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an extensive introduction to theory and 
algorithms in probabilistic planning  



Outline of the Tutorial 

• Introduction 
 

• Fundamentals of MDPs 
 

• Uninformed Algorithms 

 

• Heuristic Search Algorithms 
 

• Approximation Algorithms 
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INTRODUCTION 
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Planning 

What action 

next?   

Percepts Actions 

Environment 

Static vs. Dynamic 

Fully  

vs. 

 Partially  

Observable 

Perfect 

vs. 

Noisy 

Deterministic  
vs.  

 Stochastic 

Instantaneous  
vs.  

 Durative 

Sequential 
vs. 

Concurrent 



Classical Planning 

What action 

next?   

Percepts Actions 

Environment 

Fully  

Observable  

Perfect 

Instantaneous  

Sequential 

Deterministic  

Static 



Probabilistic Planning 

What action 

next?   

Percepts Actions 

Environment 

Static 

Fully  

Observable  

Perfect 

Stochastic  

Instantaneous  

Sequential 



Markov Decision Processes 

• A fundamental framework for prob. planning 

 

• History 
– 1950s: early works of Bellman and Howard 

– 50s-80s: theory, basic set of algorithms, applications 

– 90s: MDPs in AI literature 

 

• MDPs in AI  
– reinforcement learning 

– probabilistic planning 
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What are MDPs good for? 

• Uncertain Domain Dynamics 
 

• Sequential Decision Making 
 
• Cyclic Domain Structures 

 
• Full Observability and Perfect Sensors 

 
• Fair Nature 

 
• Rational Decision Making 
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Markov Decision Process 

Operations 

Research 

Artificial 

Intelligence 

Gambling 

Theory 

Graph 

Theory 

 

Robotics 
Neuroscience 

/Psychology 

Control 

Theory 

 

Economics 

An MDP-Centric View 



Shameless Plug 

12 

Mausam and Andrey Kolobov 
“Planning with Markov Decision Processes: An AI Perspective” 

Morgan and Claypool Publishers (Synthesis Lectures Series on Artificial Intelligence) 



Outline of the Tutorial 
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FUNDAMENTALS OF               
MARKOV DECISION PROCESSES 
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3 Questions 

• What is an MDP? 

 

 

• What is an MDP solution? 

 

 

• What it an optimal MDP solution? 
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MDP: A Broad Definition 

MDP is a tuple <S, D, A, T, R>, 
where: 

• S is a finite state space 

• D is a sequence of discrete 
time steps/decision epochs 
(1,2,3, … , L), L may be ∞ 

• A is a finite action set 

• T: S x A x S x D [0, 1] is a 
transition function 

• R: S x A x S x D  R is a reward 
function 
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MDP Solution: A Broad Definition 

• Want a way to choose an action in a state, i.e., a policy π 

 

• What does a policy look like? 

– Can pick action based on states visited + actions used so far, i.e., 
execution history h = s(1) a(1) s(2) a(2)… s 

– Can pick actions randomly 

 

• Thus, in general an MDP solution is a probabilistic 
history-dependent π: H x A  [0,1] 
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Evaluating MDP Solutions 

• Executing a policy yields a sequence of rewards 

 

 

 

 

 

• Let R1, R2, … be a sequence of random vars for rewards 
due to executing a policy 
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t = i  t = i +1  t = i + 2  

r1 = R(s, a, s’, i) r2 = R(s’, a’, s’’, i+1) 

a a’ … 



Evaluating MDP Solutions 

• Define utility function u(R1, R2, … ) to be some “quality 
measure” of a reward sequence 

– Need to be careful with definition, more on this later 

 

• Define value function as V: H  [-∞, ∞] 

 

• Define value function of a policy after history h to be 
some utility function of subsequent rewards: 

Vπ(h) = u  (R1, R2, … )   
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Optimal MDP Solution: A Broad Definition 

• Want: a behavior that is “best” in every situation. 

 

 

• π* is an optimal policy if V*(h) ≥ Vπ(h) for all π, for all h 

 

 

• Intuitively, a policy is optimal if its utility vector dominates 

– π* not necessarily unique! 
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3 Questions Revisited 

• What is an MDP? 

– M = <S, D, A, T, R> 

 

• What is an MDP solution? 

– Policy π: H x A  [0,1], a mapping from histories to 
distributions over actions 

 

• What it an optimal MDP solution? 

– π* s.t. V*(h) ≥ Vπ(h) for all π and h, where Vπ(h) is some utility 
of rewards obtained after executing history h 
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Anything Wrong w/ These Definitions? 

• What is an MDP? 

– M = <S, D, A, T, R> 

 

• What is an MDP solution? 

– Policy π: H x A  [0,1], a mapping from histories to 
distributions over actions. 

 

• What it an optimal MDP solution? 

– π* s.t. V*(h) ≥ Vπ(h) for all π and h, where Vπ(h) is some 
utility of rewards obtained after executing history h 
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Optimality criterion 
is underspecified, 

optimal policy may 
not exist! 



Fundamentals of MDPs 

General MDP Definition 

• Expected Linear Additive Utility 

• The Optimality Principle 

• Finite-Horizon MDPs 

• Infinite-Horizon Discounted-Reward MDPs 

• Stochastic Shortest-Path MDPs 

• A Hierarchy of MDP Classes 

• Factored MDPs 

• Computational Complexity 
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Dealing with Optimal Solution Existence 

• Need to be careful when defining utility u(R1, R2, … ),  

– E.g., u(R1, R2, … ) = R1 + R2 + … for the same h can be different 
across policy executions (i.e., not a well-defined function) 

 

 

• Even for a well-defined u(R1, R2, … ), a policy π* s.t. 
V*(h) ≥ Vπ(h) for all π and h may not exist! 
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Expected Linear Additive Utility 

• Let’s use expected linear additive utility (ELAU)                              

 

   u(R1, R2, … )  = E[R1 + γR2 + γ2R3 …] 

  

 where γ is the discount factor 

 
• Assume γ = 1 unless stated otherwise 

– 0 ≤ γ < 1: agent prefers more immediate rewards  

– γ > 1:  agent prefers more distant rewards  

– γ = 1:  rewards are equally valuable, independently of time 
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Is ELAU What We Want? 

Policy 1 Policy 2 

 

– If  it lands heads, you get $2M 

– If  it lands tails, you get nothin’            
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… your $1M … flip a fair coin 



Is ELAU What We Want? 

• ELAU: “the utility of a policy is as good as the amount of 
reward the policy is expected to bring” 
– Agents using ELAU are “rational” (sometimes, a bad misnomer!) 

 
• Assumes the agent is risk-neutral 

– Indifferent to policies with equal reward expectation 
– E.g., disregards policies’ variance (in the previous example, policy 

1 has lower variance) 
 

• Not always the exact criterion we want, but... 
– “Good enough” 
– Convenient to work with 
– Guarantees the Optimality Principle 
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Fundamentals of MDPs 

General MDP Definition 

Expected Linear Additive Utility 

• The Optimality Principle 

• Finite-Horizon MDPs 

• Infinite-Horizon Discounted-Reward MDPs 

• Stochastic Shortest-Path MDPs 

• A Hierarchy of MDP Classes 

• Factored MDPs 

• Computational Complexity 
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The Optimality Principle 

  

 

 If the quality of every policy can be measured by 
its expected linear additive utility, there is a 
policy that is optimal at every time step. 

 

      (Stated in various forms by  

                              Bellman, Denardo, and others) 
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Guarantees that an optimal 
policy exists when ELAU is 

well-defined! 



The Optimality Principle: Caveat #1 

• When can policy quality not be measured by ELAU? 
 

 

 

 

 

 
– Utility of above policy at s1 oscillates between 1 and 0 

 

• ELAU isn’t well-defined unless the limit of the series 
E[R1 + R2 + …] exists 
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S1 S2 

a1 

a1 

R(s2, a1, s1) = -1 

R(s1, a1, s2) = 1 



The Optimality Principle: Caveat #2 

• The utility of many policies may be infinite 

 

 

 

 

 
– Every policy allows for ∞ reward from every state above 

 

• ELAU may not be a meaningful criterion unless u(R1, 
R2, … )  = E[R1 + R2 + …] is bounded above. 
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a1 
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Recap So Far 

• What is an MDP? 

– M = <S, D, A, T, R> 

 

• What is an MDP solution? 

– Policy π: H x A  [0,1], a mapping from histories to 
distributions over actions. 

 

• What it an optimal MDP solution? 

– π* s.t. V*(h) ≥ Vπ(h) for all π and h,where Vπ(h) is the expected 
linear additive utility of rewards obtained after executing h 
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Coming Up Next 

• What is an MDP? 

– Stationary M = <S, D, A, T, R> 

 

• What is an MDP solution? 

– Policy π: H x A  [0,1], a mapping from histories to 
distributions over actions. 

 

• What it an optimal MDP solution? 

– π* s.t. V*(h) ≥ Vπ(h) for all π and h,where Vπ(h) is the expected 
linear additive utility of rewards obtained after executing h 
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Make sure ELAU is 
well-defined 



3 Models with Well-Defined Policy ELAU 

1) Finite-horizon MDPs 

 

 

 

2) Infinite-horizon discounted-reward MDPs 

 

 

 

3) Stochastic  Shortest-Path MDPs 
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Fundamentals of MDPs 

General MDP Definition 

Expected Linear Additive Utility 

The Optimality Principle 

• Finite-Horizon MDPs 

• Infinite-Horizon Discounted-Reward MDPs 

• Stochastic Shortest-Path MDPs 

• A Hierarchy of MDP Classes 

• Factored MDPs 

• Computational Complexity 
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Finite-Horizon MDPs: Motivation 

• Assume the agent acts for a finite # time steps, L 

• Example applications: 

– Inventory management 

   “How much X to order from 

   the supplier every day ‘til 

   the end of the season?” 

 

– Maintenance scheduling 

   “When to schedule  

 disruptive maintenance  

 jobs by their deadline?” 
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Finite-Horizon MDPs: Definition 

FH MDP is a tuple <S, A, D, T, R>, where: 

• S is a finite state space 

• D is a sequence of time steps (1,2,3, …,  L) up to a finite horizon L 

• A is a finite action set 

• T: S x A x S x D [0, 1] is a transition function 

• R: S x A x S x D  R is a reward function 

 

Policy value = ELAU over the remaining time steps 
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Aside: Deterministic Markovian Policies 

• For FH MDPs, we can consider only deterministic 
Markovian solutions 
– Will shortly see why 

 

• A policy is deterministic if for every history, it assigns all 
probability mass to one action: 

π: H  A 

 
• A policy is deterministic Markovian if its decision in each 

state is independent of execution history: 

π: S x D  A 

 

 
39 



Aside: Markovian Value Functions 

• Markovian policies can be evaluated with Markovian 
value functions 

 

• Let hs,t denote history ending in state s at time t 

 

• Vπ(hs,t) = Vπ(h’s,t) for all hs,t, h’s,t if π is Markovian 

 

• Call V Markovian if for all hs,t, h’s,t, V(hs,t) = V(h’s,t) 

– For each s, t denote Markovian V as V(s,t) 
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Finite-Horizon MDPs: Optimality Principle 

For an FH MDP with horizon|D| = L < ∞, let:  

 
– Vπ(hs,t) = Eh,s,t[R1 + … + RL - t] for all 1 ≤ t ≤ L 
– Vπ(hs,L+1) = 0  

 
Then: 

 
– V* exists and is Markovian, π* exists and is det. Markovian 
– For all s and 1 ≤ t ≤ L: 

 
V*(s,t) = maxa in A [ ∑s’ in S T(s, a, s’, t) [ R(s, a, s’, t) + V*(s’, t+1) ] ] 

π*(s,t) =argmaxa in A  [ ∑s’ in S T(s, a, s’, t) [ R(s, a, s’, t) + V*(s’, t+1) ] ] 
 

 
 

 
 

41 

π 

Exp. Lin. Add. Utility 

Each E[Ri] is finite 

# terms in the series 
is finite 

For every history, the 
value of every policy 

is well-defined! 

Highest utility 
derivable from s at 

time t 

Highest utility 
derivable from the 

next state 

Immediate utility of 
the next action 

In expectation 

If you act optimally now 



Perks of the FH MDP Optimality Principle  

• V*, π* Markovian    consider only Markovian V, π! 

