Static Analysis of Heap-Manipulating Low-Level Software

Sumit Gulwani

Microsoft Research, Redmond, WA
sumitg@microsoft.com

Abstract

This paper describes a static (intraprocedural) analysis for ana-
lyzing heap-manipulating programs (in presence of recursive data
structures and pointer arithmetic) in languages like C or low-level
code. This analysis can be used for checking memory-safety, mem-
ory leaks, and user specified assertions.

We first propose a rich abstract domain for representing useful
invariants about such programs. This abstract domain allows rep-
resentation of must and may equalities among pointer expressions.
The integer variables used in the pointer expressions can be exis-
tentially as well as universally quantified and can have constraints
over some base domain. We allow quantification of a special form,
namely 3V quantification. This choice has been made to balance
expressiveness with efficient automated deduction. The existential
quantification is over some ghost variables of programs, which are
automatically made explicit by our analysis to express useful pro-
gram invariants. The universal quantifier is used to express proper-
ties of collections of memory locations.

We then show how to perform sound abstract interpretation over
this abstract domain. We give transfer functions for performing
join, meet, and postcondition operations over this abstract domain.
The basis of all these operations is an abstract interpreter for the
quantifier-free base constraint domain (eg., the conjunctive domain
of linear arithmetic combined with uninterpreted functions). To our
knowledge, this is the first abstract interpreter that can automati-
cally deduce first-order logic invariants in programs (without re-
quiring any explicit predicates).

We also present initial experimental results demonstrating the
effectiveness of our ideas on some common coding patterns.

Keywords Pointer Analysis, Memory Safety, Abstract Interpre-
tation, First-order logic invariants, Pointer Arithmetic, Recursive
data-structure, Arrays

1. Introduction

Alias analysis attempts to answer, for a given program point,
whether two pointer expressions e; and ez are always equal (must-
alias) or may be equal (may-alias). Keeping precise track of this
information in the presence of recursive data-structures is hard
because number of expressions or aliasing relationships become
potentially infinite. Presence of pointer arithmetic makes this even
harder.

In this paper, we propose a new technique for representing must
and may-equalities between pointer expressions with the goal of
automatically verifying properties of low-level software that ma-
nipulates heap using recursive data structures and pointer arith-
metic. This paper has two main contributions. We describe an ab-
stract domain that is expressive enough to capture invariants re-
quired to prove correctness of several common code patterns in
low-level software Secondly, we describe how to perform auto-
mated deduction (in the style of an abstract interpretation) on this

MSR Technical Report MSR-TR-2006-160, November 2006

Ashish Tiwari

SRI International, Menlo Park, CA
tiwari@csl.sri.com

abstract domain thereby automatically inferring the invariants re-
quired to prove the desired properties.

Our abstract domain essentially represents must-equalities and
may-equalities among pointer expressions. It is motivated by the
early work on representing aliasing directly using must-alias and
may-alias pairs of pointer expressions [2, 18, 4, 7]. However, there
are two main differences. (a) The language of our pointer expres-
sions is richer: The earlier work built on constructing pointer ex-
pressions from (pre-defined) field dereferences; however our ex-
pressions are built from derefencing at arbitrary integer (expres-
sion) offsets. This gives our abstract domain the ability to handle
arrays, pointer arithmetic, and recursive structures in one unified
framework. (b) Apart from the integer program variables, we also
allow integer variables (in our expressions) that are existentially or
universally quantified. This allows our abstract domain to represent
useful properties of data-structures in programs. Our abstract do-
main is thus significantly richer than those used in earlier work on
representing aliasing pairs, which did not allow an explicit quan-
tification. !

The appeal of our choice of having only two base predicates of
must and may equality (as opposed to a pre-defined set of richer
predicates [15, 23, 22, 17]) is comparative simplicity and easier
automation. However, in some sense, the power of quantification
over the base predicates of must-equality and may-equality makes
our domain expressive enough to define a potentially infinite family
of base-predicates (for eg., see definitions of useful predicates like
List, Array and Valid below), thereby attempting to match the
advantages offered by the approach of defining new logics with
pre-defined predicates.

We allow only a special form of quantification in our abstract
domain, namely 3V quantification - this choice has been made
to balance expressiveness with potential for automated deduction.
The existential quantification is over some ghost variables of the
program that are required to express useful program invariants.
Such ghost variables are automatically identified by our abstract
interpreter. The universal quantifier allows us to describe properties
of collections of memory locations.

Consider, for example, the program shown in Figure 1. The
input variable x points to a list (unless qualified, list refers to an
acyclic singly-linked list in this paper), where each list element
contains two fields Data and Len apart from the Next field. Data
is supposed to be a pointer to some array, and Len is intended to be
the length of that array. In the first while loop, the iterator y iterates
over each list element, initializing Data to point to a newly created
array and Len to the length of that array. In the second while loop,
the iterator y iterates over each list element accessing the array
pointed to by Data. The proof of memory safety of this commonly
used code pattern requires establishing the invariant that for all list
elements in the list pointed to by x, Len is the length of the array

I'A limited form of quantification over integer variables was implicitly
hidden though in the set representation used for representing may-aliases
in the work by Deutsch [7].



struct List {int Len, *Data; List* Next;}
ListOfPtrArray(struct List* x)
1 for (y:=uwm; y #null; y:= y—next)
2 t:=7; y—len:=t; y—data:=malloc(4t);
3 for (y:=uz; y # null; y := y—next)
4 for (2:=0; z < y—len; z:=2z+1)
5 y—data—(4z) := ...;

Figure 1. An example of a pattern of initializing the pairs of
dynamic arrays and their lengths inside each list element and later
accessing the array elements.

Data. This invariant is expressed in our abstract domain as

i : List(z,4,next) A

Vj[(0 < j < i) = Array(z—next’ —data, 4 x (z—next’ —len))]

where z—next? is an (pointer) expression in our language that
semantically means using j dereferences at offset next starting
from x, and the predicates List and Array are abbreviations for
the following definitions.
i>0 A z—mnext’=null

A Vi[(0 < j < i) = Valid(z—next’))
Vi[(0 < j < t) = Valid(z + j)]

List(z,4,next) =

Array(z,t) =

Intuitively, List(x, ¢, next) denotes that x points to a list of length
1 (with next as the next field) and Array(z,t) denotes that x
points to a region of memory of length ¢. The predicate Valid(e)
is intended to denote that e is a valid pointer value, which is
safe to dereference (provided the subexpressions of e are safe to
dereference) %, and can be encoded as the following must-equality.

Valid(e) = e—f( =valid

where (3 is a special symbolic integer offset that is known to not
alias with any other integer expression, and valid is a special
constant in our expression language.’

In fact, the loop invariant required to establish this property
is even more sophisticated (but still expressible in our abstract
domain):

Ji, 5 : List(z,4,next) A 0<j <i A y= z—mnext! A
Vj[(0 < j < j') = Array(z—next’ —data, 4 x (z—next’ —1len))]

A key contribution of this paper is to describe how to automati-
cally generate such quantified invariants (in order to prove desired
program properties) by means of abstract interpretation. Automatic
discovery of such quantified invariants is known to be a challeng-
ing problem and has only been attempted in domain-specific set-
tings where the predicates that occur in these quantified formulas
are explicitly provided [16, 10].

