
Modeling the Communication Costs
of Content-based Routing:

The Case of Subscription Forwarding

Stefano Castelli
Dept. of Information and

Communication Technology
University of Trento, Italy

castelli.stefano@gmail.com

Paolo Costa
Dept. of Computer Science

Vrije Universiteit
Amsterdam, The Netherlands

costa@cs.vu.nl

Gian Pietro Picco
Dept. of Information and

Communication Technology
University of Trento, Italy

picco@dit.unitn.it

ABSTRACT
Content-based routing (CBR) provides the core distribution support
of several middleware paradigms, most notably content-based pu-
blish-subscribe. Despite its popularity, however, the performance
of CBR protocols is typically evaluated through simulation, and
analytical models are extremely rare in the literature. Analytical
models capture formally the characteristic of the analyzed system,
and are therefore worth pursuing on their own. However, they also
provide very practical advantages in that they allow one to evalu-
ate tradeoffs extensively (i.e., across many parameter combinations
and across all the interesting values) without the lengthy computa-
tion times required by simulations. These benefits are particularly
welcome when large-scale networks are considered.

In this paper, we provide an analytical model for subscription
forwarding [4], arguably the most common CBR protocol in use
today and one that is often used as a baseline against which to com-
pare new approaches. We provide closed analytical expressions
for the overall network traffic required to disseminate subscriptions
and propagate notifications, as well as for the message forward-
ing load on individual nodes. The analytical model we present is
validated through simulation for networks with more than 100,000
nodes and against several combinations of the relevant parameters.
Results show that our model remains within 3% of the simulated
traffic (and in most scenarios well below 1%), therefore indicating
that our model can effectively replace simulations. The paper is
completed by some examples of how our analytical model can be
used in practice, including a precise characterization of the trade-
offs between subscription forwarding and event forwarding.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distributed Sys-
tems

General Terms
Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS ’07, June 20-22, 2007 Toronto, Ontario, Canada
Copyright 2007 ACM 978-1-59593-665-3/07/03 ...$5.00.

Keywords
Subscription Forwarding, Analytical model

1. INTRODUCTION
Content-based routing is becoming an increasingly popular build-

ing block for distributed applications, and is notably at the core
of content-based publish-subscribe systems. Content-based rout-
ing differs from classical routing paradigms as messages are routed
based on their content rather than their destination address, and
therefore is usually implemented using dedicated protocols.
Content-based routing protocols. Most of existing CBR proto-
cols assume the existence of a tree-shaped overlay network inter-
connecting the brokers, the application-level routers in charge of
disseminating the subscriptions containing the event-filtering pat-
terns and of routing events. The two classic CBR strategies are:

• Event forwarding: All events are flooded throughout the tree,
to all the brokers. No in-network event filtering is performed:
events are matched against subscriptions only at the brokers.

• Subscription forwarding: Subscriptions are flooded to the
whole tree, and in doing so they setup routes towards sub-
scribers from each node. A published event matching a sub-
scription is routed along the reverse path towards subscribers,
using the aforementioned routes. Subscriptions for the same
filter need not propagate to the whole tree, as they can often
leverage off the routes already setup by the previous sub-
scriptions. This is arguably the most common CBR strategy
today, and is typically used in the literature as a baseline for
comparison.

A number of variations over these schemes exist [10]. For in-
stance, some systems (e.g., [7, 11]) use a form of hierarchical for-
warding where the root works as a sort of meeting point for sub-
scriptions and events. Advertisements have been proposed [4] to
reduce the subscription traffic, by sending subscriptions only to
those nodes that expressed the intent to publish a given class of
events. Also, approaches that do not rely on a tree overlay exist
(e.g., [5, 6, 8]).
Motivation. Despite the increasing number of proposals, the pre-
dominant means of analyzing, comparing, and validating CBR pro-
tocols is simulation. There is almost no study that, in contrast, pro-
vides an analytical characterization of a CBR protocol. The trade-
offs between simulation and analytical models have been stated in
the context of CBR in a recent paper [2] by Carzaniga and Hall:

Simulation analyses are difficult to read because of the
many configuration parameters that define each exper-

iment. Even if one understands the performance trend
observed through simulation in a section of the param-
eter space, it is by no means clear whether and how
such trends can tell anything about other parts of the
parameter space. Also, simulations may not capture
essential, implementation-independent properties of a
protocol. Having a formal model of networks and pro-
tocols would allow us to formulate more general state-
ments about the complexity of protocols.

For instance, the general wisdom about the two aforementioned
classic strategies is that event forwarding is convenient when the
number of subscriptions is much greater than the number of events,
while subscription forwarding is preferable when the reverse holds.
However, what does it mean “much greater”? Where is the break-
even point between the two approaches? How does it change ac-
cording to different combination of parameters, such as network
size and shape as well as application profile (e.g., percentage of
subscribers and receivers, message load)? Precise and general an-
swers to these questions are difficult to derive through simulation,
and are best obtained through analytical models.
Contribution. In this paper, we make a step towards the goal of
providing analytical studies of CBR protocols, by providing a char-
acterization of the subscription forwarding strategy. We chose this
protocol because it is well-known, is deployed in several systems,
and is often used as a baseline for comparison against newer ap-
proaches. Therefore, although more efficient protocols have been
proposed, its analytical characterization is likely to have a stronger
impact on common practice, fostering a deeper understanding of
the properties of this basic strategy.

The focus of our analysis is on communication costs. Our model
provides closed analytical expressions for the overall network traf-
fic required to disseminate subscriptions and propagate notifica-
tions, as well as for the message forwarding load experienced by
a single node. Both are concerned with scalability: the first quan-
tity characterizes it from the point of the view of the traffic globally
generated within the network, while the second is helpful in high-
lighting the potential of bottlenecks on some nodes.

Clearly, a model is useful only if it accurately represent reality.
Given that our concern is scalability, a validation based on real-
world experiments is difficult. For this reason, we chose to vali-
date our model using the PEERSIM [1] simulator, a popular choice
to test application-level protocols for large-scale scenarios. This
choice allowed us to validate our model in networks with more
than 100,000 nodes and with several combinations of the relevant
parameters. Results show that our model remains within 3% of the
simulated traffic, and in most scenarios well below 1%. These re-
sults not only support the validity of our model, but also indicate
that it can effectively replace simulation as the main investigation
tool without loosing accuracy, therefore enabling a more extensive
analysis at a lower costs in terms of computation time.

Finally, we show how our model can be useful in practice by an-
alyzing three examples. First, we provide a precise characterization
of the tradeoffs in terms of message traffic between the two clas-
sic CBR protocols, subscription forwarding and event forwarding.
Second, we show how our model of the message forwarding load
can be used to identify bottlenecks in the deployment of systems
based on the subscription forwarding protocol. Finally, we show
how the tradeoffs between traffic and forwarding load are affected
by the shape of the tree topology. In all these cases, we show how
the informal rules of thumb determining the tradeoffs can be stated
precisely, given some key parameters of the target scenario.
Related work. As we mentioned, CBR protocols are almost al-

ways evaluated using simulation. Therefore, there is almost no di-
rectly1 related work to compare against. A notable exception is the
work described in [9], where hierarchical forwarding and event for-
warding (respectively, identity-based routing and flooding in [9])
are compared. However, such work has two significant limitations:

1. subscribers are assumed to be placed always on leaves, while
publishers are assumed to be either on leaves or on the root;

2. the model is not validated in any way, therefore its accuracy
w.r.t. simulated or real scenarios remains unknown.