 

 

 

  

 

 

 

• Can easily compute π*! 
– For all s, compute V*(s, t) and π*(s, t) for t = L, …, 1 
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Probabilistic 
history-dep. π 

Deterministic 
Markovian π 

Number ∞ |A||S||D|  

Size of each Ginormous! O(|S||D|) 



Moving to In(de)finite Horizon 

• Finite known horizon sometimes not good enough 

– Doesn’t cover autonomous agents with long lifespans 

 

• Two other options: 

– Infinite horizon (horizon known to be infinite) 

– Indefinite horizon (horizon known to be unbounded) 
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• Finite known horizon sometimes not good enough 

– Doesn’t cover autonomous agents with long lifespans 

 

• Two other options: 

– Infinite horizon (horizon known to be infinite) 

– Indefinite horizon (horizon known to be unbounded) 
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Moving to Infinite Horizon 



Analyzing MDPs with In(de)finite Horizon 

• Hard to specify time-dependent T, R, etc. for a large (infinite) # 
steps 
 

• Need stationary (time-independent) functions: 
 
– Stationary transition function of the form      

T: S x A x S [0, 1] 
 

– Stationary reward function of the form 
               R: S x A x S  R 

 

– Stationary deterministic Markovian policy of the form 
           π: S  A 
 
– Stationary Markovian value function of the form 
                V: S  [-∞, ∞] 
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Fundamentals of MDPs 

General MDP Definition 

Expected Linear Additive Utility 

The Optimality Principle 

Finite-Horizon MDPs 

• Infinite-Horizon Discounted-Reward MDPs 

• Stochastic Shortest-Path MDPs 

• A Hierarchy of MDP Classes 

• Factored MDPs 

• Computational Complexity 
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Infinite-Horizon Discounted-Reward MDPs: Motivation 

• Assume the agent acts for an infinitely long time   

• Example applications: 

– Portfolio management 

   “How to invest money  

 under a given rate of 

    inflation?” 

 

– Unstable system control 

   “How to help fly 

 a B-2 bomber?” 
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Infinite-Horizon Discounted MDPs: Definition 

IHDR MDP is a tuple <S, A, T, R, γ>, where: 

• S is a finite state space 

• (D is an infinite sequence (1,2, …)) 

• A is a finite action set 

• T: S x A x S [0, 1] is a stationary transition function 

• R: S x A x S  R is a stationary reward function 

• γ is a discount factor satisfying 0 ≤ γ < 1 

 

Policy value = discounted ELAU over infinite time steps 

 

 
48 

Puterman, 1994 



Infinite-Horizon Discounted-Reward MDPs: 
Optimality Principle 

For an IHDR MDP, let:  

 
– Vπ(h) = Eh [R1 + γR2 + γ2R3 +… ] for all h  

 
Then: 

 
– V* exists and is stationary Markovian, π* exists and is 

stationary deterministic Markovian 
– For all s: 

 
V*(s) = maxa in A [ ∑s’ in S T(s, a, s’) [ R(s, a, s’) + γV*(s’) ] ] 

π*(s) =argmaxa in A  [ ∑s’ in S T(s, a, s’) [ R(s, a, s’) + γV*(s’) ] ] 
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π 

Exp. Lin. Add. Utility 

All γiE[Ri] are bounded by 
some finite K and converge 

geometrically 

 

For every history, the 
value of a policy is 

well-defined thanks to 
0 ≤ γ < 1! 

Future utility is 
discounted Optimal utility is time-independent! 



Perks of the IFHD MDP Optimality Principle  

• V*, π* stationary Markovian    consider only 
stationary Markovian V, π! 
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Deterministic 
Markovian π 

Stationary 
deterministic  
Markovian π 
 

Number ∞ |A||S|  

Size of each ∞ O(|S|) 



Where Does γ Come From? 

• γ can affect optimal policy significantly 

– γ = 0 + ε: yields myopic policies for “impatient” agents 

– γ = 1 - ε: yields far-sighted policies, inefficient to compute 

 

• How to set it? 

– Sometimes suggested by data (e.g., inflation or interest rate) 

– Often set to whatever gives a reasonable policy 
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Moving to Indefinite Horizon 

• Finite known horizon sometimes not good enough 

– Doesn’t cover autonomous agents with long lifespans. 

 

• Two other options: 

– Infinite horizon (horizon known to be infinite) 

– Indefinite horizon (horizon known to be unbounded) 
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Fundamentals of MDPs 

General MDP Definition 

Expected Linear Additive Utility 

The Optimality Principle 

Finite-Horizon MDPs 

Infinite-Horizon Discounted-Reward MDPs 

• Stochastic Shortest-Path MDPs 

• A Hierarchy of MDP Classes 

• Factored MDPs 

• Computational Complexity 
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Stochastic Shortest-Path MDPs: Motivation 

• Assume the agent pays cost to achieve a goal 

• Example applications: 

– Controlling a Mars rover 

   “How to collect scientific 

 data without damaging 

 the rover?” 

 

– Navigation 

   “What’s the fastest way  

 to get to a destination, taking 

 into account the traffic jams?” 

54 



Stochastic Shortest-Path MDPs: Definition 

SSP MDP is a tuple <S, A, T, C, G>, where: 
• S is a finite state space 
• (D is an infinite sequence (1,2, …)) 
• A is a finite action set 
• T: S x A x S [0, 1] is a stationary transition function 
• C: S x A x S  R is a stationary cost function (= -R: S x A x S  R) 
• G is a set of absorbing cost-free goal states 

 

Under two conditions: 
• There is a proper policy (reaches a goal with P= 1 from all states) 
• Every improper policy incurs a cost of ∞ from every state from 

which it does not reach the goal with P=1 
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Bertsekas, 1995 



SSP MDP Details 

• In SSP, maximizing ELAU = minimizing exp. cost 

 

• Every cost-minimizing policy is proper! 

 

• Thus, an optimal policy = cheapest way to a goal 

 

• Why are SSP MDPs called “indefinite-horizon”? 

– If a policy is optimal, it will take a finite, but apriori unknown, 
time to reach goal 
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SSP MDP Example 
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S1 S2 

a1 

C(s2, a1, s1) = -1 

C(s1, a1, s2) = 1 

a2 
a2 

C(s1, a2, s1) = 7.2 

C(s2, a2, sG) = 1 

SG 

C(sG, a2, sG) = 0 

C(sG, a1, sG) = 0 

C(s2, a2, s2) = -3 

T(s2, a2, sG) = 0.3 

T(s2, a2, sG) = 0.7 

S3 

C(s3, a2, s3) = 0.8 C(s3, a1, s3) = 2.4 

a1 a2 

C(s2, a1, s3) = 5 

a1 

T(s2, a1, s3) = 0.6 

T(s2, a1, s1) = 0.4 

No dead ends 
allowed! 

, not! 

a1 

a2 



SSP MDP Example 
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S1 S2 

a1 

a1 
C(s2, a1, s1) = -1 

C(s1, a1, s2) = 1 

a2 
a2 

C(s1, a2, s1) = 7.2 

C(s2, a2, sG) = 1 

SG 

C(sG, a2, sG) = 0 

C(sG, a1, sG) = 0 

C(s2, a2, s2) = -3 

T(s2, a2, sG) = 0.3 

T(s2, a2, sG) = 0.7 

No cost-free 
“loops” allowed! 

, also not! 

a2 

a1 



SSP MDP Example 
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S1 S2 

a1 

a1 
C(s2, a1, s1) = 0 

C(s1, a1, s2) = 1 

a2 
a2 

C(s1, a2, s1) = 7.2 

C(s2, a2, sG) = 1 

SG 

C(sG, a2, sG) = 0 

C(sG, a1, sG) = 0 

C(s2, a2, s2) = 1 

T(s2, a2, sG) = 0.3 

T(s2, a2, sG) = 0.7 



SSP MDPs: Optimality Principle 

For an SSP MDP, let:  

 
– Vπ(h) = Eh[C1 + C2 + …] for all h 

 
Then: 

 
– V* exists and is stationary Markovian, π* exists and is stationary 

deterministic Markovian 
– For all s: 

 
V*(s) = mina in A [ ∑s’ in S T(s, a, s’) [ C(s, a, s’) + V*(s’) ] ] 

π*(s) = argmina in A  [ ∑s’ in S T(s, a, s’) [ C(s, a, s’) + V*(s’) ] ] 
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π 

Exp. Lin. Add. Utility 

Every policy either takes a 
finite  exp. # of steps  to reach 
a goal,  or has an infinite cost.  

For every history, 
the value of a policy 

is well-defined! 



Fundamentals of MDPs 

General MDP Definition 

Expected Linear Additive Utility 

The Optimality Principle 

Finite-Horizon MDPs 

Infinite-Horizon Discounted-Reward MDPs 

Stochastic Shortest-Path MDPs 

• A Hierarchy of MDP Classes 

• Factored MDPs 

• Computational Complexity 
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SSP and Other MDP Classes 

 

 

 

 

 

 
• FH => SSP: turn all states (s, L) into goals 

• IHDR => SSP: add (1-γ)-probability transitions to goal 

• Will concentrate on SSP in the rest of the tutorial 
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SSP IHDR FH 



Fundamentals of MDPs 

General MDP Definition 

Expected Linear Additive Utility 

The Optimality Principle 

Finite-Horizon MDPs 

Infinite-Horizon Discounted-Reward MDPs 

Stochastic Shortest-Path MDPs 

A Hierarchy of MDP Classes 

• Factored MDPs 

• Computational Complexity 
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Factored SSP MDPs: Motivation 

• How to describe an MDP instance? 
– S = {s1, … , sn} – flat representation 
– T(si, aj, sk) = pi,j,k for every state, action, state triplet 
– … 

 

• Flat representation too cumbersome! 
– Real MDPs have billions of billions of states 
– Can’t enumerate transition function explicitly 

 

• Flat representation too uninformative! 
– State space has no meaningful distance measure 
– Tabulated transition/reward function has no structure 
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Factored SSP MDPs: Definition 

Factored SSP MDP is a tuple <X, A, T, C, G>, where: 
• X is a finite set of state variables (domain variables, features) 

• (D is an infinite sequence (1,2, …)) 

• A is a finite action set 

• T: (dom(X1) x … x dom(Xn)) x A x (dom(X1) x … x dom(Xn)) [0, 1] is 
a stationary transition function 

• C: (dom(X1) x … x dom(Xn)) x A x (dom(X1) x … x dom(Xn))  R is a 
stationary cost function 

• G, given by a conjunction over a subset of X, is a set of goal states 

 

The conditions of the flat SSP MDP definition still apply 
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Factored Representation Languages 

• PPDDL – Prob. Planning Domain Definition Language 
[Younes and Littman, 2004] 

 

 

 

• RDDL – Relational Domain Definition Language       
[Sanner, 2011] 
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Example Factored SSP MDP in PPDDL 

• Gremlin wants to sabotage an airplane 

 

• Can use tools to fulfill its objective 

 

• Needs to pick up the tools 

 

• X  = {                                 } 
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Example Factored SSP MDP in PPDDL 
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Example Factored SSP MDP in PPDDL 
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Example Factored SSP MDP in RDDL 

• Sysadmin needs to maintain a network of servers until time L 
– Gets paid proportionately to the # of servers running at each time step 

 

• Each server can go up or down with some probability 
– And drag its neighbors down – probability of going down increases with the 

number of down neighbors 

 

• Sysadmin can restart just one server per time step 
 

• Enormous number of uncorrelated effects for each action 
– 2N for a problem with N servers 

 

• X  = {            1  , … ,               N}, G = any state at time L 
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Example Factored SSP MDP in RDDL 
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Restart(Ser2) 

Restart(Ser1) 

Restart(Ser3) 

P(Ser1
t |Restartt-1(Ser1),  Ser1

t-1, Ser2
t-1) 

P(Ser2
t |Restartt-1(Ser2),  Ser1

t-1, Ser2
t-1, Ser3

t-1) 

P(Ser3
t |Restartt-1(Ser3), Ser2

t-1, Ser3
t-1) 

Time t-1 Time t 

T: A: C: -∑i [Seri = ↑] 



Factored Representation Languages 
Summary 

• PPDDL – Prob. Planning Domain Definition Language 
– Represents MDP actions as templates 

– Good for MDPs with strongly correlated effects 

– Inconvenient for MDPs with uncorrelated effects 

 

• RDDL – Relational Domain Definition Language 
– Represents MDP as a Dynamic Bayes Net 

– Shows how each variable evolves under every action 

– Good for MDPs with uncorrelated effects 

– Inconvenient for MDPs with uncorrelated strongly 
correlated effects 
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Benefits of Factored Representations 

• Can meaningfully group states 

– E.g., by similarity 

– And assign the same policy to each group 

 

• Can meaningfully express V as a function of state variables 

– Using mathematical operations, e.g. V(s) = X1(s) + … + Xn(s)  

– Basis of dimensionality reduction techniques 

 

• Can manipulate values of sets of states 

– Symbolic and approximate algorithms, more on this later 
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Fundamentals of MDPs 

General MDP Definition 

Expected Linear Additive Utility 

The Optimality Principle 

Finite-Horizon MDPs 

Infinite-Horizon Discounted-Reward MDPs 

Stochastic Shortest-Path MDPs 

A Hierarchy of MDP Classes 

Factored MDPs 

• Computational Complexity 
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Computational Complexity of MDPs 

• Good news: 

– Solving IHDR, SSP in flat representation is P-complete 

 

– Solving FH in flat representation is P-hard 

 

– That is, they don’t benefit from parallelization, but are solvable 
in polynomial time! 
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Computational Complexity of MDPs 

• Bad news: 

– Solving FH, IHDR, SSP in factored representation is EXPTIME-
complete! 