Our approach for discovering such invariants is by means of
describing transfer functions to perform a forward abstract inter-
pretation of programs over our quantified abstract domain. We now
briefly describe how the above invariant is automatically generated.
We denote Array(zx—next’—data,4 X (z—next’—1len)) by
the notation S(¢). For simplicity, assume that the length of the list
x is at least 1 and the body of the loop has been unfolded once. The
postcondition operator generates the following must-equalities F*

2 This assumption is important because we want to treat Valid as an unin-
terpreted unary predicate, which allows us to encode it as a simple must-
equality. However this necessitates that validity of all valid subexpressions
be described explicitly

3 The variable 3 denotes a symbolic offset. Without /3, the encoding will be
unsound as Valid(e) and Valid(e’) will then imply e = €’ by transitivity
of =.

and F” (among other must-equalities) before the loop header and
after one loop iteration respectively.

F* =
F© =

(y = z—next A S(0))

(y = z—mnext® A S(0) A S(1))

Our join algorithm computes the join of these must-equalities as
3 1< 5 <2Ay=z—next! AV(0<j<j = 8())

which later gets widened to the desired invariant. Note the power of
our join algorithm to generate quantified facts from quantifier-free
inputs. (See Section 4.2 for more details.)

The algorithm that we describe for the join operation (as well
as other transfer functions) reasons about must and may-equalities
between pointer expressions and quantifiers directly, while using
the transfer functions for the underlying base constraint domain
to reason about arithmetic constraints between integer expressions.
In this architecture, different base constraint domains can be used
to achieve differing capabilities. Our preliminary experience sug-
gests a base constraint domain over combination of linear arith-
metic (to model pointer arithmetic) and uninterpreted functions (to
model dereferences in expressions) to be a good choice (e.g., it
can represent the following constraint between integer expressions:
0 < j < z—next'—len; this constraint is actually required
to represent the above loop invariant). The transfer functions for
exactly this domain were recently described by Gulwani and Ti-
wari [13].

This paper is organized as follows. We first start with a de-
scription of our program model, which closely reflects the memory
model of C' modulo some simple assumptions (Section 2). We then
formally describe our abstract domain and present its semantics in
relation to our program model (Section 3). We describe the transfer
functions for performing an abstract interpretation over this abstract
domain in Section 4. Section 5 discusses preliminary experimental
results, while Section 6 describes some related work.

2. Program Model

Values A value v is either an integer, or a pointer value, or is
undefined. A pointer value is either null or is a pair of a region
identifier and a positive offset.

v == ¢ | (r,d) | null | L

Program State A program state p is either undefined, or is a tuple
(D, R, V, P), where D represents the set of valid region identifiers,
R is a region map that maps a region identifier in D to a positive
integer (denoting size of the region), V' is a variable map that maps
program variables to values, and P is a memory that maps non-
null pointer values to values.

We say that a pointer value (r,d) is valid in a program state
(D,R,V,P)ifr € Dand 0 < d < R(r). We say that a pointer
value is invalid if it is neither valid nor null.

Expressions The program expressions e that occur on the right
side of an assignment statement are described by the following
language.

e »= ¢ | z | enxkes | cxe | e1—ex | null | ?

e1—ez represents dereference of the region pointed to by e; at off-
setes (i.e., x(e1 +e2) in C language syntax). In fact, we sometimes
use the notation *e to denote e—0. The above expressions have the
usual expected semantics with the usual restrictions that it is not
proper to add or subtract two pointer values, and that only a valid
pointer value can be dereferenced. ? denotes a non-deterministic
integer and is used to conservatively model other program expres-
sions whose semantics we do not precisely capture (eg., those that



[ei]p = (r,d) [ez2]p is some integer ¢ lei]lp= (r,d) [exlp=c r€D 0<d+c<R(r)
var ptrArith deref

[zlp = V(2) [er £ ex]p = (r,d+c) [ex—e2]p = P((r,d+c))
[e1]p and [e2]p are both integers . Let ¢ be a non-det integer
———  null —— cons intArith nonDet
[null]p = null [elp = ¢ [er £ e2]p = [erlp+ [e2]p [7lp = ¢

rel € {#,=} [z1]p, [z2]p are null or valid pointer values [xz1]p and [z2]p are integer values

ptrComparison

IntComparison

[zirelza]p = [zi]p rel [z2]p [zirelza]p = [zi]p rel [z2]p

[e]p > 0 Letr be some fresh region identifier V(y)=(ri) reD 0<i<R(r)

Malloc Free
[z :=malloc(e)]p = (DU{r}, R[r— [elp], V[z— (r,0)], P) [free(y)]p = (D —{r},R, V. P)

V(z)=(ri) [ealp=j reD 0<i+j<R(r)

varUpdate —
[r—er:=ea] p = (D, RV, P[{r,i +j) = [e=]p])

MemUpdate
[x :=€]p = (D,R,V[z — [e](D,R,V, P)], P)

Figure 2. Semantics of Expressions, Predicates, and Statements in our language. p denotes the state (D, R, V, P). An expression takes a
program state and returns a value. A predicate takes a program state and returns a boolean value. A statement takes a program state and
returns another program state. Evaluation of an expression, or statement in a | program state or in any state such that none of the above rules

apply yields a L value or L state respectively.

involve bitwise arithmetic). Given a program state p, an expression
e evaluates to some value, denoted by [[e]p. The formal semantics
of these expressions is defined in Figure 2. The expressions which
do not match any antecedent of the rules evaluate to L.

Statements There are two kinds of assignment statements = := e
and *x := e. Memory is allocated using the malloc statement
z := malloc(e) and freed using the free statement free(e).
The malloc statement returns a pointer value with a fresh region
identifier. The free statement frees the region pointed to by e. The
formal semantics of these statements is described in Figure 2. Every
statement takes a program state and returns another program state.
The statements that do not match any antecedent of the rules yield
an undefined program state.

Predicates The predicates that occur in conditionals are of the
form z1 rel zo, where rel € {<,<,#,=}. Without loss of any
generality, we assume that x1 and x2 are either program variables
or constants. These predicates have the usual semantics: Given a
program state p, a predicate evaluates to either true or false.
Pointer-values can be compared for equality or disequality, while
integer values can be compared for any inequality also. Any other
comparison results in the predicate evaluating to true or false in
a non-deterministic manner. The formal semantics of these predi-
cates is described in Figure?2.

Memory Safety and Leaks We say that a procedure is memory-
safe and leak-free under some precondition, if for any program
state p satisfying the precondition, the execution of the procedure
yields program states p' = (D, R, V, P) that have the following
properties respectively.

op#L
e For all region identifiers » € D, there exists an expression e
such that [e]p’ = (r, d).

Intuitively, a procedure is memory-safe if all memory derefer-
ences and free operations are performed on a valid pointer value.
Observe that our definition of memory safety precludes dangling
pointer dereferences also. Similarly, a procedure is leak-free if all
allocated regions can be traced by means of some expression.

Relation with C programs The semantics of our program model
closely reflect the C language semantics under the following as-
sumptions: (a) all memory accesses are at word-boundaries and the
size of each object read or written is at most a word. (b) The free(z)
call frees a valid region returned by malloc even if x points some-
where in middle of that region (Note that, some implementations
of C' might insist that = point to the beginning of a region returned
by malloc.) Our program model may be changed easily to capture
other possible semantics of C' while not depending on the above
assumptions. However, the current choice has been made for sim-
plicity of describing the analysis in our program model. We can
thus test if a C' program is memory-safe and leak-free by checking
for the respective properties in our model.