In comparison, the only assumption we make in this paper about
the placement of publishers or subscribers is that they are uniformly
spread in the system, an assumption typically made also by the vast
majority of simulation studies. Moreover, we do validate our model
through simulation, therefore giving a quantitative measure of the
difference (very small, as mentioned above) between the two evalu-
ation methods. An additional difference between our work and [9]
is in the routing protocols considered, which makes the two works
not directly comparable quantitatively. Nevertheless, we believe
that the two routing strategies are similar enough that the tech-
niques we used in this paper for modeling subscription forward-
ing can be adapted towards hierarchical forwarding: such adapta-
tion is in our immediate research agenda. Similarly, our model can
also be adapted to model CBR protocols that use advertisements,
since these are effectively propagated much like subscriptions in
subscription forwarding.

The only other directly related work we were able to find is an
unpublished technical report by Carzaniga et al. [3]. The authors
define a theoretical framework for CBR schemes and use it to de-
rive memory requirements for the matching process, along with
general correctness properties of the protocols. As such, their fo-
cus is rather different from ours, in that we aim at deriving ex-
pressions for characterizing quantitatively subscription forwarding
from a communication standpoint, and we are not interested in
proving the correctness of the protocol itself. Moreover, as in [9],
the authors of [3] do not provide any validation of their model.
Roadmap. Section 2 defines the characteristics of the systems we
consider, and the assumptions we make in deriving our model. Sec-
tion 3 presents our analytical model of the overall message traffic
and of the node forwarding load generated by subscription forward-
ing. Expressions for the much simpler event forwarding protocol
are also derived along the way. Section 4 reports about an extensive
validation of our model through simulation. Section 5 illustrates the
versatility and practical relevance of our model through examples.
Finally, Section 6 ends the paper with brief concluding remarks.

2. SYSTEM MODEL AND ASSUMPTIONS
Our analytical model of subscription forwarding assumes an over-

lay network containing n broker nodes organized in a unrooted tree,
hereafter called broker tree. We do not consider the clients attached
to brokers, since they do not influence the routing cost. Clients,
however, determine the role of a broker in the broker tree. We say
that a broker is a subscriber for pattern p (or a publisher of event
e) if at least one of its client is. Similarly, a broker is a receiver
for event e if one of its clients is a subscriber for a pattern match-
ing e. We assume that subscribers, publishers, and receivers are
uniformly spread throughout the broker tree.

Although we assume that, for what concerns routing, the broker
tree is unrooted, for our modeling it is useful to assume that the
1Many analytical models of routing are available in the networking
community. However, these models are not directly comparable, let
apart reusable, due to the peculiarities of content-based addressing.

broker tree has a height of h levels, with the root at level l = 0.
Moreover, we assume that the tree is full, i.e., all the leaves are at
level l = h and all internal nodes have exactly f children. The
total number of nodes is then easily computed as

n =

hX
l=0

f l

This assumption, however, is mostly for illustration purposes. In
practice, arbitrary tree topologies are encompassed in our model.
Assuming the average degree f̄ is known, all the formulae of the
analytical model of the overall message traffic described in Sec-
tion 3.1 still hold when replacing f with f̄ . On the other hand, the
model of the forwarding load on a node, presented in Section 3.2, is
more sensitive to variations in the topology. In this case, although
replacing f with f̄ is still a reasonable option in many cases, some
additional parameters of the topology are required to enable an ac-
curate estimation. Section 4 reports about the validation of our
model by considering both full and arbitrary trees.

Our model is based on a few parameters that characterize the
application profile. We define σ(p) as the probability of a node
to be subscribed to a given pattern p. In the case of a uniform
distribution for patterns, (i.e., each pattern p occurs with the same
probability), σ(p) = kp, where 0 ≤ kp ≤ 1 is some constant.
In general, however, different patterns have a different probability.
For instance, in the case of the commonly used Zipf distribution:

σ(p) = P
c

(pα)

being P the average number of subscribed patterns per node, α
the exponent characterizing the Zipf distribution, and c a param-
eter such that

PFp

p=1
c

pα = 1. Moreover, in this paper we do
not consider optimizations involving covering relationships among
subscriptions [10]. These can be captured by an additional param-
eter γ(p), the probability that a pattern p is already covered by
another, and by reusing the techniques we describe in this paper.
However, this would make the treatment significantly longer and
more cumbersome, and it is therefore omitted here.

In a content-based system, an event may match multiple patterns.
We define µ(e) as the probability of a node to be a receiver for event
e. Clearly, a receiver is also a subscriber for at least one of the
patterns matching e. As with patterns, the probability µ(e) varies
according to the event e, unless a uniform distribution of events
µ(e) = ke, 0 ≤ ke ≤ 1 is assumed. Note that when both events
and patterns follow a uniform distribution, the constraint kp ≤ ke

holds. Otherwise, given a single pattern p and a matching event e,
we would allow the nonsensical case where the receivers for e are
less than the subscribers for p. Hereafter, to improve readability we
drop the indexes p and e, wherever not ambiguous.

Finally, message traffic and forwarding load are affected by two
parameters, again characterizing the application profile: the fre-
quency Fp of distinct patterns and the frequency Fe of distinct
events, both relative to a given observation time interval.

3. ANALYTICAL MODEL
We characterize analytically subscription forwarding in terms of

the overall message overhead generated by subscription and event
messages, as well as of the forwarding load experienced by a node.

3.1 Overall Message Traffic
Here we derive closed expressions for the overall message traffic

generated by subscription forwarding. In comparison, the charac-
terization of event forwarding is trivial. Indeed, since subscriptions

(a) First subscription, issued by S.

(b) Second subscription, issued by T .

(c) Third subscription, issued by C.

Figure 1: Configuration after the first, second, and third sub-
scription for a pattern p have been propagated. Arrows repre-
sent routing entries in the subscription tables. The dashed line
shows the pattern tree.

are never propagated, the only contribution comes from events,
which are forwarded to all links. Therefore, the traffic generated
by event forwarding can be easily computed as:

TEF = Fe(n− 1) (1)

3.1.1 Cost of Routing a Single Pattern p

We begin by modeling the traffic generated by the dissemination
of a generic pattern p.

If no previous subscription for a pattern p already exists in the
system, subscription forwarding propagates the subscription to all
the nodes. After propagation of this first subscription for p com-
pletes, a new directed tree rooted at the subscriber has been created
on top of the broker tree, as depicted in Figure 1(a). An event
matching the pattern p will be propagated from broker i to broker
j if and only if a route from i to j exists in the broker tree.

