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Chapter 1

Introduction

In the course of ordinary conversation and expression, the human lips can deform in

a variety of interesting and non-rigid ways. Tracking these motions accurately has
proved to be quite di�cult. There are a number of reasons behind this, but primary
among them is that all of the information about the lips is not observable at a given
point. For example, we can at best see only the inner and outer contours of the lips

from a given view. In addition, the presence of the tongue can obscure the inner

contour, and the 
esh tone/lighting can obscure the outer contour. I propose that

with an accurate spatio-temporal model of the lips, this task will be greatly simpli�ed.
In essence, the argument is that a model that can only vary in the ways that the lips
actually move will not be \fooled" by erroneous data. Such a model could form the
heart of a robust estimation framework for �nding the best estimate of the lip pose
given whatever data was available. In addition, this model could be used to synthesize

lip motions for computer graphics. In this study, I present a model and a means for
training it that I feel will be able to provide these bene�ts for analysis and synthesis.

1.1 Background

In looking at the prior work, there are two major groups of lip models. The �rst of

these contains the models developed for analysis, usually intended for input into a
combined audio-visual speech recognition system. The underlying assumption behind

most of these models is that the head will be viewed from only one known pose. As a

result, these models are often only two-dimensional. Many are based directly on image
features: Coianiz et al. [6] and Kass et al. [9] model the lips with contours along the

outer edge, while Duchnowski et al. [7] feed the raw pixel intensities into a neural net
to classify lip shapes. Others use such low level features to form a parametrization

of the lip shape: Petajan et al. use several image features to estimate an overal lip

contour [13]; Adjoudani et al. relate a small set of observed features (such as lip

opening width and height, etc.) to the controls of a polygonal lip model [1].

Still others have a trained model of lip variations and attempt to �t the observa-

tions to this model. Some of the most interesting work done in this area has been
along these lines: Bregler and Omohundro's work, for example [5], models the non-

7



linear subspace of valid lip poses within the image space and can thus be used for both

analysis and synthesis. Similarly, Luettin's system learns the subspace of variations

for 2D contours surrounding the lips [11]. However, in order for these 2D models to

be robust, they have to allow for at least small rotations of the head. The changes in
the apparent lip shape due to rigid rotations, then, have to be modeled as changes in

the actual lip pose. Our goal is thus to extend these ideas to 3D. By modeling the

true three-dimensional nature of the lips, variations that look complex and nonlinear

from a 2D perspective become simple and linear.

With a 3D model, we can simply rotate the model to match the observed pose, thus

modeling only the actual variations in lip pose. Some researchers have argued that
only two-dimensional information is observable and that it thus makes sense to base

measurements and models on 2D features alone. However, while it is true that only

the two-dimensional contours (at best) are visible in a given frame, the meaning of
those two dimensions changes as the subject moves around - with changes is pose, the

unobservables become observable. There has been some work done taking information
from two known views [1], but this requires the head to remain fairly static. We feel

that in order to capture interesting lip data during natural speech and gesture, it
will be necessary to robustly track the lips from any pose. In addition, in order to
fully train this model, it will be necessary to apply the observations from an arbitrary
pose. Prior work has shown that the rigid position of the head can be robustly and

accurately tracked [3], so it is feasible that we can apply the observations from any

pose to the correct degrees of freedom of the model. As a result, our goal has been
to create a model that can cover the full 3D variations of the lips.

The other category of lip models are those designed for synthesis and facial ani-
mation. These lip models are usually part of a larger facial animation system, and the
lips themselves often have a limited repertoire of motions [10]. To their credit, these
models are mostly in 3D. For many of the models, though, the control parameters

are de�ned by hand. A few are based on the actual physics of the lips: they attempt
to model the physical material and musculature in the mouth region [8],[16]. Unfor-
tunately, the musculature of the lips is extremely complicated and has proved to be
very di�cult to model accurately. The basic physiology is comprised of an ellipsoidal

muscle (the Obicularis oris) surrounding the mouth and several muscles which push

and pull on this ring. This ellipsoidal muscle is exceedingly di�cult to model in a
computationally economic way. In addition, even if one were able to completely and
correctly model the muscles and materials, the problem would not be solved: there

would still be the very di�cult issue of control. We do not have independent control

of all of these facial muscles: the observed set of facial motions seem to be a slim

subspace of the full range implied by the muscles. Some models, as in the work by

Frisbie and Waters, have tried to approximate this subspace by modeling key lip po-
sitions (visemes) and then interpolating between them [16]. However, This limits the

\correct" set of lip shapes to those �t by hand, without modeling how the lips really

move between them.