3. Abstract Domain

The elements of our abstract domain describe must and may equal-
ities between expressions. However, we need a richer language
of expressions (as compared to the language of program expres-
sions described in Section 2) to describe useful program properties.
Hence, we extend the expression language of our program model
to the following:

e »= ¢ | © | entea | cxe | er—e5® | valid | null

valid is a special constant in our domain that satisfies valid #
null. The constant valid is used to represent that certain expres-
sions contain a valid pointer value (as opposed to null or uninitial-
ized or dangling etc) in the Valid predicate defined on Page 2 in
Section 1.

The new construct e; —e53 denotes es de-references of expres-
sion e; at offset ez, as is formalized by the following semantics.

[eilp if [es]p=0
[(erea)—eTp i [es]p > 0

= 1, otherwise

[er—es*]p

If e3 is 1, we simply write e1 H@SS as e1—es.
Must-equality is a binary predicate over pointer expressions de-
noted using “=" and is used in an infix notation. This predicate



Fl B F
F
True False -
S
F'=Meet(F,p) F'=Meet(F,—p)
F =Join(F', F") F'=Post(F, s)

(a) Join Node (b) Conditional Node

Figure 3. Abstract interpretation on flowchart nodes

describes equalities between expressions that have the same value
at a given program point (in all runs of the program). May-equality
is also a binary predicate over sets of pointer expressions. It is de-
noted using “~”" and is used in an infix notation. This predicate is
supposed to describe an over-approximation of all possible expres-
sion equalities at a given program point (in any run of the program).
Disequalities are deduced from absence of (transitive closure of)
may-equalities. The reason for keeping may-equalities instead of
dis-equalities is that the former representation is often more suc-
cinct in the common case when most memory locations are not
aliased (i.e., have only one incoming pointer).

3.1 Abstract Elements

An abstract element F' in our domain is a collection of must-
equalities M, and may-equalities Y, together with some arithmetic
constraints C on integer expressions. Apart from the program vari-
ables, the expressions in M, Y, and C' may contain extra inte-
ger variables that are existentially or universally quantified. Each
must-equality and may-equality is universally quantified over inte-
ger variables Uy that satisfy some constraints Ct. The collection of
these must-equalities M, may-equalities Y and constraints C' may
further be existentially quantified over some variables. Thus, the
abstract element is a 3V formula. This choice balances expressive-
ness with automation as will be explained later. The constraints C
and C are some arithmetic constraints over expressions, which are
represented in some base constraint domain that is a parameter to
our algorithm.

F o= 3JU:C/M)Y
M = true | M A VUf(Cf = (61 = 62))
Y = true | Y A VUe(C:= (e1 ~e2))

The existentially quantified variables, U, can be seen as ghost
variables of the program that need to be made explicit to express the
particular program invariant. The universal quantification allows us
to express properties of collections of entities (expressions in our
case).

Formal Semantics of Abstract Elements An abstract element
F' represents a collection of program states p, namely those
states p that satisfy I’ (as defined below). A program state p =
(D, R,V, P) satisfies the formula F' = 3U : C, M,Y (denoted as
p = F) if there exists an integer assignment o to variables of U
such that the following holds: If Vo denotes the result of replacing
vbyo(v)inV and pe = (D, R, Vs, P), then,

® p. = consf, ie., for each each predicate e;reles € C,
[e1 rel e2] pe evaluates to true whenever it is a valid compari-
son.

® p. = M, ie., for all facts (VU:(Cs = (e1 = e2))) € M,
for all integer assignment o to variables in Us, if p; | Ct
then [e1]ps = [e2]ps, where ps = (D, R, Veos, P). In the
special case when e; = ez is of the form e— [ = valid, then
lelps = (r,c),r € D,and 0 < ¢ < R(r).

(c) Statement Node

e For all expressions e; and ez such that [e1]p. = [e2]pe =
(r,c) for some r € D (i.e., e; and ey are valid pointer values
in the state pe), it is the case that for all states p’ such that
p = Candp | M', wehave [e1]p’ = [ez2]p’, where M is
the collection of equalities obtained from M and by replacing
all may-equalities in Y by must-equalities. In other words, if
e1 = ep cannot be proved using M’, then pe |= e1 # ea.

The top element T in our abstract domain is represented as:
N Vi illz=7) ~ (y=?)]
z,y
or, equivalently,
N\ Vir iz v, ol (=) ~ (y—if)
z,y

In standard logic with equality and disequality predicates, this
would be represented as true. However, since we represent the dis-
equality relation by representing its dual, we have to explicitly say
that anything reachable from x may be same as anything reachable
from y for all pairs of variables x and y.

Observe that the semantics of must-equalities and may-equalities
is liberal in the sense that a must-equality e; = es or may-equality
e1 ~ ez does not automatically imply that e; or ez are valid pointer
expressions. In fact, e; = ez means that either e; or ez is an invalid
pointer-value, or that they have same values. Instead the validity of
an expression needs to be explicitly stated using Valid predicates
(defined on Page 2 in Section 1).

Observe that there cannot be any program state that satisfies a
formula whose must-equalities are not a subset of may-equalities.
Hence, any useful formula should have any must-equality also as a
may-equality. Hence, without loss of generality, we assume that in
our formulas all must-equalities are also may-equalities, and avoid
duplicate representations in our examples.

3.2 [Expressiveness

In this section, we discuss examples of program properties that our
abstract elements can express.

e x points to an (possibly null) acyclic list.
i : List(z, 4, next)
The predicate List is as defined on Page 2.
e x points to a region (array) of ¢ bytes.
Array(z,t)
The predicate Array is as defined on Page 2.
e x points to a cyclic list.
Ji,j:i>0,7>1,z—next’ = z—next’™ A
VEO<k<j = Valid(x—mextk))
e The lists pointed to by = and y are shared.
Ji,7:4>0,j > 0, z—next’ = y—next’
® y may point to some node in the list pointed to by x.
i : z—next’ ~ y or, equivalently, Vi(az—mexti ~ )

Observe that existential quantification and forall quantification
over may-equalities has the same semantics.

e The (reachable) heap is completely disjoint, i.e., no two distinct
reachable memory locations point to the same location.

true



MustAliases(e, F))

A = {(true,e)} Inputs:
While change in A and not tired e=2x _
Forall (VV(C = e1 =e2)) € F and (C',e') € A My = (z = z—next?)

1f ((o,7) := MatchExpr(e’,e1) # L
A:=AU{{C'"ACo,(e20)—7)}

My = (V§((0 < i € j) = z—next’ = z—next' " —prev))
return A MustAliases(e, Fi) = {z—next’, z—next?}
MustAliases(e, Fy) = {x—next—prev, r—next—prev—next—prev}
MayAliases(e, F')

A := {(true,e)}

While change in A

Forall (VV(C = e1 ~e2)) € F and (C',e') € A
If ((o,7) := MatchExpr(e’,e1) # L
A := OverApprox(A U {{(C' A Ca, (e20)—7)})

MayAliases(e, F1) = {z—next’ |t > j}
MayAliases(e, ) = {z—(next||prev)’ | 0 < t} or
{z—t1)2 | 0<ta AL <t <u}
where £ = min(next, prev) and v = max(next, prev).
return A

(a) Algorithm

(b) Examples

Figure 4. The two important functions MustAliases and MayAliases on which the precision of our transfer functions depend. In (b),
the first choice for MayAliases(e, F3) is better than the second choice (if the next and prev fields are not laid out successively), but
will be generated only if we allow disjunctive offsets, as addressed in Section 3.2. Note that even though MayAliases is a conservative
overapproximation it helps us prove that x does not alias with for example x—data.