 

– Flat representation doesn’t make MDPs harder to solve, it 
makes big ones easier to describe. 
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Computational Complexity of MDPs 

• Consolation: 

– Introduce factored SSPs0 (FHs0, IFHDs0)– factored MDP with a 
designated initial state s0 

– Assume an optimal policy starting at s0 visits at most O(poly|X|) 
states 

– FH, IHDR SSPs0 with O(poly|X|) optimal policy size are PSPACE-
complete! 
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Summary So Far 

• Introduced a broad MDP definition 
– It had an ill-defined optimal solution concept 

 
• Imposed restrictions on the general definition to make 

optimal solution well-defined 
– Based on expected linear additive utility 
– Gave rise to FH, IHDR, and SSP 

 
• Introduced factored representations 

– Convenient to use, but make MDPs look hard to solve 

– In fact, they are hard to solve… 
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Outline of the Tutorial 

• Introduction 
 

• Fundamentals of MDPs 
 

• Uninformed Algorithms 

 

• Heuristic Search Algorithms 
 

• Approximation Algorithms 
 

• Extension of MDPs 
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UNINFORMED ALGORITHMS 
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Uninformed Algorithms 

• Definitions 

 

• Fundamental Algorithms 

 

• Prioritized Algorithms 

 

• Partitioned Algorithms 

 

• Other models 
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Stochastic Shortest-Path MDPs: Definition 

SSP MDP is a tuple <S, A, T, C, G>, where: 
• S is a finite state space 
• A is a finite action set 
• T: S x A x S [0, 1] is a stationary transition function 
• C: S x A x S  R is a stationary cost function  
• G is a set of absorbing cost-free goal states 
 

Under two conditions: 
• There is a proper policy (reaches a goal with P=1 from all states) 
• Every improper policy incurs a cost of ∞ from every state from which 

it does not reach the goal with P=1 
 

• Solution of an SSP: policy (¼: S!A) 
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Uninformed Algorithms 

• Definitions 

 

• Fundamental Algorithms 

 

• Prioritized Algorithms 

 

• Partitioned Algorithms 

 

• Other models 
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Brute force Algorithm 

• Go over all policies ¼ 
– How many? |A||S| 

 

• Evaluate each policy 
– V¼(s) Ã expected cost of reaching goal from s 

 

• Choose the best 
– We know that best exists (SSP optimality principle) 

– V¼*(s) · V¼(s) 

84 

finite 

how to evaluate? 



Policy Evaluation 

• Given a policy ¼: compute V¼ 

 

 

 

• TEMPORARY ASSUMPTION: ¼ is proper 

– execution of ¼ reaches a goal from any state 
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Deterministic SSPs 

• Policy Graph for ¼ 

 ¼(s0) = a0; ¼(s1) = a1 

 

 

 

 

• V¼(s1) = 1 

• V¼(s0) = 6 
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s0 s1 sg 

C=5 C=1 

a0 a1 

add costs on path to goal 



Acyclic SSPs 

• Policy Graph for ¼ 

 

 

 

 

 

• V¼(s1) = 1 

• V¼(s2) = 4 

• V¼(s0) = 0.6(5+1) + 0.4(2+4) = 6 
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s0 

s1 

s2 

sg 

Pr=0.6 
C=5 

Pr=0.4 
C=2 

C=1 

C=4 

a0 
a1 

a2 

backward pass in 
reverse topological 
order 



General SSPs can be cyclic! 

 

 

 

 

 

• V¼(s1) = 1 

• V¼(s2) = ?? (depends on V¼(s0)) 

• V¼(s0) = ?? (depends on V¼(s2)) 
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a2 

Pr=0.7 
C=4 

Pr=0.3 
C=3 

s0 

s1 

s2 

sg 

Pr=0.6 
C=5 

Pr=0.4 
C=2 

C=1 

a0 
a1 

cannot do a  
simple single pass 



General SSPs can be cyclic! 

 
 
 
 
 
 
 

• V¼(g)  = 0  
• V¼(s1) = 1+V¼(sg) = 1 
• V¼(s2) = 0.7(4+V¼(sg)) + 0.3(3+V¼(s0)) 
• V¼(s0) = 0.6(5+V¼(s1)) + 0.4(2+V¼(s2)) 
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a2 

Pr=0.7 
C=4 

Pr=0.3 
C=3 

s0 

s1 

s2 

sg 

Pr=0.6 
C=5 

Pr=0.4 
C=2 

C=1 

a0 
a1 

a simple system of 
linear equations 



  
   
  
 

Policy Evaluation (Approach 1) 

• Solving the System of Linear Equations 

 

 

 

• |S| variables. 

• O(|S|3) running time 
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V ¼(s) = 0 if s 2 G
=

X

s02S
T (s; ¼(s); s0) [C(s; ¼(s); s0) + V ¼(s0)]



Iterative Policy Evaluation 
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0 
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Policy Evaluation (Approach 2) 
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iterative refinement 

V ¼
n (s)Ã

X

s02S
T (s; ¼(s); s0)

£
C(s; ¼(s); s0) + V ¼

n¡1(s
0)
¤

(1)

V ¼(s) =
X

s02S
T (s; ¼(s); s0) [C(s; ¼(s); s0) + V ¼(s0)]



Iterative Policy Evaluation 
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iteration n 

²-consistency 

termination 
condition 



Convergence & Optimality 

For a proper policy ¼ 

 

Iterative policy evaluation  

   converges to the true value of the policy, i.e. 

 

 

irrespective of the initialization V0 
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limn!1V ¼
n = V ¼



Brute force Algorithm 

• Go over all policies ¼: 
– How many? |A||S| 

 

• Evaluate each policy 
– V¼(s) Ã expected cost of reaching goal from s 

 

• Choose the best 
– We know that best exists (SSP optimality principle) 

– V¼*(s) · V¼(s) 
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how to evaluate? 

too slow 
choose an 
intelligent 
order for ¼ 



  
   

Q-Value under a Value Function V 

• The Q-value of state s and action a under a value 
function V 

– denoted as QV(s,a) 

 

• one-step lookahead computation of the value of a 

– assuming V is true expected cost to reach goal 
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QV (s; a) =
X

s02S
T (s; a; s0) [C(s; a; s0) + V (s0)]



Greedy Action/Policy 

• Define a greedy action a wrt V  

– an action that has the lowest Q-value, i.e. 

– a = argmina’Q
V(s,a’) 

 

 

• Define a greedy policy ¼V  

– Policy with all greedy actions wrt V for each state 
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Policy Iteration [Howard 60] 

• initialize ¼0 as a random proper policy 

 

• repeat 

Policy Evaluation: Compute V¼n-1 

Policy Improvement: Construct ¼n greedy wrt V¼n-1 

• until ¼n==¼n-1 

 

• return ¼n 
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choose ¼n-1 

if multiple greedy actions 



Properties 

• Policy Iteration for an SSP  

 (initialized with a proper policy ¼0)  

 

Successively improves the policy in each iteration, i.e.  

V¼n(s) · V¼n -1(s), and  

 

converges to an optimal policy 
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Modified Policy Iteration [van Nunen 76] 

• initialize ¼0 as a random proper policy 

 

• repeat 

Approximate Policy Evaluation: Compute V¼n-1 

 by running only few iterations of iterative policy eval. 

Policy Improvement: Construct ¼n greedy wrt V¼n-1 

• until … 
 

• return ¼n 
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Limitations of PI 

• Why do we need to start with a proper policy? 

– Policy Evaluation will diverge 

 

• How to get a proper policy? 

– No domain independent algorithm 

 

• PI for SSPs is not generally applicable 
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Policy Iteration  Value Iteration 

• Changing the search space. 

 

• Policy Iteration 
– Search over policies 

– Compute the resulting value 

 

• Value Iteration 
– Search over values 

– Compute the resulting policy 
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Optimality Principle/Bellman Equations 
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V ¤(s) = 0 if s 2 G
= min

a2A

X

s02S
T (s; a; s0) [C(s; a; s0) + V ¤(s0)]

Q*(s,a) 

 

V*(s) = mina Q*(s,a) 



  
  

  
   

Fixed Point Computation in VI 
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iterative refinement 

V ¤(s) = min
a2A

X

s02S
T (s; a; s0) [C(s; a; s0) + V ¤(s0)]

Vn(s)Ãmin
a2A

X

s02S
T (s; a; s0) [C(s; a; s0) + Vn¡1(s

0)]

non-linear 



Running Example 
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s0 

s2 

s1 

sg 
Pr=0.6 

a00 s4 

s3 

Pr=0.4 
a01 

a21 a1 

a20 a40 

C=5 
a41 

a3 
C=2 



V0= 0 

V0= 2 

Q1(s4,a40) = 5 + 0 

Q1(s4,a41) = 2 + 0.6£ 0  

           + 0.4£ 2 

                = 2.8 

min 

V1= 2.8 

agreedy = a41 

a41 

a40 

s4 

sg 

s3 

Bellman Backup 

C=5 

C=2 

sg 
Pr=0.6 

s4 

s3 

Pr=0.4 

a40 

C=5 
a41 

a3 
C=2 



Value Iteration [Bellman 57] 
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iteration n 

²-consistency 

termination 
condition 

No restriction on initial value function 



Running Example 
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s0 

s2 

s1 

sg 
Pr=0.6 

a00 s4 

s3 

Pr=0.4 
a01 

a21 a1 

a20 a40 

C=5 
a41 

a3 
C=2 

n Vn(s0) Vn(s1) Vn(s2) Vn(s3) Vn(s4) 

0 3 3 2 2 1 

1 3 3 2 2 2.8 

2 3 3 3.8 3.8 2.8 

3 4 4.8 3.8 3.8 3.52 

4 4.8 4.8 4.52 4.52 3.52 

5 5.52 5.52 4.52 4.52 3.808 

20 5.99921 5.99921 4.99969 4.99969 3.99969 



Convergence & Optimality 

• For an SSP MDP, 8s2 S,  

 

lim n!1 Vn(s) = V*(s) 

 

irrespective of the initialization.  
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Running Time 

• Each Bellman backup:  
– Go over all states and all successors: O(|S||A|) 

 

• Each VI Iteration 
– Backup all states: O(|S|2|A|) 

 

• Number of iterations 
– General SSPs: no good bounds 

– Special cases: better bounds  
• (e.g., when all costs positive [Bonet 07]) 
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SubOptimality Bounds 

• General SSPs 

– weak bounds exist on |Vn(s) – V*(s)| 

 

• Special cases: much better bounds exist 

– (e.g., when all costs positive [Hansen 11]) 
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Monotonicity 

For all n>k 
 

Vk ≤p V* ⇒ Vn ≤p V* (Vn monotonic from below) 
 
Vk ≥p V* ⇒ Vn ≥p V* (Vn monotonic from above) 
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VI  Asynchronous VI 

• Is backing up all states in an iteration essential? 
– No! 