I hope to �ll the gap in these approaches with a 3D model that can be used

for both analysis and synthesis. My approach is to start with a 3D shape model and

generic physics. I then deform this initial model with real 3D data to learn the correct
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physics and thus the correct modes of variation. I will demonstrate this technique

using a simple �nite element model and 3D point data, though the methodology

could be applied to an arbitrary model and observation set. By training the modes of

variation with real data, we can learn all of the deformation modes that occur in the
observations. In this way, we not only solve the problem of parametrizing the model's

motions, but also that of control. Because we learn only the modes that are observed,

we end up with degrees of freedom that correspond only to plausible motions.
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Chapter 2

The Model

The underlying representation of our initial model is a mesh in the shape of the lips

constructed from a linear elastic material. In the following section, I give a brief
description of the choice of model shape and the physics used.

2.1 The initial shape

To get an initial shape for the model, a region surrounding the lips was extracted from

a Viewpoint Data Labs model of the human head. There were some simple changes
that were necessary to place this shape into a �nite element framework. Because
this mesh was designed for graphics and not for physics, there was some asymmetry
between the right and left halves of the lips. By forcing these to be symmetric, it

was ensured that the resulting stress-strain relations of the initial model would also
be symmetric. In addition, some faces placed at strange angles for graphics e�ects

were smoothed out to further facilitate the physical modeling. The �nal model has
336 faces and 204 nodes, resulting in 612 degrees of freedom (three per node). The

initial shape of the model is shown in �gure 2-1.

Figure 2-1: Initial shape of lips
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2.2 The �nite element method

The �nite element method (FEM) is a numerical method for approximating the

physics of an arbitrarily complex body. The central idea is to break the body into

many small pieces whose individual physics are simple and then assembling the indi-

vidual physics into a complete model. In contrast to the �nite di�erence method, the

�nite element method also models the physics of the material between the nodes. This

is possible because the method gives us interpolation functions that let us describe

the entire modeled body in a piecewise analytic manner. Given this piecewise rep-

resentation, the constitutive relations are integrated over the entire body to �nd the

overall stress-strain relationship. These interpolation functions are written in vector

form as:
u(x) = H(x)U (2:1)

where U represents the values of the function to be interpolated at the nodes, H(x)

is the interpolation matrix, and u(x) is the analytic representation of the function in
the local coordinates of the element. In our case, the function we are in interested in
is the strain � (internal force) resulting from a given deformation. We can �nd this

using the relation
�(x) = B(x)U (2:2)

where U now represents the displacements at each node and B is a combination of
H(x) above and the stress-strain relationship of the material. It can obtained by

appropriately di�erentiating and recombining the rows of H given the stress modes
speci�ed by �. To �nd the sti�ness matrix K for an entire element, we integrate this
relationship over the volume of the element:

ke =
Z
BTCBdV (2:3)

where C describes the stress-strain relationship between the di�erent degrees of free-

dom in the element. For each such matrix, we have the relationship

keU = F (2:4)

where U represents the nodal displacements and F the strain resulting from these

displacements. Note that the stresses and the strains are both expressed in the local
coordinate system at this point. Each of these element matrices can be transformed

by a matrix �, which transforms the global coordinate system to the local one:

� =

2
64
 � {̂ �!

 � |̂ �!

 � k̂ �!

3
75 (2:5)

where {̂, |̂, and k̂ are unit vectors in the local x, y, and z directions, respectively.

Because these vectors are orthonormal, ��1 is simply the transpose of the above

matrix. �T thus transforms from the local cooordinate system to the global one.
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Note that the matrix above transforms only three degrees of freedom: to apply

it to the strain matrix for an entire element (which is nine-by-nine), we must repeat

the same � in the following block-diagonal form:

T =

2
64
�

�

�

3
75 (2:6)

The matrix T can then be applied to the element strain matrix to produce the strain
matrix in the global coordinate system:

k0e = TTkeT (2:7)

In the expanded form on the right hand side, we can see how in a vector post-

multiplication (by a global displacement) this k0e �rst transforms the vector to the
local coordinate system (with T), applies the stress-strain relation (with ke), and
transforms the resulting force back into the global coordinate system (with TT).