Observe that disjointedness comes for free in our representa-
tion, i.e., we do not need to say anything if we want to represent
disjointedness.

e y may be reachable from x, but only by following left or
right pointers. [Such invariants are useful to prove that cer-
tain iterators over data-structures do not update certain kinds
of fields.] The expression language as described earlier, is cur-
rently insufficient to represent this invariant precisely. However,
a simple extension to our expression language in which we al-
low disjunctions of offsets (as opposed to a single offset) can
represent this invariant precisely as follows.

Vi >0 : z—(left|right)’ ~y

The semantics of the abstract domain and the analyses de-
scribed in this paper can be easily extended to accomodate dis-
junctive offsets as above. However, we avoid a formal treatment
of disjunctive offsets in this paper for purpose of simplified no-
tation.

3.3 Limitations

Following are some examples of program properties that we cannot
express in our abstract domain.

Flattening of a list of buffers of varying sizes: We came across
some networking code that tries to flatten out a list of buffers of
varying size into a single buffer. The invariant required to prove
memory safety of such a code need to relate the output buffer size
with the buffers in the list requires using a summation notation,
which we cannot represent. However, we feel that not many real
applications use such patterns.

Disjunctive Properties: We cannot represent arbitrary disjunc-
tive pointer equalities like z = z—mnext V x = y since our abstract
domain does not support explicit disjunction (for efficiency rea-
sons). We plan to add disjunctive support on top of our abstract do-
main in the future. However, our domain can express certain kinds
of disjunctive properties that can be implicitly specified using exis-
tential quantification. For example, x = z—next V x = z can be
representedas 3 : 0 < i <1 A z = z—next’.

We also cannot express invariants that require V3 quantifica-
tion, such as the invariants required to analyze the Schorr-Waite
algorithm [14]. We plan to enrich our abstract domain in future.

4. Abstract Interpretation

In this section, we describe how to automatically infer some pro-
gram properties that are expressible in our abstract domain (de-
scribed in Section 3) by performing a forward abstract interpreta-
tion over the program [5]. This involves computing abstract ele-
ments at each program point from the abstract elements at the pre-
ceding program points by means of different transfer functions as
shown in Figure 3. The transfer function for the postcondition op-
erator also checks for any memory safety errors or memory leaks.
We assume that the base domain for representing constraints comes
equipped with the standard transfer functions Meetypase, JOinpase
and Postyase. We use these transfer functions to construct the trans-
fer functions for our quantified abstract domain.

The abstract element at the entry point is initialized to the given
pre-condition. The transfer functions used for computing the ab-
stract elements at other program points are described in the sub-
sections below. In presence of loops, the abstract interpreter goes
around loops until fixed-point is reached. Since the transfer func-
tions that we describe are not the most-precise abstract transformers
(which is not a surprise since our abstract domain does not form a
lattice), there are possibilities of unwanted precision loss especially
at join points of loop headers. We use the heuristic of unfolding one
iteration of all loops; this introduces interesting data-structure ac-
cess patterns in our abstract elements and helps to avoid unwanted
precision loss.

We begin by describing some functions that do transitive rea-
soning of must and may equalities, which is an integral part of all
our transfer functions.

4.1 Transitive Inference of Must and May Aliases

One common operation required in our transfer functions is an
explicit representation of (underapproximation of) must-aliases and
(over-approximation of) may-aliases of a given expression that are
implied by a given abstract element. For this purpose, we define the
following functions.

The function MustAliases(e, F') returns an under-approximation
of all must-aliases of expression e such that for every e’ €
MustAliases(e, F), we can deduce that F' = e = ¢’. Similarly,
the function MayAliases(e, F') returns an over-approximation of
all may-aliases of expression e such that if I = e ~ ¢/, then
€’ € MayAliases(e, I). Since these alias sets may have an infi-
nite number of expressions, we represent the alias sets of an ex-



O S0 NN AW N~

B~ N~ N N N N N N~
S 0O S0 N U AW N~ O

Join(F*, F¥)

F' := Normalize(F")
F* := Normalize(F~)
Let F'=30':C*, M, Y?
Let F* =307 :C*", M"Y~
M' :=true; C :=true
Forall quantifier-free (e; =e2) € M™

C; := MustMatch(F', e1 = e2)

If M*AC,; is satisfiable

C:=CAhCy
M/ = M/ A (61 = 62)

Repeat Lines 6-10 with F' and F* swapped
U :=U'uUr
C’ := Joinpase (C* A C,C* A C)
Forall (VU1(01 = e = 62)) e M*

Cs := MustMatch(F", e1 = e2)

C3 := ModuloMeetyase ((Ct, C* A C), (C1,C™ A (

M =M A (VUl(Cg = e1 = 62))
Repeat Lines 14-17 with F' and F* swapped
Y :=Y'AYT
return U’ : C', MY’

1)

(a) Algorithm

Inputs:
F' = (y = x—next) AVA[(0 < h < x—1len) = Valid(z—data + h)]

F* = (y = r—next?) AVA[(0 < h < x—1len) = Valid(rz—data + h)] A
Vh[(0 < h < z—next—1len)] = Valid(z—next—data + h)

Trace of Join(F*, F*):

Normalize(F') = 3Ji;:i1=1 A y=z—next® A
Vhi: (0 < hi < z—len) = Valid(z—data + h)
Normalize(F*) = Jiz:iz =2 A y=z—next'? A

Vj ho : (0<j <1,0 < hy < z—next/ —len) =
Valid(z—next’ —data + hs)

First loop corresponding to y = z—next’? from M*
Ct = (i2 =11)

C = (i2 = 11) (after line 11)

Second loop corresponding to Valid(z—next? —data + hs) from M~
Co=(=0 A 0<hy <z—len)

Cs3=(0<j<i A 0<h <z—next!)

C'=(1<i1=i2<2)

Output:
iy, i0: 1 < iy =143 <2, y=x—next? A
Vi, A (0 <j <1,0 < he < z—next! —len) = Valid(z—next! —data + ha),
Y'AYT
(b) Example

Figure 5. The Join Algorithm uses Joingase and ModuloMeetyase Operations from the base domain. The example instance shown in (b) arises
in verification of the procedure List0fPtrArray shown in Figure 1. The result of the join operation introduces new quantifiers in the output,
which later yields the desired quantified invariant required to prove the memory safety of the second loop in procedure ListOfPtrArray.

pression e using a finite set of pairs (C, e’), where (C, e’) denotes

all expressions ¢’ that satisfy the constraints C. *

The pseudo-code for MustAliases and MayAliases is de-
scribed in Figure 4. The precision of our analysis depends on the
precision of MustAliases and MayAliases. The key idea in our
algorithm for MustAliases is to do transitive inference from must-
equalities for some constant number of times. The key idea in
MayAliases is to do transitive inference from may-equalities un-
til fixed-point is reached, and use some function OverApprox for
over-approximating the elements in the set that guarantees termi-
nation in a bounded number of steps. One such heuristic for func-
tion OverApprox may be to bound the size of the expressions,
and the constants that occur in the constraints. (Similar widen-
ing techniques have been used for over-approximating regular lan-

proximation of the constraints required to ensure e; = ey, i.e,
if C = MustMatch(F,e1 = e2),then C A F = e1 = ea.
Similarly, the function MayMatch(Y,e1 ~ e2) returns an over-
approximation of the constraints that ensure e; ~ eg, ie., if
C = MayMatch(Y, e1 ~ e2),then ~C AY = e1 # es.