When a second subscription for p is issued, it is not resent along
links where it was already propagated by the first subscriber, and
therefore is effectively routed only towards it. As can be observed

in Figure 1(b), the links belonging to the path traversed by the sec-
ond subscription become “bidirectional”, i.e. both the link end-
points have an entry in their routing tables. The set of all these
bidirectional links form a spanning tree that connects all the nodes
subscribed to p, called the pattern tree for p. When new subscribers
appear, additional routes must be similarly created to connect the
subscribers with the pattern tree. For instance, in Figure 1(c) a
new subscription fromC requires one additional route between this
node and the first one encountered on the pattern tree, the root R
in the example. The other routes in the tree are already correctly
forwarding events towards C.

Therefore, the traffic T (p) due to subscriptions for p is equal to
the number of subscription routes (represented by arrows in figure)
present on the tree. Since each link can be part of at most two
routes, one towards the root and the other towards the leaves, we
denote with ρl(p) and λl(p) the probability of a link on level l to
be part of a route towards the root and towards the leaves, respec-
tively. Since a generic level l contains f l links, on average there
are (ρl(p) + λl(p))f

l routes per level. We can therefore obtain the
analytic expression for T (p) by summing the number of upstream
and downstream routes on each level:

T (p) =

hX
l=1

(ρl(p) + λl(p)) f
l (2)

We can derive the value of ρl(p) and λl(p) by observing that
a generic link on the tree contains a subscription route between a
father u and its child v if and only if the set Tl of nodes belonging to
the sub-tree rooted at v contains at least one subscriber. Similarly,
a subscription route from the child v to the father u exists if and
only if the the set N \ Tl of nodes not belonging to the sub-tree
rooted at v contains at least one subscriber, being N the set of all
nodes in the network. For instance, in Figure 1(c), the link between
R andB is bidirectional because there is a subscriber (i.e., T) in the
sub-tree rooted at B and a subscriber (i.e., S) outside that sub-tree.

Therefore, ρl(p) is simply the probability that a subscriber exists
among the |Tl| nodes contained in the sub-tree rooted at a node at
level l. The value of |Tl| is easily computed as

|Tl| =
h−lX
k=0

fk (3)

based on the topological properties of the broker tree. The proba-
bility to find a subscriber in Tl can be computed by recalling, from
Section 2, that σ(p) is the probability of a node to be subscribed to
pattern p. Therefore, we can compute σ̄|Tl| as the probability that
no subscriber exists in Tl, using the complementary probability of
σ, σ̄ = 1 − σ. The probability ρl(p) that at least one subscriber
exists in Tl is then the complementary probability of σ̄|Tl|:

ρl(p) = 1− σ̄|Tl| = 1− σ̄
Ph−l

k=0 fk

(4)

Along the same lines, we can derive the expression for λl(p) as
the probability that at least one subscriber exists among the n−|Tl|
nodes outside Tl:

λl(p) = 1− σ̄n−|Tl| = 1− σ̄n−
Ph−l

k=0 fk

(5)

We can now compute the total cost of disseminating all subscrip-
tions for a pattern p. Recalling Equations (2)-(5), the complete for-

mula for T (p) is:

T (p) =

hX
l=1

(ρl(p) + λl(p)) f
l

=

hX
l=1

“
2− σ̄

Ph−l
k=0 fk

− σ̄n−
Ph−l

k=0 fk
”
f l (6)

Equation (6) is easily verified for σ(p) = 1, i.e., all nodes are
subscribed to p. In this case, σ̄ = 0, and therefore

T (p) =

hX
l=1

2f l = 2(n− 1)

i.e., all links are bidirectional and have two subscriptions.

3.1.2 Cost of Routing a Single Event e
We observe that a link between a node u (father) and a node v

(child) is traversed by an event e if and only if the sub-tree Tl rooted
at v contains at least one receiver for e and the publisher of e is not
in Tl or, vice versa, e has been published in Tl and there exists at
least one receiver outside Tl.

We define the probability πl = |Tl|
n

as the probability that the
publisher lies in Tl, and π̄l = 1 − πl as the probability that the
publisher lies outside Tl. Therefore, the probability ψl(e) that a
link at level l is traversed by an event e is

ψl(e) = πl(1− µ̄n−|Tl|) + π̄l(1− µ̄|Tl|) (7)

being µ the probability of a node to be a receiver for e, as we de-
fined in Section 2.

The traffic T (e) due to event e can then be expressed as

T (e) =

hX
l=1

ψl(e)f
l

=

hX
l=1

“
πl(1− µ̄n−|Tl|) + π̄l(1− µ̄|Tl|)

”
f l (8)

Equation (8) confirms the intuition for µ = 1, i.e. when all nodes
are supposed to receive event e. In this case the event is forwarded
on all links and, therefore, T (e) = n− 1.

3.1.3 Total Message Traffic
We can estimate the total message traffic generated in a given

interval by recalling, from Section 2, the frequencies Fp and Fe for
distinct patterns and events.

If patterns and events follow a uniform distribution, the overall
message traffic for subscription forwarding is simply

T SF = FpT (p) + FeT (e) (9)

However, in general σ and µ may change for each pattern and
event. The general expression of the overall message traffic is then:

T SF =

FpX
p=1

T (p) +

FeX
e=1

T (e) (10)

3.2 Forwarding Load on a Node
Thus far, we restricted our analysis to the network overhead in-

troduced by the subscription and event messages exchanged in the
network. This quantity accounts for scalability in terms of the over-
all load imposed on the system at large. Here, instead, we turn our
attention to the load experienced by a node, in terms of the mes-
sages it must forward. This analysis complements the previous one,

in that it still provides insights about scalability, but from the point
of view of an individual node.

Once more, in our analysis we consider only subscription for-
warding. Indeed, event forwarding can be easily characterized un-
der the assumptions stated in Section 2 and in particular the uni-
form placement of publishers and subscribers. Assuming f is the
actual degree of a node, to account for arbitrary non-full trees, the
load experienced by a generic internal node i for a given event e
depends on whether the node is the publisher of e or not. In the
first case, the event is propagated to all f + 1 neighbors, otherwise
only to the f neighbors different from the one that forwarded the
event. The load for a generic internal node is then:

LEF
i =

1

n
(f + 1)Fe + (1− 1

n
)fFe = (

1

n
+ f)Fe

where 1
n

is the probability of a node to be a publisher. A similar
expression holds for the root, which has however only f neighbors:

LEF
r =

1

n
fFe + (1− 1

n
)(f − 1)Fe = (

1

n
+ f − 1)Fe

Finally, a leaf forwards an event only when publishing it:

LEF
l = Fe

1

n

In the following, we similarly discuss separately the load expe-
rienced by the root, by an internal node, and by a leaf.

3.2.1 Subscriptions
Root. The forwarding load on the root can be estimated by observ-
ing that the first subscription received by this node is propagated to
all of its children, except the one from which the subscription has
been received (Figure 2(a)). No other subscription will come from
this link, since a subscription is never propagated twice on the same
link. Conversely, a subscription coming from any other link is prop-
agated to the sub-tree containing the first subscriber (Figure 2(b)).
This, however, happens only the first time such a subscription is
received. Any additional subscription, regardless from its prove-
nience, does not require any forwarding since all the routes have
been already built, i.e., all the outgoing links have been traversed
by a subscription (Figure 2(c)).