 

• States may be backed up  
– as many times 

– in any order 

 

• If no state gets starved 
– convergence properties still hold!! 
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Residual wrt Value Function V (ResV) 

• Residual at s with respect to V 

– magnitude(¢V(s)) after one Bellman backup at s 

 

 

 

 

• Residual wrt respect to V 

– max residual 

– ResV = maxs (ResV(s)) 
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ResV (s) =

¯̄
¯̄
¯V (s)¡min

a2A

X

s02S
T (s; a; s0)[C(s; a; s0) + V (s0)]

¯̄
¯̄
¯

ResV <² 

(²-consistency) 



(General) Asynchronous VI 
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Uninformed Algorithms 

• Definitions 

 

• Fundamental Algorithms 

 

• Prioritized Algorithms 

 

• Partitioned Algorithms 

 

• Other models 
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Prioritization of Bellman Backups 

• Are all backups equally important? 

 

• Can we avoid some backups? 

 

• Can we schedule the backups more 
appropriately? 
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Useless Backups? 
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s2 

s1 

sg 
Pr=0.6 

a00 s4 

s3 

Pr=0.4 
a01 

a21 a1 

a20 a40 

C=5 
a41 

a3 
C=2 

n Vn(s0) Vn(s1) Vn(s2) Vn(s3) Vn(s4) 

0 3 3 2 2 1 

1 3 3 2 2 2.8 

2 3 3 3.8 3.8 2.8 

3 4 4.8 3.8 3.8 3.52 

4 4.8 4.8 4.52 4.52 3.52 

5 5.52 5.52 4.52 4.52 3.808 

20 5.99921 5.99921 4.99969 4.99969 3.99969 



Useless Backups? 
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s1 

sg 
Pr=0.6 

a00 s4 
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Pr=0.4 
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a21 a1 

a20 a40 

C=5 
a41 

a3 
C=2 

n Vn(s0) Vn(s1) Vn(s2) Vn(s3) Vn(s4) 

0 3 3 2 2 1 

1 3 3 2 2 2.8 

2 3 3 3.8 3.8 2.8 

3 4 4.8 3.8 3.8 3.52 

4 4.8 4.8 4.52 4.52 3.52 

5 5.52 5.52 4.52 4.52 3.808 

20 5.99921 5.99921 4.99969 4.99969 3.99969 



Asynch VI  Prioritized VI 
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Convergence? 
Interleave synchronous VI iterations 



Which state to prioritize? 
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Prioritized Sweeping [Moore & Atkeson 93] 
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priorityPS(s) = max

½
priorityPS(s);max

a2A
fT (s; a; s0)ResV (s0)g

¾ 

 

 

 

• Convergence [Li&Littman 08] 

Prioritized Sweeping converges to optimal in the limit, 

 if all initial priorities are non-zero. 

(does not need synchronous VI iterations) 

 



Prioritized Sweeping 
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s0 

s2 

s1 

sg 
Pr=0.6 

a00 s4 

s3 

Pr=0.4 
a01 

a21 a1 

a20 a40 

C=5 
a41 

a3 
C=2 

V(s0) V(s1) V(s2) V(s3) V(s4) 

Initial V 3 3 2 2 1 

3 3 2 2 2.8 

Priority 0 0 1.8 1.8 0 

Updates 3 3 3.8 3.8 2.8 

Priority 2 2 0 0 1.2 

Updates 3 4.8 3.8 3.8 2.8 



Generalized Prioritized Sweeping [Andre et al 97] 
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  priorityGPS2(s) = ResV (s)

 

 

 

• Instead of estimating residual 

– compute it exactly 

 

• Slightly different implementation 

– first backup then push! 



Intuitions 

• Prioritized Sweeping 

– if a state’s value changes prioritize its predecessors 

 

• Myopic 

 

• Which state should be backed up? 

– state closer to goal? 

– or farther from goal? 
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Useless Intermediate Backups? 
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n Vn(s0) Vn(s1) Vn(s2) Vn(s3) Vn(s4) 

0 3 3 2 2 1 

1 3 3 2 2 2.8 

2 3 3 3.8 3.8 2.8 

3 4 4.8 3.8 3.8 3.52 

4 4.8 4.8 4.52 4.52 3.52 

5 5.52 5.52 4.52 4.52 3.808 

20 5.99921 5.99921 4.99969 4.99969 3.99969 



Improved Prioritized Sweeping  
[McMahan&Gordon 05] 
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   priorityIPS(s) =
ResV (s)

V (s)

• Intuition 
– Low V(s) states (closer to goal) are higher priority initially 

– As residual reduces for those states,  
• priority of other states increase 

 

• A specific tradeoff 
– sometimes may work well 

– sometimes may not work that well 

 



Tradeoff 

• Priority queue increases information flow 

 

• Priority queue adds overhead 

 

• If branching factor is high  

– each backup may result in many priority updates! 
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Backward VI [Dai&Hansen 07] 

• Prioritized VI without priority queue! 
 
• Backup states in reverse order starting from goal 

– don‘t repeat a state in an iteration 
– other optimizations  

• (backup only states in current greedy subgraph) 

 

• Characteristics 
– no overhead of priority queue 
– good information flow 
– doesn‘t capture the intuition:  

• higher states be converged before propagating further 
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Comments 

• Which algorithm to use? 
– Synchronous VI: when states highly interconnected 

– PS/GPS: sequential dependencies 

– IPS: specific way to tradeoff proximity to goal/info flow 

– BVI: better for domains with fewer predecessors 

 

 

• Prioritized VI is a meta-reasoning algorithm 
– reasoning about what to compute! 

– costly meta-reasoning can hurt. 
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Uninformed Algorithms 

• Definitions 

 

• Fundamental Algorithms 

 

• Prioritized Algorithms 

 

• Partitioned Algorithms 

 

• Other models 
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Partitioning of States 

s0 

s2 

s1 

sg 
Pr=0.6 

a00 s4 

s3 

Pr=0.4 
a01 

a21 a1 

a20 a40 

C=5 
a41 

a3 
C=2 



(General) Partitioned VI 
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How to construct a partition? 
How many backups to perform per partition? 

How to construct priorities? 



Topological VI [Dai&Goldsmith 07] 

• Identify strongly-connected components 

• Perform topological sort of partitions 

• Backup partitions to ²-consistency: reverse top. order  
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sg 
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Other Benefits of Partitioning 

• External-memory algorithms 

– PEMVI [Dai etal 08, 09] 

• partitions live on disk 

• get each partition to the disk and backup all states 

 

• Cache-efficient algorithms 

– P-EVA algorithm [Wingate&Seppi 04a] 

 

• Parallelized algorithms 

– P3VI (Partitioned, Prioritized, Parallel VI) [Wingate&Seppi 04b] 
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Uninformed Algorithms 

• Definitions 

 

• Fundamental Algorithms 

 

• Prioritized Algorithms 

 

• Partitioned Algorithms 

 

• Other models 
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Linear Programming for MDPs 
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• |S| variables 

• |S||A| constraints 
– too costly to solve! 



Infinite-Horizon Discounted-Reward MDPs 
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V ¤(s) = max
a2A

X

s02S
T (s; a; s0) [R(s; a; s0) + °V ¤(s0)]

• VI/PI work even better than SSPs!! 

– PI does not require a “proper” policy 

– Error bounds are tighter  

• Example. VI error bound: |V*(s)-V¼(s)| < 2²°/(1-°)  

– We can bound #iterations 

• polynomial in |S|, |A| and 1/(1-°) 



Finite-Horizon MDPs 
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V ¤(s; t) = 0 if t > L

= max
a2A

X

s02S
T (s; a; s0) [R(s; a; s0) + V ¤(s0; t + 1)]

• Finite-Horizon MDPs are acyclic! 

– There exists an optimal backup order 

• t=Tmax to 0 

– Returns optimal values (not just ²-consistent) 

– Performs one backup per augmented state 



Summary of Uninformed Algorithms 

• Definitions 

 

• Fundamental Algorithms 
– Bellman Equations is the key 

• Prioritized Algorithms 
– Different priority functions have different benefits 

• Partitioned Algorithms 
– Topological analysis, parallelization, external memory 

• Other models 
– Other popular models similar 
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Outline of the Tutorial 

• Introduction 
 

• Fundamentals of MDPs 
 

• Uninformed Algorithms 

 

• Heuristic Search Algorithms 
 

• Approximation Algorithms 
 

• Extension of MDPs 
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HEURISTIC SEARCH ALGORITHMS 
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Heuristic Search Algorithms 

• Definitions 
 

• Find & Revise Scheme. 
 

• LAO* and Extensions 
 

• RTDP and Extensions 
 

• Other uses of Heuristics/Bounds 
 
• Heuristic Design 
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Limitations of VI/PI/Extensions 

• Scalability 
– Memory linear in size of state space 

– Time at least polynomial or more 

 

• Polynomial is good, no? 
– state spaces are usually huge. 

• Think PPDDL. 

– if n state vars then 2n states! 

 

• Curse of Dimensionality! 
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Heuristic Search 

• Insight 1 

– knowledge of a start state to save on computation 

~ (all sources shortest path  single source shortest path) 

 

• Insight 2 

– additional knowledge in the form of heuristic function 

~ (dfs/bfs  A*) 
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Model 

• SSP (as before) with an additional start state s0 

– denoted by SSPs0 

 

 

• What is the solution to an SSPs0 

• Policy (S !A)? 

– are states that are not reachable from s0 relevant? 

– states that are never visited (even though reachable)? 
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Partial Policy 

• Define Partial policy 

– ¼: S’ ! A, where S’µ S 

 

• Define Partial policy closed w.r.t. a state s. 

– is a partial policy ¼s 

– defined for all states s’ reachable by ¼s starting from s 
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Partial policy closed wrt s0 
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Partial policy closed wrt s0 
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s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 s8 

s9 

¼s0(s0)= a1 

¼s0(s1)= a2 

¼s0(s2)= a1 

Is this policy closed wrt s0? 



Partial policy closed wrt s0 
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s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 s8 

s9 

¼s0(s0)= a1 

¼s0(s1)= a2 

¼s0(s2)= a1 

¼s0(s6)= a1 

 

Is this policy closed wrt s0? 



Policy Graph of ¼s0 
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s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 s8 

s9 

¼s0(s0)= a1 

¼s0(s1)= a2 

¼s0(s2)= a1 

¼s0(s6)= a1 

 



Greedy Policy Graph 

• Define greedy policy: ¼V = argmina Q
V(s,a) 

 

• Define greedy partial policy rooted at s0 
– Partial policy rooted at s0 

– Greedy policy 

– denoted by  

 

• Define greedy policy graph 
– Policy graph of         : denoted by   
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Heuristic Function 

• h(s): S!R 

– estimates V*(s)  

– gives an indication about “goodness” of a state 

– usually used in initialization V0(s) = h(s) 

– helps us avoid seemingly bad states 

 

• Define admissible heuristic 

– optimistic 

– h(s) · V*(s) 
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Heuristic Search Algorithms 

• Definitions 
 

• Find & Revise Scheme. 
 

• LAO* and Extensions 
 

• RTDP and Extensions 
 

• Other uses of Heuristics/Bounds 
 
• Heuristic Design 
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A General Scheme for  
Heuristic Search in MDPs 

 

• Two (over)simplified intuitions 
– Focus on states in greedy policy wrt V rooted at s0 

– Focus on states with residual > ² 

 

• Find & Revise:  
– repeat 

• find a state that satisfies the two properties above 

• perform a Bellman backup 

– until no such state remains 
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FIND & REVISE [Bonet&Geffner 03a] 

 

 

 

 

 

• Convergence to V* is guaranteed 

– if heuristic function is admissible 

– ~no state gets starved in 1 FIND steps 
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(perform Bellman backups) 



F&R and Monotonicity 

• Vk ≤p V* ⇒ Vn ≤p V* (Vn monotonic from below) 

– If h is admissible: V0 = h(s) ·p V* 

) Vn ·p V* (8n)   

 

 

 

 

 

Q*(s,a1) < Q(s,a2) < Q*(s,a2) aaaa 

 a2 can’t be optimal aaaa 
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s 
Q(s,a1)=5 

. 

. 
 

Q(s, a2)=10 

. 

. 
 

All values < V*, Q* All values = V*, Q* 



Heuristic Search Algorithms 

• Definitions 
 

• Find & Revise Scheme. 
 