The function MustMatch can be implemented by computing
A1 = MustAliases(M,e1) and A; = MustAliases(M, e2)
and computing the disjunction of the constraints C1 A C2 A o
for all (Cy,e}) € Ay and (Ca,e5) € Az where €] and e5 have
some common intersection under some substitution o that relates
the free variables (i.e., the variables that do not occur in ej,es and
M) in €] and ej. The functions MayMatch can be implemented in
similar manner by using the MayAliases information instead of
the MustAliases information.

guages [24].) The function MatchExpr(e’, e1) returns a substitu-

tion o (for the universally quantified variables in e;) and a subterm
~ such that e’ and e;0—y are syntactically equal, whenever such

a substitution exists; otherwise, it returns L.

Observe that the above algorithm for MustAliases lacks the
capability for inductive reasoning. For example, even if the transi-
tive inference goes on for ever, it cannot deduce, for example, that

4.2 Join Algorithm

The join algorithm takes as input two abstract elements F'* and F*
and outputs an abstract element F' with the following property.

PROPERTY 1 (Soundness of Join Algorithm).
Let F = Join(F', F") and let p be any program state. Then,

r—next’—prev’ is a must-alias of = (where 7 is some program

variable that does not have a constant value). However, we feel that

such an inference is not usually required.

Based on the functions MustAliases and MayAliases, we
can also easily define two other functions that are used by our
transfer functions: MustMatch(F,e; = e2) returns an underap-

4 This representation is motivated by the one used by Deutsch [7] except
that the constraints in his formalism were pure linear arithmetic facts with
no support for uninterpreted function subterms, and the expressions did not
have support for pointer arithmetic. Moreover Deutsch used this represen-
tation only for computing may-aliases, and there was no support for must-

aliases in his framework.

=

(pEFYV(pEF pEF

The join algorithm is used to merge the dataflow facts at join points.
Note that Property 1 does not specify the behavior of the join
algorithm completely (since the join algorithm can trivially return
T). However, a stronger F' that satisfies the above property is a
better solution in the sense that it makes our analysis more precise.
The pseudo-code for the Join algorithm is described in Figure 5.

We have designed our join algorithm to (possibly) introduce
new quantifiers in the output so that useful quantified invariants
can be generated. We explain the key ideas in the Join algorithm
by means of an example.



len

F = 3Ji:len <iAList(z,i,next) Ay = x—next
(z1relz2) = (y =null)
Ci; = (len = 1)

Ji : len = i A List(z,4,next) Ay = x—next'™

Meet(F,z1 rel x2)
1 Let F=(3U:C,M,)Y) Inputs:
2 C':=x1relxs;
3 Ifrel = ‘=22 .
4 Ct := MayMatch(F, 1 ~ x2) After Line 4:
5 C':=C"NC, Output:
6 M :=MAz1 = 22
7 Y ' =Y Az ~ 22
§ Else if rel = ‘£ Inputs:
9 Cy := MustMatch(F, z1 = x2)

! !
;(1) ]C"/[,::::%A —Ct After Line 9:
2 Y =Y —{z1 ~ 22} Output:
13 Return 3U : C',M')Y’
(a) Algorithm

F = 3i:len <iAList(x,i,next) Ay = r—next'™
(z1relz2) = (y # null)

Cy = (len = 1)

len

Ji : len < i AList(z,i,next) A y = r—next

(b) Examples

Figure 6. The Meet algorithm involves reasoning about the interaction between equalities and dis-equalities. The example instances shown
in (b) arise in verification of the program List2Array shown in Figure 10. The result of the first example above is critical in establishing
that the list pointed to by « has length 1en, which in turn is used in proving the safety of memory operations in the second loop in procedure
List2Array. The result of the first example above is used in checking the safety of deference of pointer y in the first loop in the procedure.

Consider the program shown in Figure 1. Performing abstract
interpretation over this program in our setting will give rise to the
facts F'* and F* (shown in Figure 5(b)) on the two predecessors of
the loop header (after unfolding one loop iteration).

In the first step of join computation, the two input facts are
rewritten into an equivalent standardized form using the Normalize
operator described later. This representation is obtained by intro-
ducing dummy variables. These variables are suitably quantified
and matched up in the two inputs. (A more detailed description of
this step is provided later in this sub-section.)

F' = Ji:i=1 A y:w—mexti A
Vi, h:(j =0A0<h < z—next! —len) =
Valid(z—next’ —data + h)
F* = 3i:i=2 A y=z—next' A

Vi,h:(0<j<1A0<h< z—next’ —len) =
Valid(z—next’ —data + h)

Then the join of F* and F™ can be obtained by using the observa-
tion that the disjunction of the following two logical formulas

Ci AVU(Ct = E) Ce AVU(C5 = E)
can be overapproximated as
Joinpase(C1, C2) AVU((Cy A C3) = E)

where Joingase (C1, C2) overapproximates C1 V C2. However, this
formula is very weak: a naive conjunction of C{ and C sometimes
generates too strong constraints. An interesting thing to note is that
we can use any underapproximation of

(Cl = Ci) A (02 = Cé)

in place of C] A C35 without losing soundness. We implement this
operation over the constraints domain by means of an operator that
we call ModuloMeetyase (This operator can be implemented using
Joinpase, and is described in Figure 7). For the above example, we
have:

JOinbase(Cl,Cg) = (1 <i<2
Meetpase(C1,C5) = j=0A0

~

h < z—next’ —len

IN

ModuloMeetpase ((C1, C1), (C3,C2)) =
0<j<iA0<h<z—next’—len

Hence, by using the results of the join and modulo-meet operator,
we obtain the desired result as:

Join(F', F*) = 3i:1<i<2 A y=az—next’ A
V4,h[(0 < j <iA0<h < zr—next’ —len) =
Valid(z—next’ —data + h))

The psuedo-code for the join algorithm is described in Fig-
ure 5. The Normalize operator introduces fresh variables at the
exponents and offset positions in the expressions and existentially
or universally quantifies them as per the strategy described be-
low. We make two copies of each (universal) quantifier-free must-
equality. In one of them, all fresh variables are existentially quan-
tified and in the other all fresh variables are universally quantified.
The fresh variables in already quantified facts are all universally
quantified. The rationale behind this choice is as follows. The ex-
istential variables are supposed to represent some ghost variables
that are not made explicit in the program, and we target those ghost
variables that can be defined by a simple (i.e., quantifier-free) must-
equality. Hence we existentially quantify the fresh variables in only
the quantifier-free facts. Once the existentially quantified variables
have been discovered, the problem reduces to finding all universally
quantified facts and hence we universally quantify all the fresh vari-
ables in all the must-equalities. The second step in the Normalize
operator is to group together the constraints of matching must-
equalities by using the rule that VU (C1 = E) and VU (C2 = E)
can be written as VU (C3 = FE), where C5 = C1 V C5 provided
Cj5 is expressible in the constraint domain. Figure 5(b) gives an ex-
ample of the normalization step. However, we introduce only some
fresh variables (to avoid cluttering in the example) that are enough
to obtain the desired result.

Once the inputs have been normalized, we match the must-
equalities in the two inputs. Lines 6-11 in the pseudo-code for Join
algorithm shown in Figure 5 relate the existentially quantified vari-
ables in the inputs and output the result in constraint C. This is
done by means of matching the non-universally quantified must-
facts. Essentially such facts define the witnesses for the existen-
tially quantified variables. The constraints C’ on the existentially
quantified variables are a join of the constraints on the existentially
quantified variables C* and C™ in presence of C.