Based on these observations, the expected forwarding load on the
root due to the first subscription can be expressed as the product be-
tween the probability that at least one subscriber exists in the rest of
the network (i.e., 1− σ̄n−1) times the f − 1 children the subscrip-
tion must be forwarded to. This number is derived by recalling that
we exclude the root child from which the subscription is received.
Let us call this node (A in Figure 2(a)) the first subscribed child.
The contribution to the load given by the first subscription is:

Lr,1(p) = (f − 1)(1− σ̄n−1)

As for subsequent subscriptions, the only one that matters is the
first coming either from one of the root’s clients or through a link
different from the one towards the first subscribed child, e.g., the
one coming through B instead of A in Figure 2(b). This subscrip-
tion is propagated only towards the first subscribed child. There-
fore, the forwarding load is simply equal to the probability to find
at least one subscriber among the n− n−1

f
nodes which do not be-

long to the sub-tree of the first subscribed child. The load due to
subsequent subscriptions forwarded by the root is:

Lr,∗(p) = (f − 1)(1− σ̄
n(f−1)+1

f)

In addition, we must consider that the first subscriber might be
the root itself. In this case, the subscription is forwarded to all the
f children and no subsequent subscription is propagated.

(a) First subscription, from S. The root R re-
ceives the subscription through its childA, and
forwards it to all the other children.

(b) Subscription from T . The root R receives
the subscription through its child B. The sub-
scription must be forwarded only towards A.

(c) Subscription fromC. All routes are already
in place: no forwarding by the root is required.

Figure 2: Subscription messages forwarded by the root R.
Curvy arrows denote message propagation (only involving the
root), straight arrows entries in the routing tables.

The final expression of the forwarding load on the root is:

Lr(p) =
1

n
f +

„
1− 1

n

« »
(f − 1)(1− σ̄n−1)+

+ (1− σ̄
n(f−1)+1

f)

–
(11)

where 1
n

is the probability that the root is the first subscriber for p.
Internal Nodes. The expression for a generic internal node at level
l is slightly more complex. Again, we illustrate our technique with
the help of a reference example in Figure 3, where we focus on
the internal node A. As with the root, the first subscription ever re-
ceived must be propagated to all neighbors, as shown in Figure 3(a).
The contribution of the first subscription is therefore similar to the
one of the root, with the only difference that internal nodes have

(a) The root childA receives the first subscrip-
tion from S and forwards it to its other f neigh-
bors, including the root.

(b) Another subscription is issued byC. A for-
wards it towards the first subscriber, S. In this
case, the first subscription received by A came
(in this case directly) through one of the links
connecting A to a child.

(c) Here, we assume instead that the first sub-
scription in the system was issued by T , in-
stead of S as in Figure 3(a). In this case, the
first subscription received by A came through
the link connecting it to the root R. A sub-
sequent subscription from Z is propagated to-
wards T .

Figure 3: Subscription messages dispatched by an internal
node, A. Curvy arrows denote message propagation (only in-
volving A), straight arrows entries in the routing tables.

one more neighbor:

Li,1(p, l) = f(1− σ̄n−1)

As for subsequent subscriptions, the observation enabling our
estimate is similar to the one we made for the root: a subscription is
never forwarded again along a link where it already went through.
Let us call s the link belonging to the internal node (A in our case),
along which the first subscription came, and T the set of nodes
belonging to the sub-tree connected to A through s. Therefore,
the first subscriber belongs to T , and if another appears in T its

subscription would never reach A. The contribution to the load can
then be computed simply as the probability to find one subscriber
outside T , 1− σ̄n−|T |.

We distinguish two cases, |Tc| and |Tf |, depending on whether s
is “below” A (i.e., connecting A to one of its children, S in our ex-
ample) or “above” A (i.e., connecting A to its father). In addition,
similar to the root case, we take into account the forwarding along
f+1 links occurring if the selected node is the first subscriber. The
final formula for the load on a generic node at level l is then:

Li(p, l) =
1

n
(f + 1) +

„
1− 1

n

« h
f(1− σ̄n−1) +

+ τc(1− σ̄n−|Tc|) + τf (1− σ̄n−|Tf |)
i

(12)

where the coefficients

τf =
|Tf |
n− 1

τc = 1− τf (13)

account for the probability that s, the link along which the first
subscription came, connects the node to its father or child, respec-
tively. The term 1

n
is instead the probability that the node is the first

subscriber for p.
Equation (12) can be applied to arbitrary trees, provided that the

values of |Tc|, |Tf |, and f are known for the node at hand. In the
case a full tree, the expression can be simplified further by observ-
ing that the following holds:

|Tc| =
h−l−1X

i=0

f i |Tf | = n−
h−lX
i=0

f i (14)

The formula above can be understood by looking at Figure 3(b),
where |Tc| is the number of nodes in the sub-tree rooted at the first
subscribed child S, and Figure 3(c), where |Tf | is the number of
nodes that does not belong to A’s sub-tree, including A’s itself. In
the case of a full tree, Equation (12) is then simplified into:

Li(p, l) =
1

n
(f + 1) +

„
1− 1

n

« h
f(1− σ̄n−1) + (15)

+ τc(1− σ̄n−
Ph−l−1

i=0 fi

) + τf (1− σ̄
Ph−l

i=0 fi

)
i

Leaves. Leaves have no children and only one neighbor. Therefore,
they forward only their own subscriptions:

Ll(p) = σ

3.2.2 Events
Root. When an event is published at the root, it is forwarded to a
child u only if there is at least one receiver in u’s sub-tree. There-
fore, the number of messages forwarded by the root in this case can
be expressed as the sum of the probability, over its f children, that

at least one receiver exists in their sub-tree, 1 − µ̄
n−1

f . Similarly,
if the event is received from one of the root’s children, it is for-
warded to the other f−1 children with the same probability above.
Recalling that the probability of a node to be the publisher is 1

n
:

Lr(e) =
f

n
(1− µ̄

n−1
f) +

„
1− 1

n

«
(f − 1)(1− µ̄

n−1
f)

= (
1

n
+ f − 1)(1− µ̄

n−1
f)

Internal Nodes. To compute the event load for internal nodes, we
follow an approach similar to the one used for subscriptions. How-
ever, while earlier we computed the probability that one subscriber
exists outside T (i.e., 1 − σ̄n−|T |), here we are interested in the

probability that one receiver exists inside T (i.e., 1 − µ̄|T |). In-
deed, subscriptions are propagated from subscribers whereas events
are forwarded towards receivers.

Similarly to subscriptions, we distinguish between two cases. If
the event is coming from the father, the forwarding load is equal
to the number of children f , times the probability that at least one
receiver exists in Tc. If, instead, the event comes from one of the
children, it is forwarded towards i) the other f − 1 children (or f
if the node is itself the publisher), if one receiver exists in Tc; or ii)
the father, if there is at least one receiver in Tf .