• LAO* and Extensions 
 

• RTDP and Extensions 
 

• Other uses of Heuristics/Bounds 
 
• Heuristic Design 
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LAO* family 

add s0 to the fringe and to greedy policy graph 
 

repeat 
 FIND: expand some states on the fringe (in greedy graph) 
 initialize all new states by their heuristic value 
 choose a subset of affected states 
 perform some REVISE computations on this subset 
 recompute the greedy graph 

until greedy graph has no fringe & residuals in greedy 
graph small 

 
output the greedy graph as the final policy 
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LAO* [Hansen&Zilberstein 98] 

add s0 to the fringe and to greedy policy graph 
 

repeat 
 FIND: expand best state s on the fringe (in greedy graph) 
 initialize all new states by their heuristic value 
 subset = all states in expanded graph that can reach s 
 perform PI on this subset 
 recompute the greedy graph 

until greedy graph has no fringe & residuals in greedy 
graph small 

 
output the greedy graph as the final policy 
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s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 s8 

LAO* 

add s0 in the fringe and in greedy graph 

s0 
V(s0) = h(s0) 
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s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 s8 

LAO* 

s0 
V(s0) = h(s0) 

FIND: expand some states on the fringe (in greedy graph) 
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s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 s8 

LAO* 

FIND: expand some states on the fringe (in greedy graph) 

initialize all new states by their heuristic value 

subset = all states in expanded graph that can reach s 

perform PI on this subset 

 

s0 

s1 s2 s3 s4 

V(s0)  

h h h h 
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s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 s8 

LAO* 

FIND: expand some states on the fringe (in greedy graph) 

initialize all new states by their heuristic value 

subset = all states in expanded graph that can reach s 

perform PI on this subset 

recompute the greedy graph 

 

s0 

s1 s2 s3 s4 

V(s0)  

h h h h 
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s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 s8 

LAO* 

s0 

s1 s2 s3 s4 

s6 s7 

FIND: expand some states on the fringe (in greedy graph) 

initialize all new states by their heuristic value 

subset = all states in expanded graph that can reach s 

perform PI on this subset 

recompute the greedy graph 

 

h h h h 

h h 

V(s0)  
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s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 s8 

LAO* 

s0 

s1 s2 s3 s4 

s6 s7 

FIND: expand some states on the fringe (in greedy graph) 

initialize all new states by their heuristic value 

subset = all states in expanded graph that can reach s 

perform PI on this subset 

recompute the greedy graph 

 

h h h h 

h h 

V(s0)  
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s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 s8 

LAO* 

s0 

s1 s2 s3 s4 

s6 s7 

FIND: expand some states on the fringe (in greedy graph) 

initialize all new states by their heuristic value 

subset = all states in expanded graph that can reach s 

perform PI on this subset 

recompute the greedy graph 

 

h h V h 

h h 

V  
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s1 s2 s3 s4 

s5 s6 s7 s8 

LAO* 

s0 

s1 s2 s3 s4 

s6 s7 

FIND: expand some states on the fringe (in greedy graph) 

initialize all new states by their heuristic value 

subset = all states in expanded graph that can reach s 

perform PI on this subset 

recompute the greedy graph 

 

h h V h 

h h 

V  
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s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 s8 

LAO* 

s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 

FIND: expand some states on the fringe (in greedy graph) 

initialize all new states by their heuristic value 

subset = all states in expanded graph that can reach s 

perform PI on this subset 

recompute the greedy graph 

 

h h V h 

h h 

V 

V  

h 0 
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s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 s8 

LAO* 

s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 

FIND: expand some states on the fringe (in greedy graph) 

initialize all new states by their heuristic value 

subset = all states in expanded graph that can reach s 

perform PI on this subset 

recompute the greedy graph 

 

h h V h 

h h 

V 

V  

h 0 
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s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 s8 

LAO* 

s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 

FIND: expand some states on the fringe (in greedy graph) 

initialize all new states by their heuristic value 

subset = all states in expanded graph that can reach s 

perform PI on this subset 

recompute the greedy graph 

 

V h V h 

h h 

V 

V  

h 0 
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s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 s8 

LAO* 

s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 

FIND: expand some states on the fringe (in greedy graph) 

initialize all new states by their heuristic value 

subset = all states in expanded graph that can reach s 

perform PI on this subset 

recompute the greedy graph 

 

V h V h 

h h 

V 

V  

h 0 
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s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 s8 

LAO* 

s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 

FIND: expand some states on the fringe (in greedy graph) 

initialize all new states by their heuristic value 

subset = all states in expanded graph that can reach s 

perform PI on this subset 

recompute the greedy graph 

 

V V V h 

h h 

V 

V  

h 0 
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s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 s8 

LAO* 

s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 

FIND: expand some states on the fringe (in greedy graph) 

initialize all new states by their heuristic value 

subset = all states in expanded graph that can reach s 

perform PI on this subset 

recompute the greedy graph 

 

V V V h 

h h 

V 

V  

h 0 
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s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 s8 

LAO* 

s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 

output the greedy graph as the final policy 

V V V h 

V h 

V 

V  

h 0 
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s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 s8 

LAO* 

s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 

output the greedy graph as the final policy 

V V V h 

V h 

V 

V  

h 0 
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s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 s8 

LAO* 

s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 

s4 was never expanded 
s8 was never touched 

V V V h 

V h 

V 

V  

h 0 s8 
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LAO* [Hansen&Zilberstein 98] 

add s0 to the fringe and to greedy policy graph 
 

repeat 
 FIND: expand best state s on the fringe (in greedy graph) 
 initialize all new states by their heuristic value 
 subset = all states in expanded graph that can reach s 
 perform PI on this subset 
 recompute the greedy graph 

until greedy graph has no fringe 
 
output the greedy graph as the final policy 

one expansion 

lot of computation 



179 

Optimizations in LAO* 

add s0 to the fringe and to greedy policy graph 
 

repeat 
 FIND: expand best state s on the fringe (in greedy graph) 
 initialize all new states by their heuristic value 
 subset = all states in expanded graph that can reach s 
 VI iterations until greedy graph changes (or low residuals) 
 recompute the greedy graph 

until greedy graph has no fringe 
 
output the greedy graph as the final policy 
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Optimizations in LAO* 

add s0 to the fringe and to greedy policy graph 
 

repeat 
 FIND: expand all states in greedy fringe 
 initialize all new states by their heuristic value 
 subset = all states in expanded graph that can reach s 
 VI iterations until greedy graph changes (or low residuals) 
 recompute the greedy graph 

until greedy graph has no fringe 
 
output the greedy graph as the final policy 
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iLAO* [Hansen&Zilberstein 01] 

add s0 to the fringe and to greedy policy graph 
 

repeat 
 FIND: expand all states in greedy fringe 
 initialize all new states by their heuristic value 
 subset = all states in expanded graph that can reach s 
 only one backup per state in greedy graph 
 recompute the greedy graph 

until greedy graph has no fringe 
 
output the greedy graph as the final policy 

in what order? 
(fringe  start) 
DFS postorder 



• LAO* may spend huge time until a goal is found 

– guided only by s0 and heuristic 

 

• LAO* in the reverse graph 

– guided only by goal and heuristic 

 

• Properties 

– Works when 1 or handful of goal states 

– May help in domains with small fan in 
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Reverse LAO* [Dai&Goldsmith 06] 



• Go in both directions from start state and goal 

• Stop when a bridge is found 
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Bidirectional LAO* [Dai&Goldsmith 06] 



regular graph 

 

soln:(shortest) path 

 

 

A* 

 

acyclic AND/OR graph 

 

soln:(expected shortest) 

        acyclic graph 

 
AO* [Nilsson’71] 

 

cyclic AND/OR graph 

 

soln:(expected shortest) 

        cyclic graph 

 
LAO* [Hansen&Zil.’98] 

 

All algorithms able to make effective use of reachability information! 

A*  LAO* 
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AO* for Acyclic MDPs [Nilsson 71] 

add s0 to the fringe and to greedy policy graph 
 

repeat 
 FIND: expand best state s on the fringe (in greedy graph) 
 initialize all new states by their heuristic value 
 subset = all states in expanded graph that can reach s 
 a single backup pass from fringe states to start state 
 recompute the greedy graph 

until greedy graph has no fringe 
 
output the greedy graph as the final policy 



Heuristic Search Algorithms 

• Definitions 
 

• Find & Revise Scheme. 
 

• LAO* and Extensions 
 

• RTDP and Extensions 
 

• Other uses of Heuristics/Bounds 
 
• Heuristic Design 
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Real Time Dynamic Programming 
[Barto et al 95] 

• Original Motivation 
– agent acting in the real world 

 

• Trial  
– simulate greedy policy starting from start state; 

– perform Bellman backup on visited states 

– stop when you hit the goal 

 

• RTDP: repeat trials forever 
– Converges in the limit #trials ! 1  
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Trial 
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Trial 
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s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 s8 

h h h h 

V 

start at start state 

repeat 

 perform a Bellman backup 

 simulate greedy action 

 



Trial 
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start at start state 

repeat 

 perform a Bellman backup 

 simulate greedy action 

 

h h 



Trial 
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h h V h 

V 

start at start state 

repeat 

 perform a Bellman backup 

 simulate greedy action 
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Trial 

193 

s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 s8 

h h V h 

V 

start at start state 

repeat 

 perform a Bellman backup 

 simulate greedy action 

 

h h 



Trial 
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s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 s8 

h h V h 

V 

start at start state 

repeat 

 perform a Bellman backup 

 simulate greedy action 

 

V h 



Trial 
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s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 s8 

h h V h 

V 

start at start state 

repeat 

 perform a Bellman backup 

 simulate greedy action 

until hit the goal 

V h 



Trial 
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s0 

Sg 

s1 s2 s3 s4 

s5 s6 s7 s8 

h h V h 

V 

start at start state 

repeat 

 perform a Bellman backup 

 simulate greedy action 

until hit the goal 

V h 

Backup all states 
on trajectory 

 
RTDP 

 
repeat 
forever 



Real Time Dynamic Programming 
[Barto et al 95] 

• Original Motivation 
– agent acting in the real world 

 

• Trial  
– simulate greedy policy starting from start state; 

– perform Bellman backup on visited states 

– stop when you hit the goal 

 

• RTDP: repeat trials forever 
– Converges in the limit #trials ! 1  

197 

No termination 
condition! 



RTDP Family of Algorithms 

repeat 
 s Ã s0 

 
 repeat //trials 
  REVISE s; identify agreedy 

  FIND: pick s’ s.t. T(s, agreedy, s’) > 0 
  s Ã s’ 
 until s 2 G 
  
until termination test 
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• Admissible heuristic & monotonicity 

⇒ V(s) · V*(s) 

⇒ Q(s,a) · Q*(s,a) 

 

• Label a state s as solved  

– if V(s) has converged 

 

 

 

 

 

best action 
 
 
 

ResV(s) < ² 

) V(s) won’t change! 
label s as solved 

sg s 



Labeling (contd) 
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best action 

 

 

 

 

 

ResV(s) < ² 

s' already solved 
) V(s) won’t change! 
 
label s as solved 

sg s 

s' 



Labeling (contd) 
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best action 

 

 

 

 

 

ResV(s) < ² 

s' already solved 

) V(s) won’t change! 

 

label s as solved 

sg s 

s' 

     best action 

 

 

 

 

 

 

 

ResV(s) < ² 

ResV(s’) < ² 

 
V(s), V(s’) won’t change! 
label s, s’ as solved 

sg s 

s' 
best action 



Labeled RTDP [Bonet&Geffner 03b]  

repeat 
 s Ã s0 
 label all goal states as solved 
 

 repeat //trials 
  REVISE s; identify agreedy 

  FIND: sample s’ from T(s, agreedy, s’) 
  s Ã s’ 
 until s is solved 
 

 for all states s in the trial  
  try to label s as solved 
until s0 is solved 
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• terminates in finite time 

– due to labeling procedure 

 

• anytime 

– focuses attention on more probable states 

 

• fast convergence 

– focuses attention on unconverged states 
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LRTDP 



Picking a Successor Take 2 

• Labeled RTDP/RTDP: sample s’ / T(s, agreedy, s’) 

– Adv: more probable states are explored first 

– Labeling Adv: no time wasted on converged states 

– Disadv: labeling is a hard constraint 

– Disadv: sampling ignores “amount” of convergence 

 

• If we knew how much V(s) is expected to change? 