Lines 15-17 relate the variables in some matching universally
quantified must-equality in the inputs to obtain the constraints C>
under which the other input also satisfies the same must-equality.
The constraints Cs of that must-equality in the output are then ob-



MOdUIOMeetbase((Ch 01)7 (027 Cr))

1 C:= Joinpase(C1 A C*,Co A CT)
2 Forall C. e (C1:
3 If CAC*#4 C., C:=CAC.
4 Forall C. € Cy:
5 If CNC*AC., C:=CACe
6 Return C

(a) Algorithm

Inputs:

(C1,C") = (i=0 A j2<5,i=1)
(C2,C7) = (0<j1i <1 A j22>5,i=2)
Trace of ModuloMeetpase ((C1, Ct), (C7, CY)):
After line 1: C = 0<ii<i1 N 1<i<2
After first loop: C = 0<j1i<i AN 1<i<2 A j2<5
Aftersecondloop: C = 0<j1<i A 1<i<2 A j2=5
(b) Example

Figure 7. The ModuloMeetyase Operator is an important component of the Join algorithm. It returns an underapproximation of (C; =
C*)A(Cs = CT) (as opposed to the standard Meetpase operator that returns C; AC5). The algorithm described in (a) gives an implementation

of the ModuloMeetpase Operator in terms of Joinpase.

tained by taking meet of the constraints C; and C but in presence
of environments C; A C' and C' A C respectively, which is achieved
by means of the ModuloMeetyase Operator (described in Figure 7).
Line 19 defines Y as simply the union of the may-equalities in the
two inputs.

4.3 Meet Algorithm

The meet algorithm takes as input an abstract element F' and a
predicate 1 rel 22 and returns an abstract element F’ that has the
following property.

PROPERTY 2 (Soundness of Meet Algorithm). Let F' be
Meet(F, z1 rel x2), and let p be any program state. Then,

pEF A ([rirelz]p=true) = pE F'

The meet algorithm is used to collect information from the pred-
icates in the conditionals. We describe an implementation of the
Meet Algorithm in Figure 6 and also give some examples. The
key idea in the Meet algorithm is to reason about the interaction
between equalities and disequalities. When the input predicate is
an equality, we assert that the corresponding disequality cannot be
true, i.e., the equality should be a may-equality in the constraints.
The call to procedure MayMatch in Line 4 generates these con-
straints.

Similarly, when the input predicate is a disequality, we assert
that the corresponding equality cannot be true. The call to proce-
dure MustMatch in Line 9 generates these constraints and we as-
sert their negation. Since —~C; may not be representable in the base
constraint domain, by the operation C' A ~CY in Line 10, we simply
mean any overapproximation of it that is representable in the con-
straint domain. Line 12 removes the may-equality e; ~ ez from
Y (if it occurs in Y'). If e1 ~ e2 occurs as a part of a quantified
equality in Y/, then it is also sound to strengthen the corresponding
constraints in the quantified may-equality just enough so they no
longer imply e ~ ea.

Note that in absence of typing information, we do not know
whether an expression is an integer or pointer expression, so all
predicates are also added to the base constraint, which maintains
relationships between integer expressions.

4.4 PostCondition Algorithm

The postcondition algorithm takes as input an abstract element
F' and an assignment statement s and returns another abstract
element I, along with a possible error message, with the following
property.

PROPERTY 3 (Soundness of PostCondition Algorithm).

Let F be an abstract element and s be an assignment statement
such that Post(F, s) does not output any memory safety violation.
Let F' = Post(F, s) and let p be any program state. Then,

pEF = [slp# Land[s]p = F'

Postcondition computation across assignments of the form
*r := e involves invalidating must- and may-equalities, and
adding the new equality established by the assignment. Any must-
equality and base constraint that involves expressions whose pre-
fix *€’ is such that €’ is a may-alias of = are invalidated. In the
example shown in Figure 8, the must fact List(y, ¢, next) is in-
validated since we have y + 4 ~ x. We are then left with only
the may analogues, y—next’ ~ null and Vj[(0 < j < i) =
y—next‘—g ~ valid (not shown in figure), of List(y, 1, next)
after this step. Next, any may-equality that involves expressions
whose prefix *e’ is such that e’ is a must-alias of z is also elim-
inated. Since y + 4 = z, it follows that these two may facts are
removed. This step is the equivalent of performing a strong update.

However, before invalidating any must-equality, the procedure
checks to see if there is any must-alias of xx that can be used
as a placeholder for *z. If such an expression e’ exists, then the
procedure replaces *x by ¢’ in the facts. In Figure 8, this first
step leads to the addition of the fact List(tmp, i — 1, next) since
*r = tmp is a must-alias equation. In the absence of the existence
of such a must-alias €', the procedure warns of a “potential memory
leak”. Moreover, if the procedure fails to find a may-alias e’ for
*x, then it signals a “definite memory leak”. In the example, the
removal of the equation *r = tmp from the must and/or may
equation set leads to these situations. As a first step, the procedure
also checks if the input abstract element F' implies Valid(z) and
Valid(e') for every e’ that occurs as *e’ in e. Failure of this
check indicates “potential memory safety violation”. The failure
of the dual check of may-valid equations will indicate “definite
memory safety violation”. (The “definite” messages assume that
the program reaches that program point.)

The procedures for computing postconditions across assign-
ments *z = malloc(e) is similar to the procedure above, except
that the new equation added in the final stage is Vj(0 < j < e =
Valid(xz+j)). The post for free(x) invalidates all expressions that
contain subexpressions that are may aliased to « + 4, where 7 is an
integer offset.

4.5 Correctness and Complexity

THEOREM 1. Let F and F» be the precondition and postcondition
respectively of some procedure in our program model. Then, if our
abstract interpreter does not output any memory safety violation
and verifies the postcondition, then for all program states p such
that p = Fi the following holds: Execution of the procedure in
state p yields a not-1 state p' (i.e., there are no memory safety
violations) such that p’ |= Fo.

The soundness of Theorem 1 follows easily from Properties 3,
2, and 1, which state the soundness of the individual transfer-
functions of the abstract interpreter. Also, it is not difficult to verify
that the pseudo-code described for the transfer functions satisfies
the respective properties.



[ Stages in computing post across *r := result ]

Initial fact Replace xx by tmp

Invalidate must

Invalidate may Add new fact

List(y, i, next)
List(result, j,next)
y+4==x

*T = tmp

List(y, ¢, next)
List(result, j,next)
y+4==x

*T = tmp
List(tmp,i-1, next)

y—next’ ~ null
List(result, j,next)
y+4=x

*T ~ tmp

List(tmp, -1, next)

List(result, j,next)
y+4==x

*r = result
List(tmp,i-1,next)

List(result, j,next)
y+4==z

List(tmp, -1, next)

Figure 8. An example from the standard in-place list reversal program illustrating postcondition computation across assignment *xx :=
result on facts at the beginning of the loop shown in the first column. The set of may equalities is equal to the must set initially.

To ensure termination across loops, we do the following: (a)
Use a widening operation on the base constraint domain, (b) bound
size of pointer expressions and the constants that occur in those
pointer expressions by some fixed small constant. It is easy to see
that these two heuristics guarantee termination across loops. It can
also be verified that the computational complexity of each transfer
function is at most polynomial in the number of program variables.

Fixed-point computation requires an implies check on elements
of our abstract domain. The key idea is to match the existentially
quantified variables on the right side with those on the left side.
Then we check if every must-equality on the right side is also
present on the left side, and if every may-equality on the left side is
also present on the right side. For the former, we compute an under-
approximation of must-aliases of e; from the must-equalities of F'
and then check whether ez belongs to that set. For that latter, we
compute an over-approximation of may-aliases of e; from the may-
equalities of F' and then check whether e2 does not belong to that
set. Section 4.1 describes how to compute an under-approximation
of must-aliases and an over-approximation of may-aliases.