Therefore, using the probabilities τf and τc defined in (13):

Li(e) =
1

n

h
f(1− µ̄|Tc|) + (1− µ̄|Tf |))

i
+

+

„
1− 1

n

« h
τff(1− µ̄|Tc|)+

+ τc((f − 1)(1− µ̄|Tc|) +

+ (1− µ̄|Tf |))
i

(16)

As with subscriptions, the formula above can be simplified in the
case of a full tree, by leveraging Equation (14):

Li(e) =
1

n

h
f(1− µ̄

Ph−l−1
i=0 fi

)+

+ (1− µ̄n−
Ph−l

i=0 fi

))
i

+

+

„
1− 1

n

« h
τff(1− µ̄

Ph−l−1
i=0 fi

)+

+ τc((f − 1)(1− µ̄
Ph−l−1

i=0 fi

) +

+ (1− µ̄n−
Ph−l

i=0 fi

))
i

(17)

Leaves. Leaves forward events only when they publish them and
there is at least one receiver in the rest of the tree:

Ll(e) =
1

n
(1− µ̄n−1)

3.2.3 Total Forwarding Load for a Node
Similar to what we did for message traffic in Section 3.1.3, we

can estimate the total forwarding load on a node in a given interval
by considering all events and subscriptions generated in the system:

LSF
x =

FpX
p=1

Lx(p) +

FeX
e=1

Lx(e) x ∈ {r, i, l}

4. VALIDATING THE MODEL
To validate the model introduced in Section 3, we implemented

the subscription forwarding protocol in PEERSIM [1], a discrete
event simulator written in Java and a popular choice for simulating
application-level protocols in large-scale scenarios. Our simulator
can be configured based on the same input parameters we intro-
duced in the analytical model. We investigated several scenarios
with different combinations of parameters, whose default values
are summarized in Table 1. We averaged the simulation results
over 50 runs, each with different seeds.
Traffic Model. We used as a metric the difference (in percentage)
between the traffic derived analytically and through simulation, de-
fined as %∆T = (Tmodel − Tsim)/Tsim .

Parameter Default value
n 21,845
Fp 100
Fe 1000
f 4
h 7

σ(p) 0.02
µ(e) 0.1

Table 1: Default parameters used in the validation.

n=341 n=1,365 n=5,461 n=21,845 n=87,381
(h = 4) (h = 5) (h = 6) (h = 7) (h = 8)

%∆T (p) -0.12 0.02 -0.19 0.01 0.005
%∆T (e) -0.30 0.33 0.70 0.23 0.02

(a) h increasing, f fixed.

n=63 n=1,365 n=9,331 n=37,449 n=111,111
(f = 2) (f = 4) (f = 6) (f = 8) (f = 10)

%∆T (p) 1.7 0.02 0.003 -0.002 0.002
%∆T (e) 0.36 0.33 0.05 0.03 -0.03

(b) f increasing, h fixed.

Table 2: Simulated vs. theoretical traffic w.r.t. system scale.

σ, µ 0.001 0.01 0.1 0.5 0.8 0.9

%∆T (p) -0.0004 0.01 -0.01 0.005 0.002 -0.003
%∆T (p) 0.072 0.32 -0.14 -0.0002 0.004 0.006

(a) Uniform distribution.

α 1.5 1 0.5
%∆T (p) -0.27 -0.09 -0.01
%∆T (e) -2.01 -0.88 -0.56

(b) Zipf distribution.

Table 3: Simulated vs. theoretical traffic w.r.t. distribution of
patterns and events. We assume σ(p) = µ(e).

In Table 2, we report the results of the first simulation set, where
we analyzed the two approaches w.r.t. system scale. In Table 2(a)
we varied the height h of the tree between 4 and 8. Since we kept
the number of children f constant, the network size grew propor-
tionally from 341 to 87,381 nodes. Dually, in Table 2(b), we kept
the height constant (h = 5) and used values of f between 2 and 10,
therefore increasing the network size from 63 to 111,111 nodes.

In both experiments, the difference w.r.t. our analytical model is
always below 0.5% with only one exception (still below 2%) when
n is very small. This confirms that our model is accurate regardless
the scale of the system and of the particular topology adopted.

The impact of the distribution of patterns and events is assessed
in Table 3. Here, we focused on a tree with the default values shown
in Table 1, i.e., n = 21, 845 brokers with f = 4 children per
broker (h = 7). To enable a fair comparison and remove bias, we
set σ(p) = µ(e), essentially assuming that all subscriptions are
such that they match uniquely one event. This way, we can easily
evaluate T (p) against σ and T (e) against µ.

Table 3(a) shows the results in the case of a uniform distribution
of events and patterns. Our model appears to be very accurate,
with an error w.r.t. simulation results lower than 0.4%. Table 3(b),
instead, shows the case of a Zipf distribution, with different values
of α. Since we set σ = µ, we use the same Zipf distribution for
both. The results confirm that our model approximates very closely
the simulated behavior also in this case. It is worth noting that the
best results are obtained for α 6 1, which represents the values
commonly found in the literature.

Thus far, we assumed brokers organized in a regular tree with

h = 4 h = 5 h = 6 h = 7
f̄ = 10 f̄ = 6.22 f̄ = 4.53 f̄ = 3.61

%∆T (p) 0.012% 0.004% 0.045% 0.042%
%∆T (e) 0.311% 0.142% 0.045% 0.533%

(a) Standard deviation is 1, increasing height and aver-
age number of children.

standard deviation 1 2 3 4 5
%∆T (p) 0.005 0.019 0.017 0.043 0.086
%∆T (e) 0.091 0.443 0.651 1.789 2.428

(b) Average number of children f̄ = 10, increasing
standard deviation.

Table 4: Simulated vs. theoretical traffic for arbitrary tree
topologies. We assume a normal distribution.

n=341 n=1,365 n=5,461 n=21,845 n=87,381
(h = 4) (h = 5) (h = 6) (h = 7) (h = 8)

average ∆L(p) -0.374 -0.131 0.018 -0.011 0.003
stdev. ∆L(p) 3.121 1.965 2.002 1.945 1.887

% stdev. ∆L(p) 0.702 0.399 0.400 0.389 0.377
average ∆L(e) -1.189 -0.157 0.431 -0.129 0.024

stdev. ∆L(e) 28.285 25.788 21.789 20.448 19.882
% stdev. ∆L(e) 0.883 0.644 0.544 0.511 0.499

(a) h increasing, f fixed.

n=63 n=1,365 n=9,331 n=37,449 n=111,111
(f = 2) (f = 4) (f = 6) (f = 8) (f = 10)

average ∆L(p) -0.841 0.109 0.027 -0.011 -0.005
stdev. ∆L(p) 6.513 3.181 2.844 2.775 2.557

% stdev. ∆L(p) 2.171 0.636 0.406 0.308 0.232
average ∆L(e) -0.731 0.366 0.230 -0.031 -0.067

stdev. ∆L(e) 17.333 20.456 19.946 19.123 17.255
% stdev. ∆L(e) 0.866 0.511 0.332 0.239 0.172

(b) f increasing, h fixed.