– sample s’ / expected change 
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Upper Bounds in SSPs 

• RTDP/LAO* maintain lower bounds 

– call it Vl 

 

• Additionally associate upper bound with s 

– Vu(s) ¸ V*(s) 

 

•  Define gap(s) = Vu(s) – Vl(s) 

– low gap(s): more converged a state 

– high gap(s): more expected change in its value 
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Backups on Bounds 

• Recall monotonicity 
 

• Backups on lower bound  
– continue to be lower bounds 

 

• Backups on upper bound 
– continues to be upper bounds  

 

• Intuitively 
– Vl will increase to converge to V* 
– Vu will decrease to converge to V* 
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Bounded RTDP [McMahan et al 05]  

repeat 
 s Ã s0 
  
 repeat //trials 
  identify agreedy based on Vl 

  FIND: sample s’ / T(s, agreedy, s’).gap(s’) 
  s Ã s’ 
 until gap(s) < ² 
 

 for all states s in trial in reverse order 
   REVISE s 
 

until gap(s0) < ² 

207 



Focused RTDP [Smith&Simmons 06]  

• Similar to Bounded RTDP except 
– a more sophisticated definition of priority that 

combines gap and prob. of reaching the state 

– adaptively increasing the max-trial length 
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Picking a Successor Take 3 

[Slide adapted from Scott Sanner] 209 

Q(s,a1) Q(s,a2) 

Q(s,a2) Q(s,a1) 

Q(s,a2) Q(s,a1) 

Q(s,a2) Q(s,a1) 



• What is the expected value of knowing V(s’) 

 

• Estimates EVPI(s’) 

– using Bayesian updates 

– picks s’ with maximum EVPI 
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Value of Perfect Information RTDP [Sanner et al 09]  



Heuristic Search Algorithms 

• Definitions 
 

• Find & Revise Scheme. 
 

• LAO* and Extensions 
 

• RTDP and Extensions 
 

• Other uses of Heuristics/Bounds 
 
• Heuristic Design 
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Action Elimination 

 

 

 

 

 

If Ql(s,a1) > Vu(s) then a1 cannot be optimal for s. 
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Q(s,a1) Q(s,a2) 



Topological VI [Dai&Goldsmith 07] 

• Identify strongly-connected components 

• Perform topological sort of partitions 

• Backup partitions to ²-consistency: reverse top. order  
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Topological VI [Dai&Goldsmith 07] 

• Identify strongly-connected components 

• Perform topological sort of partitions 

• Backup partitions to ²-consistency: reverse top. order  
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Focused Topological VI [Dai et al 09]  

• Topological VI 

– hopes there are many small connected components 

– can‘t handle reversible domains… 

 

• FTVI 

– initializes Vl and Vu 

– LAO*-style iterations to update Vl and Vu 

– eliminates actions using action-elimination 

– Runs TVI on the resulting graph 
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Factors Affecting Heuristic Search 

• Quality of heuristic 

 

 

• #Goal states 

 

 

• Search Depth 
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One Set of Experiments [Dai et al 09]  

217 

What if the number of reachable states is large? 



Heuristic Search Algorithms 

• Definitions 
 

• Find & Revise Scheme. 
 

• LAO* and Extensions 
 

• RTDP and Extensions 
 

• Other uses of Heuristics/Bounds 
 
• Heuristic Design 
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Admissible Heuristics 

• Basic idea 

– Relax probabilistic domain to deterministic domain 

– Use heuristics(classical planning) 

 

• All-outcome Determinization 

– For each outcome create a different action 

 

• Admissible Heuristics 

– Cheapest cost solution for determinized domain 

– Classical heuristics over determinized domain 
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s1 s 

s2 

a 

s1 s 

s2 

a1 
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Summary of Heuristic Search 

• Definitions 
 

• Find & Revise Scheme 
– General scheme for heuristic search 

 

• LAO* and Extensions 
– LAO*, iLAO*, RLAO*, BLAO* 

 

• RTDP and Extensions 
– RTDP, LRTDP, BRTDP, FRTDP, VPI-RTDP 

 

• Other uses of Heuristics/Bounds 
– Action Elimination, FTVI 

 

• Heuristic Design 
– Determinization-based heuristics 
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A QUICK DETOUR 
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Domains with Deadends 

• Dead-end state 
– a state from which goal is unreachable 

 

• Common in real-world 
– rover 

– traffic 

– exploding blocksworld! 

 

• SSP/SSPs0 do not model such domains 
– assumption of at-least one proper policy 
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Modeling Deadends 

• How should we model dead-end states? 
– V(s) is undefined for deadends 

) VI does not converge!! 

 

• Proposal 1 
– Add a penalty of reaching the dead-end state = P 

 

• Is everything well-formed? 

 

• Are there any issues with the model? 
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Simple Dead-end Penalty P 

 

 

 

 

 

 

 

• V*(s) = ²(P+1) + ².0 + (1-²).P 

     = P + ² 
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d s 

sg 

a Pr=1-² 

Pr=² 

C=²(P+1) 

V(non-deadend) > P 



Proposal 2 

• fSSPDE: Finite-Penalty SSP with Deadends 

• Agent allowed to stop at any state 
– by paying a price = penalty P 

 

 

 

• Equivalent to SSP with special astop action 
– applicable in each state 

– leads directly to goal by paying cost P 

• SSP = fSSPDE 
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V ¤(s) = min

Ã
P;min

a2A

X

s02S
T (s; a; s0)C(s; a; s0) + V ¤(s0)]

!



fSSPDE Algorithms 

• All SSP algorithms applicable… 

– PI works for all domains 

• Initial proper policy: (all states: astop) 

– Other algorithms also work. 

 

• Efficiency: unknown so far… 

– Efficiency hit due to presence of deadends 

– Efficiency hit due to magnitude of P 

– Efficiency hit due to change of topology (e.g., TVI) 
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SSPs0 with Dead-ends 

• SSPADE: SSP with Avoidable Dead-ends [Kolobov et al 12]  
– dead-ends can be avoided from s0 

– there exists a proper (partial) policy rooted at s0 

 

• Heuristic Search Algorithms 
– LAO*: may not converge 

• V(dead-ends) will get unbounded: VI may not converge 

– iLAO*: will converge 
• only 1 backup ) greedy policy will exit dead-ends 

– RTDP/LRTDP: may not converge 
• once stuck in dead-end  won’t reach the goal 
• add max #steps in a trial… how many? adaptive? 
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Unavoidable Dead-ends 

• fSSPUDE: Finite-Penalty SSP with Unavoidable 

Dead-Ends [Kolobov et al 12]  
– same as fSSPDE but now with a start state 

 

• Same transformation applies 

– add an astop action from every state 

 

• SSPs0 = fSSPUDE 
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Outline of the Tutorial 

• Introduction 
 

• Fundamentals of MDPs 
 

• Uninformed Algorithms 

 

• Heuristic Search Algorithms 
 

• Approximation Algorithms 
 

• Extension of MDPs 
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APPROXIMATION ALGORITHMS 

230 

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAAAAAAA 



Motivation 

• Even π* closed wr.t. s0  is often too large to fit in memory… 

 

• … and/or too slow to compute … 

 

• … for MDPs with complicated characteristics 
– Large branching factors/high-entropy transition function  

– Large distance to goal 

– Etc. 

 

• Must sacrifice optimality to get a “good enough” solution 
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Overview  

232 

Determinization-based 
techniques 

Monte-Carlo planning 

Heuristic search with 
inadmissible 

heuristics 

Hybridized 
planning 

Hierarchical 
planning 

Dimensionality 
reduction 

Offline Online 



Overview 

• Not a “golden standard” classification 

– In some aspects, arguable 

– Others possible, e.g., optimal in the limit vs. suboptimal in the limit 

 

• All techniques assume factored fSSPUDE MDPs (SSPs0 MDPs 
with a finite dead-end penalty) 

 

• Approaches differ in the quality aspect they sacrifice 

– Probability of reaching the goal 

– Expected cost of reaching the goal 

– Both 
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Approximation Algorithms 

Overview 

• Online Algorithms 
– Determinization-based Algorithms 

– Monte-Carlo Planning 

 

• Offline Algorithms 
– Heuristic Search with Inadmissible Heuristics 

– Dimensionality Reduction 

– Hierarchical Planning 

– Hybridized Planning 
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Online Algorithms: Motivation 

• Defining characteristics: 

– Planning + execution are 
interleaved 

– Little time to plan 
• Need to be fast! 

– Worthwhile to compute 
policy only for visited states 
• Would be wasteful for all 

states  
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Determinization-based Techniques 

• A way to get a quick’n’dirty solution: 

– Turn the MDP into a classical planning problem 

– Classical planners are very fast 

 

• Main idea: 

1. Compile MDP into its determinization 

2. Generate plans in the determinization 

3. Use the plans to choose an action in the curr. state 

4. Execute, repeat 
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All-Outcome Determinization 

Each outcome of each probabilistic action  separate action 
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P = 9/10 

P = 1/10 



Most-Likely-Outcome Determinization 
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FF-Replan: Overview & Example 
1) Find a goal plan in 

a determinization 
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2) Try executing it 

in the original MDP 

    

3) Replan&repeat if  

unexpected outcome 

  

Yoon, Fern, Givan, 2007 



FF-Replan: Details 

• Uses either the AO or the MLO determinization 

– MLO is smaller/easier to solve, but misses possible plans 

– AO contains all possible plans, but bigger/harder to solve 

 

• Uses the FF planner to solve the determinization 

– Super fast 

– Other fast planners, e.g., LAMA, possible 

 

• Does not cache computed plans 

– Recomputes the plan in the 3rd step in the example 
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FF-Replan: Theoretical Properties 

• Optimizes the MAXPROB criterion – PG of reaching the goal 
– In SSPs, this is always 1.0 – FF-Replan always tries to avoid cycles! 

– Super-efficient on SSPs w/o dead ends 

– Largely ignores expected cost 

 

• Ignores probability of deviation from the found plan 
– Results in long-winded paths to the goal 

– Troubled by probabilistically interesting MDPs [Little, Thiebaux, 2007] 
• There, an unexpected outcome may lead to catastrophic consequences 

 

• In particular, breaks down in the presence of dead ends 
– Originally designed for MDPs without them 

 
241 



g 

FF-Replan and Dead Ends 
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Deterministic plan: Its possible execution: 

  

b 



Putting “Probabilistic” Back Into Planning 

• FF-Replan is oblivious to probabilities 

– Its main undoing 

– How do we take them into account? 

 

• Sample determinizations probabilistically! 

– Hopefully, probabilistically unlikely plans will be rarely found 

 

• Basic idea behind FF-Hindsight 
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FF-Hindsight: Overview 
(Estimating Q-Value, Q(s,a)) 

1. For Each Action A, Draw Future Samples 

2. Solve Time-Dependent Classical Problems 

3. Aggregate the solutions for each action 

4. Select the action with best aggregation 

S: Current State, A(S) → S’ 

Each Sample is a Deterministic Planning Problem 

See if you have goal-reaching solutions, estimate Q(s,A) 

Max A Q(s,A) 
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Slide courtesy of S. Yoon, A. Fern, R. Givan, and R. Kambhampati 



FF-Hindsight: Example 
Action 

Probabilistic 
Outcome 

Time 1 

Time 2 

Goal State 
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Action 

State 

Objective: Optimize MAXPROB criterion 

Dead End 

Left Outcomes 
are more likely 

A1 A2 

A1 A2 A1 A2 A1 A2 A1 A2 

I 

Slide courtesy of S. Yoon, A. Fern, R. Givan, and R. Kambhampati 



FF-Hindsight: Sampling a Future-1 
Action 

Probabilistic 
Outcome 

Time 1 

Time 2 

Goal State 
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Action 

State 

Maximize Goal Achievement 

Dead End A1: 1 
A2: 0 

Left Outcomes 
are more likely 

A1 A2 

A1 A2 A1 A2 A1 A2 A1 A2 

I 

Slide courtesy of S. Yoon, A. Fern, R. Givan, and R. Kambhampati 



FF-Hindsight: Sampling a Future-2 
Action 

Probabilistic 
Outcome 

Time 1 

Time 2 

Goal State 
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Action 

State 

Maximize Goal Achievement 

Dead End 

Left Outcomes 
are more likely 

A1: 2 
A2: 1 

A1 A2 

A1 A2 A1 A2 A1 A2 A1 A2 

I 

Slide courtesy of S. Yoon, A. Fern, R. Givan, and R. Kambhampati 



FF-Hindsight: Sampling a Future-3 
Action 

Probabilistic 
Outcome 

Time 1 

Time 2 

Goal State 
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Action 

State 

Maximize Goal Achievement 

Dead End 

Left Outcomes 
are more likely 

A1: 2 
A2: 1 

A1 A2 

A1 A2 A1 A2 A1 A2 A1 A2 

I 



FF-Hindsight: Details & Theoretical Properties 

• For each s, FF-Hindsight samples w L-horizon futures FL 
– In factored MDPs, amounts to choosing a’s outcome for each h 
 

• Futures are solved by the FF planner 
– Fast, since they are much smaller than the AO determinization 

 

• With enough futures, will find MAXPROB-optimal policy 
– If horizon H is large enough and a few other assumptions 

 

• Much better than FF-Replan on MDPs with dead ends 
– But also slower – lots of FF invocations! 
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Providing Solution Guarantees 

• FF-Replan provides no solution guarantees 

– May have PG = 0 on SSPs with dead ends, even if P*G > 0  

– Wastes solutions: generates them, then forgets them 

 

• FF-Hindsight provides some theoretical guarantees 

– Practical implementations distinct from theory 

– Wastes solutions: generates them, then forgets them 

 

• RFF (Robust FF) provides quality guarantees in practice 

– Constructs a policy tree out of deterministic plans 
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RFF: Overview 
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Make sure the probability of 
ending up in an unknown 

state is < ε 

F. Teichteil-Königsbuch, U. Kuter, G. Infantes,  AAMAS’10 



RFF: Initialization 
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S0 G 

1. Generate either the AO or MLO determinization. Start with the 
policy graph consisting of the initial state s0 and all goal states G 



RFF: Finding an Initial Plan 
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S0 G 

2. Run FF on the chosen determinization and add all the states 
along the found plan to the policy graph. 



RFF: Adding Alternative Outcomes  
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S0 G 

3. Augment the graph with states to which other outcomes of the 
actions in the found plan could lead and that are not in the graph 
already. They are the policy graph’s fringe states. 