5. Experiments

We have built a prototype implementation of the algorithms de-
scribed in this paper. Our tool is implemented in C/C++ and takes
two inputs: (i) some procedure in a low-level three-address code
format (without any typing information) (ii) precondition for the
inputs of that procedure expressed in the language of our abstract
domain.

5.1 Choice of Base Constraint Domain

We chose the base constraint domain to be the conjunctive domain
over combination of linear arithmetic and uninterpreted function
terms.

For the linear arithmetic part, we used constraints of the form
z < ay + c (slight generalization of difference constraints). We
observed that difference constraints were not sufficient to represent
the invariants primarily because of the use of multiplication by
constants to compute the offsets in array dereferences (for eg,
the access A[i].data gets translated into A—(tmp) in the low-
level code, where tmp = 8¢ 4 data and we need to represent
the latter invariant.) For List2Array and Array2PtrArray this
choice turns out to be good enough.

There are three known ways of defining combination of abstract
domains: direct product, reduced product [6], and logical prod-
uct [13]. We chose the logical product combination, since the other
two were not precise enough to represent the invariants required,
for example, in the ListPtrArray or ArrayPtrArray examples.
This choice is good enough to represent all base constraints that
arise in our examples.

We implemented the algorithms for the logical combination
of linear arithmetic (in particular, generalized difference con-
straints) and uninterpreted function terms based on the combination
methodology described by Gulwani and Tiwari [13].

5.2 Examples

Our experimental results are encouraging. We were successfully
able to run our tool on the example programs shown in the table
in Figure 5. These examples have been chosen for the following
reasons: (i) Each of these illustrates the interesting aspects of a
different transfer function described in Section 4. (ii) Two of these
examples List2Array and ArrayPtrArray also represent very
common coding patterns. (iii) We do not know of any automatic
tool that can verify the correctness of these programs automatically
in low-level form, where pointer arithmetic is used to compute
array offsets and even field dereferences.

List2Array This example flattens a list into an array by using two
congruent loops - one to compute the length of the input list to
determine the size of the array, and the second to copy each list
elements in the allocated array. Figure 10 describes this example
and the useful invariants generated by our tool.

This example reflects a common coding practice in which mem-
ory safety relies on inter-dependence between different loop itera-
tions. In this example, it is crucial to (represent and) compute the
invariant that ¢ stores the length of the input list. Generation of
this invariant depends on the ability of our meet algorithm to rea-
son about the interaction between must-equalities and a disequality
predicate, as well as disequalities (represented by absence of may-
equalities) and an equality predicate. See Figure 6(a) for details.

ListReverse The procedure performs an in-place list reversal. The
interesting loop invariant that arises in this example is that the sum
of the lengths of the list pointed to by the iterator current y (i.e.,
the part of the list that is yet to be reversed) and the list pointed to
by the current result result (i.e., the part of the list that has been
reversed) is equal to the length of the original input list (which in
our example is 100).

Ji1,ip i1 + 42 = 100 A List(y, i1, next) A
List(result, iz, next)

Note that since the input list is being updated in-place, we cannot
refer to the length of the original input list except if its length
was a constant or if it is stored in some live program variable.
The discovery of the above invariant relies on the ability of our
postcondition operator to do strong updates (i.e., remove may-
aliase facts), and generate relevant equalities by transitive reasoning
before destroying any must-equality. See Figure 8 for details.

ArrayPtrArray This example is similar to the one described in
Figure 1 in which the input list « is a list of Arrays (and their
length fields). The only difference is that (for our experiments) we
instead chose the data structure for our input A to be an array
of arrays (and their length fields) since the respective invariants
required for verifying the memory safety offer a more involved
reasoning of pointer arithmetic. The loop invariant that we discover
for the first loop (which initializes A[j].data to some array of
length A[j].data) is the following variant of the one described on
Page 2 in Section 1. Here ¢ denotes the length of the array A and is



[ Program H Base Constraint Domain Required [ Property Discovered (apart from memory safety) [ Precondition Provided

List2Array Generalized Difference Constraints | The corresponding array and list elements are same | Inputis a list

ListReverse Generalized Difference Constraints | Reversed list has length 100 Input is a list of size 100

ArrayPtrArray || Generalized Difference Constraints
+ Uninterpreted Functions

Input array has length Len
(where Len is also an input)

Figure 9. Examples on which we performed our experiments. Column 2 lists the base constraint domain that is required to reason about
memory safety as well as the property listed in column 3 of the program in column 1. Our prototype implementation took less than 0.5
seconds for automatic generation of invariants on these examples. We also ran our tool in a verification setting in which we provided the loop

invariants and the tool took less than 0.1 seconds to verify the invariants.

7 | Invariant at
List2Array(struct {int Data,*Next;}* z) | | Ji : List(z,7,next)

I 0:=0; 2 | 3i:¢=0,List(z,?,next)
2 for (y = x; y # Null; y:= y—>next) 3 di:0</l< i,LiSt(ZB,7:,1’1.ex‘l:)7 Yy = r—next’
3 0:=041; 4 | List(z,/,next)
4 A:=malloc(4); y:==x; 5 | List(z,f,next), Array(A, 40)
5 for (k:=0; k<{ k:=k+1) 6 | List(z, £, next),Array(A,4¢),0 < k < £,y = z—next"®
6 A—(4k) := y—data; y:=y—next; Vj((0 < j < k) = xz—next/ —data = A—(4j + data)
7 return A 7 | List(z, f,next),Array(A, 40),y = null

Vj((0 < j <£) = x—next! —data = A—(4j + data))

Figure 10. An example program that flattens a list of integers into an array of integers. We assume that the structure fields Data and Next
are at offsets data = 0 and next = 4 respectively. The table on the right lists selected invariants at the corresponding prog ram points that
were discovered by our implementation. The List and Array predicates are as defined on Page 2.

also an input to the procedure, and k is the loop iterator.

0<k<{ A Array(A,8() A

Vj: (0 <j < k)= Array(A—(8j + data),4 x (A—(8j + len)))

The discovery of the above quantified invariant relies crucially
on the ability of our join algorithm to generalize its inputs into
quantified invariants. See Figure 5(b) for details.

6. Related Work

Alias/Pointer analysis Early work on alias analysis used two
main kinds of approximations to deal with recursive data-structures:
summary nodes that group together several concrete nodes based
on some criteria such as same allocation site (e.g., [2]), or k-limiting
which does not distinguish between locations obtained after k
dereferences (e.g., [18]), or a combination of the two (e.g., [4]).
Deutsch proposed reducing the imprecision that arises as a result
of k-limiting by using suitable representations to describe pointer
expressions (and hence alias pairs) with potentially unbounded
number of field dereferences [7]. The basic idea was to use new
variables to represent the number of field dereferences and then
describe arithmetic constraints on those variables. However, such
techniques were not deemed sufficient to express rich pointer prop-
erties.

Most of the new techniques that followed focused on defining
logics with different kinds of predicates (other than simple must-
equality and may-equality predicates, which were used by earlier
techniques) to keep track of shape of heap-structures [15, 23, 22,
17]. There is a lot of recent activity on building abstract interpreters
using these specialized logics [8, 20, 12]. In this general approach,
the identification of the “right” abstract predicates and automation
of the analysis are challenging tasks. In some cases, the analysis
developer has to provide the transfer functions for each of these
predicates across different flowchart nodes.