Table 5: Simulated vs. theoretical load w.r.t. system scale.

exactly f children per node, i.e., the same assumption we intro-
duced in Section 2 for deriving the model. However, in Section 2
we stated that our model can indeed encompass arbitrary topolo-
gies and provide accurate estimates, as long as the average number
of children f̄ is known and used in place of f . Here we validate this
assumption, assuming a normal distribution for f . Table 4 shows
the results. In Table 4(a), we set the standard deviation to 1 and
varied f̄ . The values of f̄ are derived by maintaining the fixed de-
fault network size while increasing h in unit increments, therefore
obtaining increasingly sparse trees. In Table 4(b), instead, we set
f̄ = 10 and varied the standard deviation from 1 to 5. Recall that a
standard deviation of 5 means that the number of children is within
the interval [5, 15] for 68% of the nodes, and within [0, 25] for
99.7% of the nodes. In this highly variable case, our model is still
within 2.5% of the simulated results. Therefore, the results confirm
that replacing f with f̄ in all the formulae indeed provides accurate
results, even with very sparse and very variable topologies.
Load Model. To validate our analytical model of the node for-
warding load, we carried out a simulation campaign similar to the
one we showed for the overall traffic. Nevertheless, we took a more
conservative (i.e., less favorable for our model) choice, with a much
lower probability for patterns and events (σ = µ = 0.001) yielding
a load distribution among nodes with more marked variations. The
other default parameters in Table 1 are unchanged.

We report the difference ∆L = (Lmodel − Lsim) (in absolute
value) between the load on each node as derived analytically and
through simulation, averaged over all nodes, along with its standard
deviation (absolute and in percentage w.r.t. the maximum load).

σ, µ 0.001 0.01 0.1 0.5 0.8 0.9
average ∆L(p) 0.017 -0.017 0.005 0.103 0.023 0.094

stdev. ∆L(p) 1.261 1.810 1.100 1.004 0.499 0.231
% stdev. ∆L(p) 0.252 0.362 0.220 0.200 0.099 0.046
average ∆L(e) 0.018 -0.037 0.084 0.097 -0.034 0.005

stdev. ∆L(e) 6.918 15.629 23.961 25.931 11.100 7.227
% stdev. ∆L(e) 0.223 0.390 0.599 0.648 0.277 0.180

(a) Uniform distribution.

α 1.5 1 0.5
average ∆L(p) -0.021 0.054 -0.101

stdev. ∆L(p) 10.443 7.221 4.042
% stdev. ∆L(p) 2.088 1.444 0.808
average ∆L(e) 0.456 0.225 0.004

stdev. ∆L(e) 35.173 40.213 53.104
% stdev. ∆L(e) 1.004 1.005 1.327

(b) Zipf distribution.

Table 6: Simulated vs. theoretical load w.r.t. distribution of
patterns and events. We assume σ(p) = µ(e).

h = 4 h = 5 h = 6 h = 7
f̄ = 10 f̄ = 6.22 f̄ = 4.53 f̄ = 3.61

average ∆L(p) -0.095 -0.023 0.029 0.025
stdev. ∆L(p) 2.409 3.581 1.994 1.567

% stdev. ∆L(p) 0.185 0.329 0.249 0.223
average ∆L(e) 0.159 -0.121 0.132 -0.091

stdev. ∆L(e) 10.541 12.313 17.234 14.775
% stdev. ∆L(e) 0.307 0.476 0.615 0.484

(a) Standard deviation is 1, increasing height and average
number of children.

standard deviation 1 2 3 4 5
average ∆L(p) -0.085 0.071 -0.037 0.145 0.041

stdev. ∆L(p) 1.704 6.725 6.062 7.372 7.245
% stdev. ∆L(p) 0.154 0.611 0.551 0.670 0.658
average ∆L(e) -0.191 0.072 0.131 -0.277 -0.041

stdev. ∆L(e) 24.026 65.900 71.222 75.430 80.147
% stdev. ∆L(e) 0.221 0.409 0.612 0.624 0.671

(b) Average number of children f̄ = 10, increasing standard
deviation.

Table 7: Simulated vs. theoretical load for arbitrary tree
topologies. We assume a normal distribution.

Table 5 and 6 show the results w.r.t. system scale and different
distributions of patterns and events, respectively, assuming a full,
regular tree. These experiments confirm the good results achieved
for the model of overall traffic in analogous settings, shown in Ta-
ble 2 and 3. As the reader can see, the average value exhibits a
minimal difference between the simulated and theoretical values,
and its standard deviation is very small. Therefore, our analyti-
cal model indeed is able to accurately estimate also the forwarding
load. To further prove this, Figure 4 compares the load distribution
(i.e., how many nodes experience a given load) obtained through
simulation against the one predicted by our model. The reader can
appreciate visually how the distributions are very similar, at most
showing small differences.

As for arbitrary tree topologies, unlike with traffic we cannot
simply replace f with the average value f̄ in Equation (15) and (17).
In fact, the load on every node has a stronger dependence on the un-
derlying topology; using the average value in some cases may lead
to gross errors. For instance, consider a hypothetical tree where the
root is connected to all the internal nodes, which in turn all have
exactly one child. The average value f̄ in this case is close2 to 2.

2More precisely, f̄ = 2I
I+1

, being I the number of internal nodes.

(a) Subscriptions.

(b) Events.

Figure 4: Forwarding load on full trees (σ = µ = 0.001).

However, the load on the root would be quite different from the one
in a binary tree, where nevertheless f̄ = 2 holds as well.

Nevertheless, as we mentioned in Section 3.2, if more informa-
tion about the tree topology is available, we can compute for each
node the number of nodes contained in the sub-trees Tf and Tc,
as well as the actual value of f for the given node, and use Equa-
tion (12) and (16). Note how this information about |Tc|, |Tf |, and
f is easy to obtain in practice. Indeed, the topology is often de-
termined by the system designer or, in the case of systems already
deployed, it can be easily discovered at run-time. Interestingly, the
availability of such information would allow one to compute |Tl| in
Equation (3), therefore enabling better estimates of traffic as well.

The experiments we performed generated topologies by using
normal distributions, with the same criteria we used for traffic. In
addition, this time we computed the values of f , |Tf |, and |Tc| over
all the nodes for each topology generated, and used them in the
model. The results, shown in Table 7, confirm once more that our
model is very close to the simulated behavior. This can be observed
also in Figure 5, where analogously to what we did for full trees we
plot the distribution of load over nodes of arbitrary trees.

In summary, the results we showed confirm that our model can
effectively replace simulations, with the practical effect of drasti-

(a) Subscriptions.

(b) Events.

Figure 5: Forwarding load on arbitrary trees (σ = µ = 0.001).

cally reducing the amount of time required to reproduce the be-
havior of subscription forwarding. Moreover, since the model is
an accurate representation of this protocol, it enables a more fine-
grained understanding of its behavior, which can be used at design
time or to enable novel research insights. Some examples of use of
our analytical model are shown next.