The resulting transformed strain matrices now have aligned degrees of freedom

and can be assembled into a single, overall matrix such that

KU = F (2:8)

where the displacements and forces are now in the global coordinate system.

2.3 Model Speci�cs

For this application, a thin-shell model was chosen. I constructed the model by

beginning with a 2D plane-strain isotropic material formulation [17] and adding a
strain relationship for the out-of-plane components. For each triangular element,
then, the six in-plane degrees of freedom are related with a six-by-six matrix kxy,

while the out-of-plane degrees of freedom are related by the three-by-three kz. In

order to preserve the linearity of our model while maintaining the use of 
at elements,
I treat these two modes as being decoupled. They are thus assembled into the total
ke as shown in block-matrix form below:

ke =

"
kxy

kz

#
(2:9)

I built the 2D kxy using the formulation as described by Zienkiewicz [17] and

Bathe [4]. This formulation has the following stress modes:

� =

2
64

�x

�y


xy

3
75 =

2
64

@u

@x
@v

@y
@u

@y
+ @v

@x

3
75 (2:10)

where u and v correspond to displacements along the x and y dimensions of the local
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coordinate system. Using the relation in equation 2.2 and the overall displacement

vector

Ue =
h
u1 v1 u2 v2 u3 v3

iT
(2:11)

we can solve for B. In addition, the material matrix C is

C =
E(1 � v)

(1 + v)(1� 2v)

2
64

1 v

1�v
0

v

1�v
1 0

0 0 1�2v
2(1�v)

3
75 (2:12)

where E is the elastic modulus and v is Poisson's ratio. For the lip model, Poisson's

ratio was chosen to be 0.01. Since the elastic modulus E is a constant multiplier of

the entire material matrix, it can be used to vary the sti�ness of the element is a

whole. As a result, a default value of 1.0 was used for this parameter. Elements that

were to be more or less sti� than the default material were then assigned larger and
smaller values respectively. Some demonstrations of the e�ects of varying the relative

sti�nesses of elements in a mesh will be shown later in this section.
The next step is to relate the out-of-plane degrees of freedom. It is important at

this stage to consider the desired behavior of the material. If it were important for
nodes to be able to move independently out of the plane without causing strain in
the adjoined nodes, the kz of equation 2.9 should be diagonal. In this case, however,

it is desired that \pulling" on a given node has the e�ect of \pulling" its neighbors
along with it. As a result, we construct the following kz:

kz =
E(1� v)

(1 + v)(1� 2v)

2
64

1 �0:5 �0:5
�0:5 1 �0:5
�0:5 �0:5 1

3
75 (2:13)

Consider this matrix in terms of the basic relation keue = fe. A positive displacement

(out of the plane) in only one of these degrees of freedom produces negative forces
(into the plane) in the other two. This means that stretching one node out of the plane
without moving the other two would require forces pushing the other two down. When
equal displacements are applied to all three nodes, there is zero strain on the element,

resulting in a rigid motion mode out of the plane. Though the out-of-plane degrees of

freedom are decoupled from the in-plane components, this mechanism acts to relate

the strain energy to the deformation of the element due to out-of-plane displacements.

The greater the disparity in out-of-plane displacements (i.e., the greater the stretching
of the element due to such motions), the greater the strain energy is produced by this
kz.

Now that we have both kxy and kz, we can from the complete strain matrix in

equation 2.9. In order to keep the degrees of freedom in x-y-z order, we then rearrange
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the rows and columns to produce the �nal ke:

ke =

2
6666666666666664

kx1x1 kx1y1 kx1x2 kx1y2 kx1x3 kx1y3

ky1x1 ky1y1 ky1x2 ky1y2 ky1x3 ky1y3

kz1z1 kz1z2 kz1z3

kx2x1 kx2y1 kx2x2 kx2y2 kx2x3 kx2y3

ky2x1 ky2y3 ky2x2 ky2y3 ky2x3 ky2y3

kz2z1 kz2z2 kz2z3

kx3x1 kx3y1 kx3x2 kx3y2 kx3x3 kx3y3

ky3x1 ky3y3 ky3x2 ky3y3 ky3x3 ky3y3

kz3z1 kz3z2 kz3z3

3
7777777777777775

(2:14)

