, such as two differ-
ent and constant colors, side by side, can be enough to generate a
high variance, provided that rays from the camera array sample both
colors; in the limit, a foreground point needs to be imaged in front
of two different background colors [Smith and Blinn 1996]. Nev-
ertheless, when var(B) is low, the input reduces to a single camera
input with a known background value. In this case, one can use
existing algorithms such as blue-screen matting [Smith and Blinn
1996] or Bayesian Matting [Chuang et al. 2001]. A natural exten-
sion, therefore, is to combine our algorithm with existing methods
such that image content will dictate the appropriate alpha matting
algorithm.

One can generalize equation 6 to higher order statistics; this a
potentially useful extension worth investigation. More generally,
one can consider the distributions and not just means and variances
for pulling the matte. While 8 cameras may be enough to estimate
the mean and variance of a distribution, due to the aliasing issues
discussed above, it is not enough to explicitly model a distribution.
However, using a camera array of, say, 100 cameras, would make it
possible to use more sophisticated distribution models.

7 Conclusions

We have presented a fast, automatic system for high-quality natural
video matting using a camera array. Our matting algorithm works
well on difficult scenes. It is efficient, orders of magnitude faster
than previous natural video matting systems, and is amenable to
real-time implementation as it is linear in the number of cameras.
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(b) © @
Figure 5: Results on static scenes. A horizontally translating camera captures 40 images of a static scene. Our algorithm automatically pulls
out the matte. (a) Central image. (b) Trimap. (c) Alpha matte. (d) Ground truth.
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Figure 6: Varying the number of images used. (a) Central image. (b) Alpha matte using 120 images, (c) 60 images, and (d) 8 images.
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Figure 7: Alpha matting people and hair. (a) A snapshot from a video sequence of a moving head. Observe that there is a moving person in
the background that is correctly segmented out in the composite. (b) A snapshot from a video sequence obtained by a moving camera array.
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Figure 8: VGA alpha matte. (a) Image from the central camera. (b) Alpha matte. Red rectangles mark the zoom-ins shown in (c) and (d).
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Figure 9: Alpha matting semi-transparent objects. A VGA snapshot from a video sequence of coffee pouring into a glass pot. (a) Central

image. (b) Trimap. (c) Alpha matte. (d) Composite.
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Figure 10: Computing alpha mattes for a virtual camera view. (a) Alpha Matte computed using the 7 outer cameras in our array for a virtual
view co-located with the center camera. (b) Alpha Matte using all eight cameras. (c) Composite using the alpha multiplied foreground
computed for the virtual view. (d) Composite using the alpha multiplied foreground computed with data from all eight cameras.