5. USING THE MODEL
In this section, we show how the model presented in Section 3

can be used in practice to analyze the trade-offs among different
solutions and support system design and deployment. We focus
on three examples. First, we compare subscription forwarding and
event forwarding in terms of generated message traffic. The trade-
offs between the two protocols are well-known, and our analysis
bears no surprises. However, the novelty is that our model enables
one to characterize precisely the break-even point between the two
protocols. The second example shows how the results we derived
for the node forwarding load can be used in practice in conjunc-
tion with application profiles, to identify bottlenecks in the system.
Finally, our third example shows that the model can be used to de-
termine the optimal shape of the tree overlay, by choosing the value
of f that best suits the characteristics of the scenario at hand.

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

σ

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

µ
 0

 0.2

 0.4

 0.6

 0.8

 1

F
TSF TEF>

TSF TEF<

Figure 6: The function F (σ, µ), representing the values of
F =

Fp

Fe
for which subscription forwarding and event forward-

ing generate the same message traffic. The chart assumes uni-
form distribution of patterns and events, n = 1111111, f = 10.

Note that the goal of this section is not to provide extensive eval-
uations or comparisons. These are indeed possible, but we are here
constrained by space limits. Instead, we want to provide the reader
with a feel of the potential of our model, when used in practice.
Overall Traffic: Subscription vs. Event Forwarding. As our
first example, we illustrate how our model can be used to com-
pare in terms of message overhead the two classical CBR proto-
cols, subscription forwarding and event forwarding, and assess the
one most suited to a given scenario. To further stress the versatility
and power of our model, in the following we show results that are
obtained with a network size of n = 1, 111, 111 nodes, one that is
quite impractical to analyze through simulation.

We begin our analysis under the assumption of uniform distri-
bution. To compare the two approaches, we equate Equation (1)
and (9) and, leveraging off the fact that σ and µ are constant, solve
w.r.t. F =

Fp

Fe
. We obtain a curve F (σ, µ) that describes the com-

bination of parameters for which the two protocols generate the
same amount of traffic. If Freal is the actual ratio between subscrip-
tions and events in a given scenario, Freal > F (σ, µ) means that
the event forwarding generates less traffic, while Freal < F (σ, µ)
means that subscription forwarding is more efficient, in a scenario
with the given σ and µ.

The function F (σ, µ) is plotted3 in Figure 6, for f = 10. To
better understand the trends, in Figure 7 we also charted the pro-
jections of F (σ, µ) on the planes (σ, µ), (σ, F), (µ, F).

The charts visualize the well-known tradeoffs between the two
protocols. In Figure 6, the shape of the surface F (σ, µ) shows that
when the number of patterns becomes comparable with the number
of events (i.e., approaching F = 1), event forwarding is more ef-
ficient because it avoids disseminating subscriptions. On the other
hand, if events are generated at a higher frequency than patterns,
subscription forwarding is preferable because it optimizes event
propagation. However, these tradeoffs are affected by the values
of σ and µ, which are best appreciated in Figure 7. For instance,
Figure 7(a) shows the projection of F (σ, µ) on the plane (σ, µ),
where the curves represent points yielding the same value of F :
values of µ below a curve mean that the point is below the F (σ, µ)

3Note that the domain of the function is restricted to only half of
the plane since we impose µ ≥ σ as explained in Section 2.

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

αp

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2
 1.4

 1.6
 1.8

αe
-1e+07
-8e+06
-6e+06
-4e+06
-2e+06

 0
 2e+06
 4e+06
 6e+06
 8e+06
 1e+07

D

T
SF

T
EF

<
T
SF

T
EF

>

Figure 8: The function D(αp, αe), representing the difference
between the traffic generated by event forwarding and the traf-
fic generated by subscription forwarding. The chart assumes a
Zipf distribution of patterns and events, n = 1111111, f = 10.

surface, and therefore subscription forwarding is preferable. For
instance, if F = 0.2, subscription forwarding is preferable only if
the pair (σ, µ) is in the shadow area in Figure 7(a). Interestingly, as
µ increases, the effect of σ becomes negligible and does not affect
the value of F . Indeed, if µ ∼ 1, the vast majority of nodes are
receivers and therefore event forwarding is always the best choice,
regardless of the value of σ.

As we already mentioned, these charts give a precise character-
ization of the tradeoffs by identifying the break-even point. In-
terestingly this is also helpful in choosing the parameters for the
scenarios to analyze through simulation. For instance, a commonly
used value in simulated scenarios is µ = 0.1 (e.g., in [5]). Fig-
ure 7(b) shows that in our network this is a reasonable assumption
for subscription forwarding only if the values F and σ fall inside
the shadowed area, otherwise event forwarding is actually prefer-
able. Similarly, if we decided to set σ = 0.1, the values of F and µ
must be chosen among those in the shadowed area in Figure 7(c).

A similar analysis can be carried out using a Zipf distribution
instead of a uniform one. The results are shown in Figure 8. No-
tably, since σ and µ are no longer constant, the chart reports instead
the coefficients of the corresponding Zipf distributions, αp and αe,
respectively. Moreover, in this case the shape of the equations is
such that the traffic can no longer be expressed as a function of F .
Therefore, we plot the function D(αp, αe) = TSF − TEF .

Interestingly, when αp is high (to the left in the chart), D is al-
ways negative (i.e., subscription forwarding always performs bet-
ter) regardless of the value of αe. The reason lies in the fact that
if αp is high, most subscriptions revolve around a restrict set of
patterns, the most popular ones. This implies that the traffic due
to the propagation of subscriptions is small and, therefore, the effi-
cient event dissemination of subscription forwarding pays off. Con-
versely, if αp is close to zero, basically each subscriptions is tied
to a different pattern and this dramatically affects the performance
of subscription forwarding, because subscriptions for a new pattern
must be flooded to all the brokers. In these cases, D(αp, αe) is
positive, and therefore event forwarding is preferable.

The considerations we made for the case of uniform distribution,
e.g., about the support for setting simulation parameters, still hold.
However, we note that, given the shape of the function D(αp, αe)
characterized by a saddle in the middle, the precise tradeoffs would

(a) Projection on (σ, µ). (b) Projection on (σ, F). (c) Projection on (µ, F).

Figure 7: Projections of the function F (σ, µ) shown in Figure 6 on the three planes (σ, µ), (σ, F), (µ, F). Shadowed areas identify
the value combinations where subscription forwarding is more convenient, for values of F = 0.2, µ = 0.1, and σ = 0.1, respectively.

 0

 20000

 40000

 60000

 80000

 100000

 120000

0 1 2 3 4 5

Lo
ad

Level
(Nodes)(1) (10) (100) (1000) (10000) (100000)
Level
(Nodes)(1) (10) (100) (1000) (10000) (100000)

(a) Subscription load.

 0

 20000

 40000

 60000

 80000

 100000

 120000

0 1 2 3 4 5

Lo
ad

Level
(Nodes)(1) (10) (100) (1000) (10000) (100000)

(b) Event load.

Figure 9: Message forwarding load against node level for sub-
scription forwarding, in a network with n = 111, 111, f = 10,
σ = 0.1%, µ = 1%, Fp = Fe = 10, 000. Values between paren-
theses indicate the number of nodes on each level.

be even more difficult to “guess” without the characterization pro-
vided by our model.
Identifying Bottlenecks. A prominent feature of our model is the
ability to accurately estimate the forwarding load experienced by
each node. This enables one to identify bottlenecks at design time
and remove them, e.g., by replicating the most overloaded nodes.