Once the degrees of freedom are properly aligned as described above, the resulting

material has the approximate physics of many small plane-strain elements hooked
together. The in-plane forces of one element can pull on both the in-plane and out-

of-plane components of its neighbors, and the vice versa. Once the completeKmatrix
has been assembled, we have a linear approximation to the relationship between the
displacement and the resulting strain. We can now invert this relationship to �nd the

displacements produced by an applied force (external strain). However, the matrix

cannot be inverted as is: it is necessarily singular, as there are several displacement
vectors that produce no stress in the body (i.e., they exist in the nullspace of K).
These are the modes of rigid motion. Consider, for example, a uniform displacement
applied to all of the nodes. This would clearly produce no strain on the body. As a

result, a minimum set of nodes must be \grounded" (i.e., held �xed) to prevent these
singularities. For a 3D body, two nodes (6 DOF) must be grounded. This amounts
to removing the rows and columns corresponding to the degrees of freedom for these
nodes. The remaining Ks has full rank and can be inverted to provide the desired

strain-stress relation:
K�1

s
Fs = Us (2:15)

while K is easy to compute and band diagonal (due to the limited interconnections
between nodes), �nding its inverse is an expensive calculation. We thus want to take

this inverse only once at a point where it is appropriate to linearize the physics.

To illustrate the stress-strain properties of this physical model, several 3D example

deformations of a planar mesh are shown in �gure 2-2. Two corners of the mesh are

held �xed (this is the rigid constraint described above). An out-of-plane force is then
applied to the central node of the mesh. The �rst �gure (clockwise from upper left)

shows the mesh in its initial state. The second �gure shows the deformation when all

of the elements have a uniform relative sti�ness (i.e., E = 1:0). The third �gure shows

the e�ects of setting the sti�nesses of a ring of elements surrounding the center to a

low value. Notice how these elements stretch much more than their sti�er neighbors.
The last �gure shows the e�ects of setting the sti�nesses of the elements inside the
ring to a low value and the remaining sti�nesses to a much higher value. These sti�

elements now prevent the e�ects of the applied force from signi�cantly deforming the

outer elements.
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(a) (b)

(c) (d)

Figure 2-2: Example deformations of a planar mesh using the same force (applied out

of the plane at the center of the mesh) with varying sti�ness parameters: (a) initial

state, (b) applied force with uniform sti�ness, (c) applied force with a square ring of
less sti� elements around the center, and (d) applied force with less sti� elements in

the center and much sti�er elements in the rest of the mesh.

2.4 Applying the method to the lips

The method described above can be directly applied to the mesh in �gure 2-1, result-
ing in a physical model in that shape made up of a uniform elastic material. However,

in order to accentuate certain properties of the lips, some additional information was
added to the model. First, in order to maintain smoothness in the inner contours of

the lips, the faces along the inside ridges of the lips were made twice as sti� as the

default material. In addition, to allow relatively free deformation of the lips while

still maintaining the necessary rigid constraints, a thin strip of low-sti�ness elements

was added to the top of the lips stretching back into the oral cavity. The nodes at

the far end of this strip were then �xed in 3D. Lastly, since the FEM linearizes the
physics of a body around a given point, the initial K matrix was used to deform the

model to the \rest state" of the lips (the method for this is described in a following
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section). The �nal K and K�1
s matrices were formed at this point, to allow for a

greater e�ective range of the linearized physics. This K�1
s

was then used for all re-

maining calculations. The �nal state of the model after adding these constraints and

deformations can be seen in �gure 4-1.
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Chapter 3

The Observations

To train this lip model to have the correct 3D variations of the lips, it was necessary

to have accurate 3D data. Also, in order to observe natural motions, it was not
acceptable to a�x re
ective markers or other easily trackable objects to the lips. To
satisfy these criteria, seventeen points were marked on the face with ink: sixteen on
the lips themselves and one on the nose. The placement of these points is shown in

�gure 3-1. Note that only a subset of the points drawn on the lips (those that are

numbered in �gure 3-1) were used for tracking. The points were chosen to obtain a

maximally informative sampling of the 3D motions of the lips. The spacing of the
points accounts for the relative nonlinearity of various regions: regions where more
non-linearity was expected were sampled more heavily. In addition, with the results of
this study, it should become clear where the greatest remaining non-linearities reside,
thus guiding the next stage of training.