Additionally, the focus of the above mentioned techniques has
been on recursive data structures, and they do not provide good sup-
port for handling arrays and pointer arithmetic. Recently though,
there has been some work in this area. Gopan, Reps, and Sagiv have

suggested using canonical abstraction [23] to create a finite parti-
tion of (potentially unbounded number of) array elements and us-
ing summarizing numeric domains to keep track of the values and
indices of array elements [11]. However, the description of their
technique has been limited to reasoning about arrays of integers.
Calcagno et al. have used separation logic to reason about memory
safety in presence of pointer arithmetic, albeit with use of a special
predicate tailored for a specific kind of data-structure (multi-word
lists) [1]. Chatterjee et al. have given a formalization of the reacha-
bility predicate in presence of pointer arithmetic in first-order logic
for use in a modular verification environment where the program-
mer provides the loop invariants [3].

The work presented in this paper tries to address some of the
above-mentioned limitations. Our use of quantification over two
simple (must and may-equality) predicates offers the benefits of
richer specification as well as the possibility of automated deduc-
tion. Additionally, our abstract domain has good support for pointer
arithmetic in presence of recursive data structures.

Quantified invariants There has been some earlier work on auto-
matically discovering quantified invariants [16, 10]. However these
approaches require that the predicates that occur in the quanti-
fied invariants be provided explicitly, either by the programmer or
by an automatic abstraction-refinement technique. Moreover, these
approaches have specifically focussed on discovering universally
quantified invariants over arrays. On the other hand, our approach
does not require these predicates to be provided - relevant predi-
cates are automatically discovered by the base constraint domain.
Also, we discover invariants of the form 3V (most of the examples
presented in this paper cannot be verified with simply V quantifi-
cation), and we have first-class support for reasoning about pointer
arithmetic.

Data-structure Specifications McPeak and Necula have sug-
gested specifying and verifying properties of data-structures using
local equality axioms [21]. For example, the invariant associated
with the program List2Array (after execution of the first loop) in
Figure 10 might be specified at the data-structure level as saying
that the field Len is the length of the array field Data. Similar ap-




proaches have been suggested to specify and verify properties of
object-oriented programs [19], or locking annotations associated
with fields of concurrent objects [9].

These approaches might result in simpler specifications that
avoid universal quantification (which has been made implicit), but
they also have some disadvantages: (a) They require source code
with data-structure declarations, while our approach also works on
low-level code without any data-structure declarations. (b) Some-
times it may not be feasible to provide specifications at the data-
structure level since the related fields may not be local (i.e., not
present in the same data-structure). (c) Programmers need to write
down the intended specifications for the data-structures which can
be a daunting task for large legacy code-bases, (d) It is not clear
what such a specification would mean when these fields are set
only after some computation has been performed. Perhaps some-
thing like pack/unpack of Boogie methodology [19] or the tempo-
rary invariant breakage approach suggested in [21] may be used
to give it a well-defined semantics, but in such a setting establish-
ing validity of these specifications may itself require an inductive
reasoning (like the one required in our List2Array example for
establishing the invariant after the first loop).

7. Conclusion and Future Work

This paper describes an abstract domain that gives first-class treat-
ment to pointer arithmetic and recursive data-structures. The pro-
posed abstract domain can be used to represent useful quantified
invariants for several common code patterns (even in low-level soft-
ware). These invariants can be automatically discovered by per-
forming an abstract interpretation of programs over this abstract
domain. The transfer functions required for this purpose are built
using the transfer functions for the base constraint domain.

We feel that the techniques described in this paper can be used
for automatically discovering quantified invariants in real software—
without using any support in the form of user-specified list of
predicates. We are currently in the process of performing more
experiments with our tool. Future work includes extending these
techniques to an interprocedural analysis, wherein preconditions of
most procedures are automatically discovered in a whole-program
setting.

References

[1] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Beyond
reachability: Shape abstraction in the presence of pointer arithmetic.
In SAS, volume 4134 of LNCS, pages 182-203. Springer, 2006.

[2] D. R. Chase, M. N. Wegman, and F. K. Zadeck. Analysis of pointers
and structures. In PLDI, pages 296-310, 1990.

[3] S. Chatterjee, S. Lahiri, S. Qadeer, and Z. Rakamaric. A reachability
predicate for analyszing low-level software. Technical Report MSR-
TR-2006-154, Microsoft Research, 2006.

[4] J.-D. Choi, M. G. Burke, and P. R. Carini. Efficient flow-sensitive
interprocedural computation of pointer-induced aliases and side
effects. In POPL, pages 232-245, 1993.

[5] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In POPL, pages 234-252, 1977.

[6] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. In 6th ACM Symp. on POPL, pages 269-282, 1979.

[7]1 A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond
k -limiting. In PLDI, pages 230-241, 1994.

[8] D. Distefano, P. O’Hearn, and H. Yang. A local shape analysis based
on separation logic. In TACAS, pages 287-302, 2006.

[9] C. Flanagan and S. N. Freund. Type-based race detection for java. In
PLDI, pages 219-232, 2000.

[10] C. Flanagan and S. Qadeer. Predicate abstraction for software
verification. In POPL, pages 191-202, 2002.

[11] D. Gopan, T. W. Reps, and S. Sagiv. A framework for numeric
analysis of array operations. In POPL, pages 338-350, 2005.

[12] A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape analysis
with separated heap abstractions. In SAS, 2006.

[13] S. Gulwani and A. Tiwari. Combining abstract interpreters. In PLDI,
pages 376-386, June 2006.

[14] T. Hubert and C. Marché. A case study of C source code verification:
the Schorr-Waite algorithm. In 3rd IEEE Intl. Conf. SEFM’05, 2005.

[15] J. L. Jensen, M. E. Jgrgensen, N. Klarlund, and M. I. Schwartzbach.
Automatic verification of pointer programs using monadic second-
order logic. In PLDI, pages 226236, 1997.

[16] S. K. Lahiri and R. E. Bryant. Indexed predicate discovery for
unbounded system verification. In CAV, pages 135-147, 2004.

[17] S. K. Lahiri and S. Qadeer. Verifying properties of well-founded
linked lists. In POPL, pages 115-126, 2006.

[18] W. Landi and B. G. Ryder. A safe approximation algorithm for
interprocedural pointer aliasing. In PLDI, June 1992.

[19] K. R. M. Leino and P. Miiller. A verification methodology for model
fields. In ESOP, pages 115-130, 2006.

[20] S. Magill, A. Nanevsky, E. Clarke, and P. Lee. Inferring invariants in
separation logic for imperative list-processing programs. In SPACE,
2006.

[21] S. McPeak and G. C. Necula. Data structure specifications via local
equality axioms. In CAV, pages 476-490, 2005.

[22] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In LICS, pages 55-74, 2002.

[23] S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape analysis via
3-valued logic. ACM TOPLAS, 24(3):217-298, 2002.

[24] T. Touili. Regular model checking using widening techniques. Electr.
Notes Theor. Comput. Sci., 50(4), 2001.



	Introduction
	Program Model
	Abstract Domain
	Abstract Elements
	Expressiveness
	Limitations

	Abstract Interpretation
	Transitive Inference of Must and May Aliases
	Join Algorithm
	Meet Algorithm
	PostCondition Algorithm
	Correctness and Complexity

	Experiments
	Choice of Base Constraint Domain
	Examples

	Related Work
	Conclusion and Future Work