An example is provided in Figure 9, where we plot the message
forwarding load per node against the level of the node. The chart

assumes a subscription forwarding protocol with n = 111, 111,
f = 10, σ = 0.1%, µ = 1%. Moreover, we set Fp = Fe =
10, 000: although these values are actually unfavorable for sub-
scription forwarding they are useful here to show how patterns and
events stress differently the broker tree.

Under these settings, comparing Figure 9(a) and 9(b) shows that
while the forwarding load due to subscriptions is distributed fairly
evenly, the one due to events concentrates on the nodes at high
levels. This is a direct consequence of the fact that, in subscrip-
tion forwarding, the first subscription for a pattern must always be
flooded to all brokers, while events are propagated only towards in-
tended receivers. Therefore, most of the nodes handle most of the
subscriptions, while only a small set of nodes, namely those placed
in the middle of the tree (i.e., at the lowest levels) dispatch most
of the events. In particular, Figure 9(b) shows that the maximum
forwarding load due to events is incurred by the nodes on the sec-
ond level. Indeed, not only these nodes dispatch most of the events
because of their central positions in the tree, but they also have one
neighbor more than the root (i.e., their fanout is f + 1).

Looking at pictures like these, engineers can immediately real-
ize before deployment time which nodes will experience high load
and take appropriate countermeasures, without the need to resort to
expensive and time-consuming simulations.
Overlay Management: The Impact of f . Thus far, we assumed
that the number of children f was a parameter characterizing the
network scenario. Nevertheless, in many cases, f is under the con-
trol of the designer, and represents a “knob” that can be used to
optimize performance. For instance, in the case of subscription for-
warding, the higher the f the more efficient event dissemination is,
because the tree has fewer levels and therefore events are steered
more quickly towards receivers. However, on the other hand, in-
creasing f results in a higher forwarding load imposed on nodes,
thus preventing scalability. These tradeoffs are immediately ev-
ident when applied to a star topology, which exhibits the lowest
event traffic (T (e) = µ(n − 1)) but also imposes a huge load on
the root (n− 1 messages per pattern, and all of the µ(n− 1) mes-
sages per event).

Figure 10 shows how this analysis can be carried out in practice,
by plotting the message overhead and the maximum forwarding
load against the node degree f , and by keeping the contributions
due to patterns and events separate. The chart assumes a scenario
with n = 11, 111, σ = 0.02, µ = 0.1, Fp = 100, Fe = 1, 000. As
expected, Figure 10(a) shows that the traffic due to events signifi-
cantly decreases when f increases, while the subscriptions traffic is
reduced only marginally. Indeed, since most subscriptions are dis-

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 2.2e+06

 2.4e+06

 10 100 1000 10000

T
ra

ffi
c

f

FeT(e)
FpT(p)

(a) Message overhead.

 1000

 10000

 100000

 1e+06

 10 100 1000 10000

T
ra

ffi
c

f

FeT(e)
FpT(p)

(b) Maximum forwarding load.

Figure 10: Message overhead and maximum forwarding load
against f . The components due to patterns and events are plot-
ted separately. The chart assumes a subscription forwarding
protocol and n = 11, 111, σ = 0.02, µ = 0.1, Fp = 100,
Fe = 1, 000.

seminated to all nodes, the impact of f is negligible4. Conversely,
as depicted in Figure 10(b), the maximum forwarding load dramat-
ically increases with f , for both subscriptions and events.

By relying on the information derived from similar analysis per-
formed with our model, engineers can determine the value of f
that guarantees the right balance between traffic and load, w.r.t. the
scenario workload and the forwarding capacity of each node.

6. CONCLUSIONS AND FUTURE WORK
We presented an analytical model of the communication costs,

in terms of overall message traffic and node forwarding load, of the
subscription forwarding CBR protocol. This model constitutes, to
the best of our knowledge, the most complete among the rare ones
in the literature, and the only one validated through simulation.

Moreover, the examples we discussed in the last section evidence
the important role an analytical model like ours can play during
the design phase. Indeed, thanks to this tool, practitioners can ex-
plore the parameter space and identify appropriate solutions more
quickly and reliably than with simulation. On the other hand, by
4Note that this is not necessarily true in general: with other com-
binations of parameters, the subscription traffic exhibits a more
marked decrement. For instance, with few patterns in the system,
only few subscriptions are flooded to the whole tree while the ma-
jority are sent only to a subset of nodes; higher values of f can
reduce the path length.

formally capturing the properties of subscription forwarding the
model is clearly very valuable also to researchers, in that not only
it precisely characterizes this basic strategy, but also its techniques
can be used as a stepping stone for modeling alternative strategies.

Our future work will indeed proceed in this direction, by reusing
and adapting the techniques described here to other tree-based pro-
tocols (e.g., hierarchical forwarding and variations using advertise-
ments), thus enabling an extensive and formally grounded compar-
ison among them. Moreover, we are working to remove the as-
sumption of a uniform distribution of subscribers and publishers,
therefore increasing even further the applicability of our model.

Acknowledgements. This work was partially supported by the
European Community under the IST-004536 RUNES project.

7. REFERENCES
[1] http://peersim.sourceforge.net.
[2] A. Carzaniga and C.P. Hall. Content-Based Communication:

a Research Agenda. In In Proc. of Software Engineering and
Middleware Workshop (SEM), November 2006.

[3] A. Carzaniga, A.J. Rembert, and A.L. Wolf. Understanding
Content-Based Routing Schemes. Technical Report 2006-05,
University of Lugano, September 2006.

[4] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and
Evaluation of a Wide-Area Event Notification Service. ACM
Trans. on Computer Systems, 19(3):332–383, 2001.

[5] A. Carzaniga, M. Rutherford, and A. Wolf. A routing scheme
for content-based networking. In Proc. of INFOCOM, 2004.

[6] P. Costa and G.P. Picco. Semi-probabilistic content-based
publish-subscribe. In Proc. of the 25th Int. Conf. on
Distributed Computing Systems (ICDCS), June 2005.

[7] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI
Event-Based Infrastructure and its Application to the
Development of the OPSS WFMS. IEEE Trans. on Software
Engineering, 27(9):827–850, September 2001.

[8] A. Gupta, O. Sahin, D. Agrawal, and A. El Abbadi.
Meghdoot: content-based publish/subscribe over P2P
networks. In Proc. of the 5th Int. Conf. on Middleware, 2004.

[9] M. Jaeger and G. Mühl. Stochastic Analysis and Comparison
of Self-Stabilizing Routing Algorithms for Publish/Subscribe
Systems. In Proc. of the 13th IEEE Int. Symp. on Modeling,
Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), 2005.

[10] G. Mühl, L. Fiege, and P.R. Pietzuch. Distributed
Event-Based Systems. Springer, August 2006.

[11] P. Pietzuch and J. Bacon. Hermes: A Distributed
Event-Based Middleware Architecture. In Proc. of the 2nd

Int. Workshop on Distributed Event-Based Systems, 2002.