It is important to realize that the choice of points is not inherently limited to
those shown. As the development below will show, any set of observations can be

used to train the model. Of course, the higher the information content of the data,
the less data will be required to train the model. In addition, because the points
would be tracked from two views in this case, it was necessary to choose points that

were visible over a reasonable range of head rotation from both perspectives.

Figure 3-1: Locations of marked points on the face
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virtual camera

mirror

physical camera

subject

Figure 3-2: Data collection setup

Once the points were marked, two views of the points were taken by using a

camera-mirror setup to ensure perfect synchronization between the two views (see
�gure 3-2). This resulted in two independent 2D views of the marked points. An
example of the raw input from this setup is shown in �gure 3-2.

Figure 3-3: Raw input from camera-mirror setup

As can be seen in �gure 3-2, the left side of the raw camera view contains the

ipped version of the virtual (left) camera view. The corrected, separated views are

shown in �gure 3-4 below. Note that the focal axis of the camera goes through the

center of each displayed frame.
The points were tracked over 150 frames at a 30Hz frame rate using normalized

correlation. Because of the large degree of motion of the lips between frames, nor-

malized correlation did not always �nd the correct movement. As a result, a GUI

was developed in which the user could move a tracker back to the correct point when
normalized correlation failed.

It was attempted to have as great a variety of lip motions within this brief period

as possible. To this end, several utterances using all of the English vowels and the
major fricative positions were spoken during the tracking period. Clearly, 150 frames

from one subject is still not enough to cover all possible lip motions, but it is enough

to provide the model with the initial training necessary to cover a signi�cant subset
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Figure 3-4: Left (virtual) and right camera views

of motions. Methods to continue the training using other forms of input data will be
discussed in a later section. The 3D camera calibration algorithm of Azarbayejani
and Pentland [2] was then used to calibrate the real and virtual cameras using pinhole
camera models. Given this calibration, the 3D point location for a given point was
estimated by computing the closest point between the projective rays from the camera

COP's (centers of projection) corresponding to that point. A schematic showing the
projective rays for a sample 3D point are shown in �gure 3-5. Also, a sample frame
showing the 3D reconstructed points and the original video frame is shown in �gure 3-

6. Note that the 3D points are shown at a di�erent orientation than the camera views
to demonstrate the reconstruction of depth information.

COP 1 COP 2

cam2 projective ray cam1 projective ray

focal axisfocal axis

cam2 imaging planecam1 imaging plane

3D point location

Figure 3-5: Point reconstruction geometry

After the reconstruction, several steps were taken to normalize the input data.

The position of the nose was subtracted out from all points to help account for rigid

translation. In addition, to normalize the e�ects of rigid rotation, planes were �t to
the outer subsets of both the upper and lower lip point sets. The line forming the

intersection of these planes was used to form the normalized coordinate: this line was
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Figure 3-6: An input frame and the reconstructed 3D points

treated as the x axis, the y axis was formed by taking the global y and subtracting

o� the projection onto the new x, and the z axis was the cross product between the
two. An example of �tting planes to the points and �nding the resulting coordinate
system is shown in �gure 3-7 below.

In order to then transform the training data into the coordinate frame of the
model, a graphical interface was used to �nd the best rigid rotation, translation, and
scaling that would �t the default model to the �rst frame of this data set. This

transform was then inverted to bring the data into the normalized coordinate system
of the model. The philosophy behind this is that all of the training should be in the

coordinate system of the model; the resulting model can then easily be scaled and

moved (in 3D) to �t new incoming data. This �nal normalization step was done only
once for the entire data set.
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(a) (b)

(c) (d)

Figure 3-7: Normalization of 3D point coordinates: (a) original point locations, (b)

planes �t to points and the line of their intersection, (c) normalized coordinate axes,
and (d) the point locations in the normalized coordinate system.
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Chapter 4

Training the Model

In order to relate the training data to the model, the correspondence between data

points and model nodes had to be de�ned. This was a simple process of examining a
video frame containing the marked points and �nding the nodes on the lip model that
best matched them in a structural sense. The di�erence between the goal locations
of these points (i.e., the observed point locations) and their current location in the

model is then the desired displacement goal, Ug.