RFF: Run VI (Optional) 
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S0 G 

4. Run VI to propagate heuristic values of the newly added states. 
This possibly changes the graph’s fringe and helps avoid dead ends! 



RFF: Computing Replanning Probability 
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S0 G 

5. Estimate the probability P(failure) of reaching the fringe states 
(e.g., using Monte-Carlo sampling) from s0. This is the current 
partial policy’s failure probability w.r.t. s0.  

 If P(failure) > ε 

P(failure) = ? 
 

Else, done! 



RFF: Finding Plans from the Fringe  

258 

S0 G 

6. From each of the fringe states, run FF to find a plan to reach 
the goal or one of the states already in the policy graph. 

Go back to step 3: Adding Alternative Outcomes 



RFF: Details 

• Can use either the AO or the MLO determinization 

– Slower, but better solutions with AO 

 

• When finding plans in st. 5, can set graph states as goals 

– Or the MDP goals themselves 

 

• Using the optional VI step is beneficial for solution quality 

– Without this step, actions chosen under FF guidance 

– With it – under VI guidance 

– But can be expensive 
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RFF: Theoretical Properties  

• Fast 

– FF-Replan forgets computed policies 

– RFF essentially memorizes them 

 

 

• When using AO determinization, guaranteed to find a 
policy that with P = 1 - ε will not need replanning 
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Anticipatory Vs. Preemptive Planning 

• FF-Hindsight and RFF use an anticipatory strategy 

– Try to foresee deviations from a deterministic plan 

 

 

• Can also try to use deterministic plans that will likely 
not be deviated from 

– Main idea of HMDPP 

– Implemented with a self-loop determinization  
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Self-Loop Determinization 

262 262 

0.1 

 
 
T = 0.9 
 
C =  1 1 

 
 
T = 1.0 
 
C =  1/0.9 = 1.11 

 
 
T = 1.0 
C =  1/0.1 = 10 



Self-Loop Determinization 

• Like AO determinization, but modifies action costs 

– Assumes that getting “unexpected” outcome when executing a 
deterministic plan means staying in the current state 

– In SL det, CSL(Outcome(a, i)) is the expected cost of repeating a 
in the MDP to get Outcome(a, i). 

– Thus, CSL(Outcome(a, i)) = C(a) / T(Outcome(a, i)) 

 

• “Unlikely” deterministic plans look expensive in SL det.! 

 

• Estimate hSL (s’) ≈ cost of the cheapest goal plan in the SL det. 
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HMDPP: Overview 

264 

1. For Each Action A, Estimate QSL(s, a) and Qpdb(s, a) 
• QSL(s, a) = C(a) + ∑s’[T(s,a,s’) + hSL (s’)] 
• Qpdb(s, a) = C(a) + ∑s’[T(s,a,s’) + hpdb (s’)] 

• hpdb (s’) helps recognize dead ends 

2. Choose an action based on a combination of QSL(s, a) 
and Qpdb(s, a) 

S: Current State, A(S) → S’ 



Summary of Determinization Approaches 

• Revolutionized SSP MDPs approximation techniques 
– Harnessed the speed of classical planners 
– Eventually, “learned” to take into account probabilities 
– Help optimize for a “proxy” criterion, MAXPROB 

 

• Classical planners help by quickly finding paths to a goal 
– Takes “probabilistic” MDP solvers a while to find them on their own 

 

• However… 
– Still almost completely disregard expect cost of a solution 
– Often assume uniform action costs (since many classical planners do) 
– So far, not useful on FH and IHDR MDPs turned into SSPs 

• Reaching a goal in them is trivial, need to approximate reward more directly 

– Impractical on problems with large numbers of outcomes 
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Approximation Algorithms 

Overview 

• Online Algorithms 
– Determinization-based Algorithms 

– Monte-Carlo Planning 

 

• Offline Algorithms 
– Heuristic Search with Inadmissible Heuristics 

– Dimensionality Reduction 

– Hierarchical Planning 

– Hybridized Planning 
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Monte-Carlo Planning 

• Recall the Sysadmin problem: 
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Restart(Ser2) 

Restart(Ser1) 

Restart(Ser3) 

P(Ser1
t |Restartt-1(Ser1),  Ser1

t-1, Ser2
t-1) 

P(Ser2
t |Restartt-1(Ser2),  Ser1

t-1, Ser2
t-1, Ser3

t-1) 

P(Ser3
t |Restartt-1(Ser3), Ser2

t-1, Ser3
t-1) 

Time t-1 Time t 

T: A: R: ∑i [Seri = ↑] 



Monte-Carlo Planning: Motivation 

• Characteristics of Sysadmin: 

– FH MDP turned SSPs0 MDP 
• Reaching the goal is trivial, determinization approaches not really helpful 

– Enormous reachable state space 

– High-entropy T (2|X| outcomes per action, many likely ones) 
• Building determinizations can be super-expensive 

• Doing Bellman backups can be super-expensive 

 

• Try Monte-Carlo planning 

– Does not manipulate T or C/R explicitly – no Bellman backups  

– Relies on a world simulator – indep. of MDP description size 
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UCT: A Monte-Carlo Planning Algorithm 

• UCT [Kocsis & Szepesvari, 2006] computes a solution by 
simulating the current best policy and improving it 
– Similar principle as RTDP 

– But action selection, value updates, and guarantees are different 

 

• Success stories: 
– Go (thought impossible in ‘05, human grandmaster level at 9x9 in ‘08)  

– Klondike Solitaire (wins 40% of games) 

– General Game Playing Competition 

– Real-Time Strategy Games 

– Probabilistic Planning Competition 

– The list is growing… 
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Current World State 

Rollout 
policy 

Terminal 
(reward = 1) 

1 

1 

1 

1 

At a leaf node perform a random rollout 

Initially tree is single leaf 

UCT Example 

Slide courtesy of  A. Fern 
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Current World State 

1 

1 

1 

1 

Must select each action at a node at least once 

0 

Rollout 
Policy 

Terminal 
(reward = 0) 

Slide courtesy of  A. Fern 
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UCT Example 



Current World State 

1 

1 

1 

1 

Must select each action at a node at least once 

0 

0 

0 

0 

Slide courtesy of  A. Fern 
272 

UCT Example 



Current World State 

1 

1 

1 

1 

0 

0 

0 

0 

When all node actions tried once, select action according to tree policy 

Tree Policy 

Slide courtesy of  A. Fern 
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UCT Example 

Can throw away 
(“forget”) the 
states  beyond 
the tree policy 

that were 
visited by the 

rollouts 



Current World State 

1 

1 

1 

1 

When all node actions tried once, select action according to tree policy 

0 

0 

0 

0 

Tree Policy 

0 

Rollout 
Policy 

Slide courtesy of  A. Fern 
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UCT Example 



Current World State 

1 

1 

1 

1/2 

When all node actions tried once, select action according to tree policy 

0 

0 

0 

0 
Tree  
Policy 

0 

0 

0 

0 

What is an appropriate 
tree policy? 
Rollout policy?  

Slide courtesy of  A. Fern 
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UCT Example 



• Rollout policy: 

– Basic UCT uses random 

 

• Tree policy: 
– Q(s,a) : average reward received in current trajectories after 

taking action a in state s 

– n(s,a) : number of times action a taken in s 

– n(s) : number of times state s encountered 

 
),(

)(ln
),(maxarg)(

asn

sn
casQs aUCT 

Theoretical constant that must  
be selected empirically in practice.  

Slide courtesy of  A. Fern 
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UCT Details 

Exploration term 



Current World State 

1 

1 

1 

1/2 

When all node actions tried once, select action according to tree policy 

0 

0 

0 

0 
Tree  
Policy 

0 

0 

0 

0 

a1 a2 
),(

)(ln
),(maxarg)(

asn

sn
casQs aUCT 

Slide courtesy of  A. Fern 
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UCT Example 



• To select an action at a state s 
– Build a tree using N iterations of Monte-Carlo tree search 

• Default policy is uniform random up to level L 
• Tree policy is based on bandit rule 

– Select action that maximizes Q(s,a) 
(note that this final action selection does not take the exploration 
term into account, just the Q-value estimate) 

 
• The more simulations, the more accurate 

– Guaranteed to pick suboptimal actions exponentially rarely after 
convergence (under some assumptions) 

 
• Possible improvements 

– Initialize the state-action pairs with a heuristic (need to pick a weight) 
– Think of a better-than-random rollout policy  

Slide courtesy of  A. Fern 
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UCT Summary & Theoretical Properties 



Approximation Algorithms 

Overview 

Online Algorithms 
– Determinization-based Algorithms 

– Monte-Carlo Planning 

 

• Offline Algorithms 
– Heuristic Search with Inadmissible Heuristics 

– Dimensionality Reduction 

– Hierarchical Planning 

– Hybridized Planning 
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Moving on to Approximate Offline Planning 

• Useful when there is no time to plan as you go … 

– E.g., when playing a fast-paced game 

 

• … and not much time/space to plan in advance, either 

 

• Like in online planning, oftern, no quality guarantees 

 

• Some online methods (e.g., MCP) can be used offline too  
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Inadmissible Heuristic Search 

• Why? 
– May require less space than admissible heuristic search 

 

• Sometimes, intuitive suboptimal policies are small 
– E.g., taking a more expensive direct flight vs a cheaper 2-leg 

 

• Apriori, no reason to expect an arbitrary inadmissible 
heuristic to yield a small solution 
– But, empirically, those based on determinization often do   

 
• Same algos as for admissible HS, only heuristics differ 

281 



The FF Heuristic 

• Taken directly from deterministic planning  
– A major component of the formidable FF planner 

 
• Uses the all-outcome determinization of a PPDDL MDP 

– But ignores the delete effects (negative literals in action outcomes) 
– Actions never “unachieve” literals, always make progress to goal 

 

• hFF(s) = approximate cost of a plan from s to a goal in the 
delete relaxation  

 
• Very fast due to using the delete relaxation 

 
• Very informative 
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Hoffmann and Nebel, 2001 



The GOTH Heuristic 

• Designed for MDPs at the start (not adapted classical) 

 

• Motivation: would be good to estimate h(s) as cost of a 
non-relaxed deterministic goal plan from s 

– But too expensive to call a classical planner from every s 

– Instead, call from only a few s and generalize estimates to others 

 

• Uses AO determinization and the FF planner 
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Kolobov, Mausam, Weld, 2010a 



GOTH Overview 
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AOdet(M) 

Start running an MDP 
solver (e.g., LRTDP) 

MDP M 

State s 

Policy 

hGOTH (s) 

GOTH 

Evaluate s  

Plan prec & cost 

Determinize M 

Plan 

Run a classical planner (e.g., FF) 

Regress 
plan SixthSense 

State s 

Dead End 

Nogoods 



Regressing Trajectories 
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Plan 
preconditions   

 = 1 

 = 2 

Precondition 
costs 



Plan Preconditions 
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Nogoods 
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Nogood 

Kolobov, Mausam, Weld, 2010b 
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Computing Nogoods 

• Machine learning algorithm 

– Adaptively scheduled generate-and-test procedure 

 

• Fast, sound 

 

• Beyond the scope of this tutorial… 

 

 

 



Estimating State Values 

• Intuition 

– Each plan precondition cost is a “candidate” 
heuristic value  

 

• Define hGOTH(s) as MIN of all available plan precondition 
values applicable in s 

– If none applicable in s, run a classical planner and find some 

– Amortizes the cost of classical planning across many states 
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Open Questions in Inadmissible HS 

• hGOTH is still much more expensive to compute than hFF… 

 

• … but also more informative, so LRTDP+hGOTH is more 
space/time efficient than LRTDP+hFF on most benchmarks 

 

• Still not clear when and why determinization-based 
inadmissible heuristics appear to work well 
– Because they guide to goals along short routes? 