4.1 Reaching the Displacement Goals

The issue is now how to reach these displacement goals. The recorded data points
have constrained 48 degrees of freedom (16 points on the lips with three degrees of

freedom each). However, the other 564 degrees of freedom are left open. We thus
have an underconstrained problem: there are an in�nite number of ways to reach

the desired displacement goals. However, we would not be satis�ed with simply any
one of these solutions - we want the one that minimizes the strain energy in the

mesh. In other words, given the set of constrained point displacements, we want to

�nd the set of displacements for the rest of the nodes that minimizes the strain felt
throughout the structure. We denote the K�1

s matrix with all 600 columns but only

the rows pertaining to constrained degrees of freedom as K�1
c . We can then describe

the problem in the following LaGrange multiplier formulation: we wish to minimize

FTF (4:1)

with the constraint

K�1

c
F = Ug (4:2)

which results in the solution

F̂ = (K�1

c )T(K�1

c (K�1

c )T)�1Ug (4:3)

The detailed derivation of this result is given in Appendix A.

This solution is thus a physically based smoothing operation: we are using the

physics of the model to smooth out the regions where we have no observation data by
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minimizing the strain in the model. This method has thus given us displacements Û
and forces F̂ for all 612 degrees of freedom for each frame. An example of using this

method to deform the model is shown in �gure 4-1 below. The deformed state shown

was de�ned as the \rest state" of the lips as described above. The physics were thus

re-linearized at this point, resulting in a �nal K�1
s

that was used for the rest of the

deformations.

Figure 4-1: Initial model and deformation to rest state

Two frames of the original video along with the corresponding deformed model

are shown in �gure 4-2 below. Note that because the deformations of the model are
shown in the coordinate system of the model, the deformations of the model will
appear slightly di�erent than the input data (applying the inverse of the rotation

and independent scaling in x, y, and z that brought the data points to the model
coordinate system would undo this e�ect).

Figure 4-2: Example deformations of the model

23



4.2 Modeling the Observations

Once we have all the displacements for all of the frames, we can relate the observed

deformations to a subset of the \correct" physics of the model. We began with the

default physics (i.e., fairly uniform sti�ness, only adjacent nodes connected) and have

now observed how the model actually deforms. This new information can be used

to form a new, \learned" K matrix. Martin et. al. [12] described the connection

between the strain matrix and the covariance of the displacements. Since K�1
s

is a

linear transform on F, we can express the covariance of U in the following way:

KU = E[(K�1

s
F)(K�1

s
F)T] = K�1

s
E[FFT](K�1

s
)T (4:4)

If we now consider the components of the force to be IID with unit variance, the

covariance matrix of F is the identity and we are left with

KU =K�1

s (K�1

s )T = K�2 (4:5)

where the last step is possible because of the symmetry of Ks and thus of K�1
s . We

can also take this mapping in the opposite direction: given the sample covariance
matrix

K̂U = E[(U� �U)(U� �U)T] (4:6)

We can �nd K�1 by taking its square root, i.e., diagonalizing the matrix into S�ST

(where each column of S is an eigenvector and � is the diagonal matrix of eigenvalues)
form and then reforming it with the square roots of the eigenvalues. We can then use
the resulting \sample K�1" to represent the learned physics from the observations.

Forces can now be applied to this matrix to calculate the most likely displacement
given the observations.

However, because we only have a small number of observations (150) and a large
number of degrees of freedom (612), we could at best observe 150 independent degrees
of freedom. Furthermore, noise in the observations makes it unreasonable to estimate
even this many modes. I thus take only the 10 observed modes that account for the
greatest amount of variance in the input data. These modes are found by perform-

ing principal components analysis (PCA) on the sample covariance matrix [14], i.e.,
taking the eigenvectors and eigenvalues. Finding the eigenvalues and eigenvectors

of the expected covariance matrix (which is 612 by 612) would take a great deal of
computation. We can �nd the desired vectors by taking the eigenvectors of a much

smaller matrix and then appropriately transforming the results. The details of this
method are given in Appendix B. Note also that because the covariance matrix is

symmetric, the eigenvectors will be orthogonal.
Once the eigenvectors were found, only the ten with the largest eigenvalues were

kept. These were then normalized to unit length and used to reassemble the sample

covariance matrix as S�ST.
We can also use the sample covariance matrix to �nd the linear least squares

estimate (LLSE) of the overall displacements given any subset of the displacements
as an observation. If we denote the observed displacements as y and the unknown
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displacements as x, we can estimate x with:

x̂LLSE = �x+�T

xy�
�1

y (y� �y) (4:7)

We can easily pull the required covariance matrices out of our sample covariance

matrix. Also note that we use the pseudoinverse of �y in the case where �y is not

full rank.

A very interesting relationship exists between this solution and the least-squares

solution of equation 4.3. Consider treating the quantity we wish to estimate as the

combined vector of x and y (i.e., U), and the covariance matrix of the data as that

found in equation 4.5. The LLSE estimate of U is then exactly the solution we

obtained in equation 4.7 above. In other words, minimizing the strain in the model
for a given set of displacement constraints is equivalent to �nding the LLSE estimate

of the displacements using the covariances resulting from the physical model. This

provides a full-circle link between the covariance of the input data and the strain

matrix of the model.
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Chapter 5

Results

The sample covariance was computed using only the �rst 140 frames so that the

last ten could be used as a test set. After computing the covariance, the ten most
expressive modes were found as described above. The mean displacement (�U) and
some of the �rst few modes are shown �gure 5-1 below. It was found that the �rst
ten modes cover 99.2 percent of the variance in the data - we should thus be able to

reconstruct most shape variations from these modes alone.

Figure 5-1: The mean displacement and some characteristic modes

To demonstrate how well this captures the variations in the data, the LLSE for-
mulation of equation 4.7 was used with the complete input data for several frames to

estimate the overall lip shape. The results for an example frame of the original video

are shown along with this estimate in �gure 5-2.
One of the major arguments behind the 3D representation was that we could

use any number of observations from any viewpoint and �nd the best estimate of the

model shape. To demonstrate this capability, I have again used the LLSE formulation

to reconstruct the full shape, but this time using only y-z (�gure 5-3) and only x-y
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Figure 5-2: LLSE estimate of lip shape using point data from �rst eight points

(�gure 5-4) data for the same frame as shown in �gure 5-2.

Figure 5-3: LLSE estimate of lip shape using only y-z data

Figure 5-4: LLSE estimate of lip shape using only x-y data

In addition, for the ten data frames that were not included in the sample covari-
ance, the mean-squared reconstruction errors per degree of freedom were found for

several cases and are shown in the table below. The results are given in the coordinate

system of the model, in which the model is 2.35 units across, 2.83 units wide, and 5.05
units deep. The �rst column of the table shows the reconstruction error using only the

�rst ten modes; the second shows the error using the full covariance matrix. The fact

that the performance is quite similar in both cases implies that the �rst ten modes
have captured the important modes of variation in the data. The rows of the table

correspond to what degrees of freedom were used to reconstruct the full 3D shape.

In the �rst row, the �rst eight points (shown in �gure 3-1) were used to reconstruct

the remainder of the displacements. Note that the model performs quite well in this
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case, again implying that it has learned to some degree the permissible subset of lip

motions. The second row shows the results of using only the y and z components of

the data. This corresponds to the data that would be available from a pro�le view.

The last row contains the results using the x and y components (i.e., a frontal view).
It is interesting to note that the y-z data provides much better peformance than the

x-y case. This is understandable in that there was a signi�cant amount of depth

variation in the test frames. Because some x-y variations can occur with di�erent

degrees of z motion, the depth variation is not observable from the frontal plane. As

a result, the y-z data provides more information about the lip shape in these cases.

Since our model is a full 3D representation, it can take advantage of this disparity
(or any other advantageous 3D pose) when these observations are available.

Table 5.1: Reconstruction error per DOF (in normalized coordinates)

Constraints Used First 10 modes Full Sample Covariance

xyz (8 points) 1.10e-3 7.80e-4

yz (all points) 7.13e-4 4.38e-4

xy (all points) 6.70e-3 7.50e-3
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Chapter 6

Conclusions and Future Directions

With these preliminary experiments, the advantages of this full 3D analysis-synthesis

model are clear. We can apply any number of observations for any points from any
pose and robustly �nd the best lip shape estimate (although a minimum of points
will be necessary for an accurate estimate). However, this is not the whole story.
Clearly, it is not practical to mark and track points on every subject. To continue the

training process, it will be necessary to use coarser features such as contours or color

classi�cation data. Though we will not have a direct correspondence with the model

as in the case with point data, the relationship we presented between the covariance
and the strain matrices allows us to use this information in a very di�erent way. In
essence, we can use the observed features to apply forces to the learned physics of
the model. If a contour is not at the right position for the lip, it can apply a force in
the right direction, and the learned physics will deform the rest of the model in an

appropriate way.