– Due to an experimental bias (MDPs with uniform action costs)? 

 

• Need more research to figure it out… 
 

290 



Approximation Algorithms 

Overview 

Online Algorithms 
– Determinization-based Algorithms 

– Monte-Carlo Planning 

 

• Offline Algorithms 
– Heuristic Search with Inadmissible Heuristics 

– Dimensionality Reduction 

– Hierarchical Planning 

– Hybridized Planning 
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Dimensionality Reduction: Motivation 

• No approximate methods so far explicitly try to save space 
– Inadmissible HS can easily run out of memory 

– MCP runs out of space unless allowed to “forget” visited states 

 

• Dimenstionality reduction attempts to do exactly that 
– Insight:  V* and π* are functions of ~|S| parameters (states) 

– Replace it with an approximation with r  << |S| params … 

– … in order to save space 

 

• How to do it? 
– Factored representations are crucial for this 

– View V/π as functions of state variables, not states themselves! 
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ReTrASE 

• Largely similar to hGOTH  
– Uses preconditions of deterministic plan to evaluate states 

 
• For each plan precondition p, defines a basis function 

– Bp(s) = 1 iff p holds in s, ∞ otherwise 
 

• Represents V(s) = minp wpBp(s) 
– Thus, the parameters are wp for each basis function 
– Problem boils down to learning wp 
– Does this with modified  RTDP 

 

• Crucial observation: # plan preconditions sufficient for 
representing V is typically much smaller than |S| 
– Because one plan precondition  can hold in several states 
– Hence, the problem dimension is reduced! 
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ReTrASE Theoretical Properties 

• Empirically, gives a large reduction in memory vs LRTDP 

 

• Produces good policies (in terms of MAXPROB) when/if 
converges 

 

• Not guaranteed to converge (weights may oscillate) 

 

• No convergence detection/stopping criterion 
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Approximate PI/LP: Motivation 

• ReTrASE considers a very restricted type of basis functions 

– Capture goal reachability information 

– Not appropriate in FH and IHDR MDPs; e.g., in Sysadmin: 
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Restart(Ser2) 

Restart(Ser1) 

Restart(Ser3) 

Time t-1 Time t 

R(s) = ∑i [Seri = ↑] 

A server is less likely 
to go down if its 
neighbors are up 

State value ~increases 
with the number of 

running servers!  



Approximate PI/LP: Motivation 

• Define basis function bi(s) = 1 if Seri = ↑, 0 otherwise 

 

 

• In Sysadmin (and other MDPs), good to let V(s)=∑iwi bi(s)   

– A linear value function approximation 

 

 

• If general, if a user gives a set B of basis functions, how 
do we pick w1, …, w|B| s.t. |V* - ∑iwi bi| is the smallest? 

– Use API/ALP! 
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Approximate Policy Iteration  

• Assumes IHDR MDPs 

 

• Reminder: Policy Iteration 

– Policy evaluation 

– Policy improvement 

 

• Approximate Policy Iteration 

– Policy evaluation: compute the best linear approx. of Vπ 

– Policy improvement: same as for PI 
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Approximate Policy Iteration 

• To compute the best linear approximation, find 

 

 

 

 

• Linear program in |B| variables and 2|S| constraints 

 

• Does API converge? 

– In theory, no; can oscillate if linear approx. for some policies coincide 

– In practice, usually, yes 

– If converges, can bound solution quality 
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A linear 
approximation 

toVπ 

Bellman backup 
applied to the linear 
approximation Vπ 

Guestrin, Koller, Parr, Venkataraman, 2003 



Approximate Linear Programming 

• Same principle as API: replace V(s) with ∑iwi bi(s) in LP 

 

 

• Linear program in |B| variables and |S||A| constraints 

 

 

• But wait a second… 

– We have at least one constraint per state! Solution dimension is 
reduced, but finding solution is still at least linear in |S|! 

300 



Making API and ALP More Efficient 

• Insight: assume each b depends on at most z << |X| vars 

 

 

• Then, can reformulate LPs with only O(2z) constraints 

– Much smaller than O(2|X|) 

 

 

• Very nontrivial… 
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FPG 

• Directly learns a policy, not a value function 

• For each action, defines a desirability function 

 

 

 

 

 

 

• Mapping from state variable values to action “quality” 
– Represented as a neural network 

– Parameters to learn are network weights θa,1, …, θa,m for each a 
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X1 Xn … … 

fa (X1, …, Xn) 

θa,1 θa,2 θa,m-1 θa,m θa, … 

θa, … 

[Buffet and Aberdeen, 2006, 2009] 



FPG 

• Policy (distribution over actions) is given by a softmax 

 

 

 

 

• To learn the parameters: 

– Run trials (similar to RTDP) 

– After taking each action, compute the gradient w.r.t. weights 

– Adjust weights in the direction of the gradient 

– Makes actions causing expensive trajectories to be less desirable 
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FPG Details & Theoretical Properties 

• Can speed up by using FF to guide trajectories to the goal 

 

• Gradient is computed approximately 

 

• Not guaranteed to converge to the optimal policy 

 

• Nonetheless, works well 
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Approximation Algorithms 

Overview 

Online Algorithms 
– Determinization-based Algorithms 

– Monte-Carlo Planning 

 

• Offline Algorithms 
– Heuristic Search with Inadmissible Heuristics 

– Dimensionality Reduction 

– Hierarchical Planning 

– Hybridized Planning 
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Hierarchical Planning: Motivation 

• Some MDPs are too hard to solve w/o prior knowledge 

– Also, arbitrary policies for such MDPs may be hard to interpret 

 

• Need a way to bias the planner towards “good” policies 

– And to help the planner by providing guidance 

 

• That’s what hierarchical planning does 

– Given some prespecified (e.g., by the user) parts of a policy … 

– … planner “fills in the details” 

– Essentially, breaks up a large problem into smaller ones 
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Hierarchical Planning with Options 

• Suppose a robot knows precomputed policies (options) 
for some primitive behaviors 
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Hierarchical Planning with Options 

• Options are almost like actions, but their transition 
function needs to be computed 

 

• Suppose you want to teach the robot how to dance 

 

• You provide a hierarchical planner with options for the 
robot’s primitive behaviors 

 

• Planner estimates the transition function and computes a 
policy for dancing that uses options as subroutines. 
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Task Hierarchies 

• The user breaks down a task into a hierarchy of subgoals 

 

 

 

 

 

 

• The planner chooses which subgoals to achieve at each level, 
and how 

– Subgoals are just hints 

– Not all subgoals may be necessary to achieve the higher-level goal 
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Get into the car 
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Hierarchies of Abstract Machines (HAMs) 

• More general hierarchical representation 

• Each machine is a finite-state automaton w/ 4 node types 

 

 

 

 

 

• The user supplies a HAM 

• The planner needs to decide what to do in choice nodes 
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Optimality in Hierarchical Planning 

• Hierarchy constraints may disallow globally optimal π* 

 

• Next-best thing: a hierarchically optimal policy 
– The best policy obeying the hierarchy constraints 

– Not clear how to find it efficiently 

 

• A more practical notion: a recursively optimal policy 
– A policy optimal at every hierarchy level, assuming that policies at lower 

hierarchy levels are fixed 

– Optimization = finding optimal policy starting from lowest level 

 

• Hierarchically optimal doesn’t imply recursively optimal, and v. v. 
– But hierarchically optimal is always at least as good as recursively optimal 
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Learning Hierarchies 

• Identifying useful subgoals 

– States in “successful” and not in “unsuccessful” trajectories 

– Such states are similar to landmarks 

 

• Breaking up an MDP into smaller ones 

– State abstraction (removing variables irrelevant to the subgoal) 

 

• Still very much an open problem 
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Approximation Algorithms 

Overview 

Online Algorithms 
– Determinization-based Algorithms 

– Monte-Carlo Planning 

 

• Offline Algorithms 
– Heuristic Search with Inadmissible Heuristics 

– Dimensionality Reduction 

– Hierarchical Planning 

– Hybridized Planning 
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Hybridized Planning: Motivation 

• Sometimes, need to arrive at a provably “reasonable” 
(but possibly suboptimal) solution ASAP  
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Hybridized Planning 

• Hybridize MBP and LRTDP 

 

• MBP is a non-deterministic planner 

– Gives a policy guaranteed to reach the goal from everywhere 

– Very fast 

 

• LRTDP is an optimal probabilistic planner 

– Amends MBP’s solution to have a good expected cost 

 

• Optimal in the limit, produces a proper policy quickly 

 

 
315 

[Mausam, Bertoli, Weld, 2007] 



Summary 

• Surveyed 6 different approximation families 
– Dimensionality reduction 

– Monte-Carlo sampling 

– Inadmissible heuristic search 

– Dimensionality reduction 

– Hierarchical planning 

– Hybridized planning 

 

• Sacrifice different solution quality aspects 

 

• Lots of work to be done in each of these areas 
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Outline of the Tutorial 

• Introduction 
 

• Fundamentals of MDPs 
 

• Uninformed Algorithms 

 

• Heuristic Search Algorithms 
 

• Approximation Algorithms 
 

• Extension of MDPs 
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One set of techniques we didn’t cover 

• Compact value function representations 

 

• ADD-based planners 
– Symbolic VI (SPUDD) 

– Symbolic Prioritized Sweeping 

– Symbolic LAO* 

– Symbolic RTDP 

– Approximations (APRICODD) 

 

• Better representations: Affine ADDs. 
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Continuous State/Action MDPs 

• See Scott’s Tutorial. 
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Concurrent Probabilistic Temporal Planning 

What action 

next?   

Percepts Actions 

Environment 

Static 

Fully  

Observable  

Perfect 

Stochastic  

Durative 

Concurrent 



Results 

• MDPs with Durative Actions, No Concurrency 
– VI, RTDP, Incremental Contingency Planning 

– Simple Temporal Nets, Piecewise linear vfs… 

• MDPs with Concurrent Actions, No Time 
– CoMDPs 

– Action Elimination, ALP, Hierarchical planning, … 

• MDPs with Concurrent, Durative Actions 
– Generalized Semi-Markov Decision Process (GSMDP) 

– Augmented state MDPs, Generate-test-debug, 
hybridized planning… 
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Relational MDPs 

• PPDDL/RDDL are first-order representations 

– Algorithms ground it into propositional domains 

 

• Relational MDPs actively use first-order structure 

– First-order VI, PI, ALP 

– Inductive approaches 

 

• Generalizes to many problems 

– with variable number of objects 
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Well-formed MDPs beyond SSPs 

 
 
 

• All improper policies may not have infinite cost 
• VI doesn’t work 

– has multiple fixed points 
– greedy policy over optimal value may not be optimal 

• Heuristic Search much trickier 
• Generalized SSP MDPs [Kolobov et al 11]  

• Stochastic Safest & Shortest Path [Teichteil-Konigsbuch 12]  

• Fun recent work… 
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Other Models 

• Reinforcement Learning 
– model/costs unknown 
– Monte-Carlo planning 

• Partially Observable MDP 
– MDP with incomplete state information 
– Large Continuous MDP 
– Lots of applications 

• Multi-objective MDP 
• MDPs with Imprecise Probabilities 
• Collaborative Multi-agent MDPs 
• Adversarial Multi-agent MDPs 
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Thanks! 
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