6.1 Improving the Model

Because this model has only observed a subset of all possible lip motions, we cannot
do the full deformation necessary for a new motion using only the learned physics.

Clearly, as I have forced it to have a rank of only 10, it cannot cover all possible
variations of the lips. It is thus necessary to retain the original full-rank physical

model in order to reach the new deformations. It is critical to use both the learned

and the original models together. The learned model acts as a prior for the gross
deformations and can quickly get us to the neighborhood of the correct displacement.

The original model can then make small perturbations to this to make the �nal �t.
Using the learned model alone cannot reach all of the deformations, and using the

original model alone can produce improbable lip displacements since it has no notion

of the range of possible lip motions. With this combined approach, I can to continue

to train this model to cover all possible lip motions.

29



Appendix A

Least Squares Solution with a

Minimum Norm Constraint

In the general case, where we have a system

Am�nxn�1 = bn�1 (A:1)

in which A has more rows than columns (m > n), there are an in�nite number of
solutions (assuming the rows of A are linearly independent). However, if we also
require that the norm

xTx (A:2)

is minimized, there is a unique solution. To �nd this solution, we express the prob-
lem in a LaGrange multiplier formulation: we want to minimize the quantity in
equation A.2 while satisfying the constraint in equation A.1. Using the method of
LaGrange as described in Strang [15], we then have to minimize the following quan-
tity:

f =
1

2
xTx+ �

T(Ax� b) (A:3)

where � is an n � 1 vector of LaGrange multipliers for each of the rows of Ax� b.

In other words, we are placing the constraint that each row of Ax� b must be zero.
We then take the vector partials of A.3 with respect to x and �:

@f

@x
= x+AT

� (A:4)

@f

@�

= Ax� b (A:5)

When we set both of these partials to zero, we are left with the following system

(shown in block-matrix form):

"
I AT

A 0

# "
x

�

#
=

"
0

b

#
(A:6)
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We now solve this system directly to �nd

"
x

�

#
=

"
AT(AAT)�1b

�(AAT)�1b

#
(A:7)

we have thus found the solution for x:

x = AT(AAT)�1b (A:8)
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Appendix B

Finding the Eigenvectors of a

Sample Covariance Matrix

Consider the case where we have n observation vectors O in a high dimensional space
<m, where (m > n). The unbiased estimate of the covariance matrix [14] is given by

Ks = E[OOT] =
1

n� 1
(AAT) (B:1)

where A is an m � n matrix in which each column is an observation. Finding the
eigenvectors of Ks (which is m � m) can be computationally expensive when m is

large. Fortunately, we can solve the much simpler problem of �nding the eigenvectors

and eigenvalues of ATA, which is only n � n, and then transform the results. This
can be easily seen by considering the de�nition of an eigenvector x of ATA with
eigenvalue �:

ATAx = �x (B:2)

we can then left-multiply both side by A and regroup terms:

(AAT)(Ax) = �(Ax) (B:3)

The vector Ax is thus an eigenvector of AAT with eigenvalue �.
This only proves that the eigenvectors of ATA transformed by A are valid eigen-

vectors of AAT. However, since AAT is m �m, the question remains as to which
n of its m eigenvectors we are getting (since ATA is only n � n). The answer is

simple: since A only had n independent columns to begin with, the rank of AAT is
only n. As a result, AAT only has n eigenvectors with non-zero eigenvalues. Note

that ATA also is rank n and has n eigenvectors with the same non-zero eigenvalues

as AAT. Therefore, the eigenvectors of AAT corresponding to non-zero eigenvalues
can be found by transforming the eigenvectors of ATA by A.

Lastly, note that though the eigenvectors of AAT and Ks are the same, we must

scale the eigenvalues by 1=(n � 1) to �nd the eigenvalues of Ks.
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