
Probabilistic Planning
with

Markov Decision Processes

Andrey Kolobov and Mausam

Computer Science and Engineering

University of Washington, Seattle

1

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAA

Goal

2

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAA

an extensive introduction to theory and
algorithms in probabilistic planning

Outline of the Tutorial

• Introduction

• Fundamentals of MDPs

• Uninformed Algorithms

• Heuristic Search Algorithms

• Approximation Algorithms

• Extension of MDPs

3

(10 mins)

(1+ hr)

(1 hr)

(1 hr)

(1+ hr)

(remaining time)

Outline of the Tutorial

• Introduction

• Fundamentals of MDPs

• Uninformed Algorithms

• Heuristic Search Algorithms

• Approximation Algorithms

• Extension of MDPs

4

(10 mins)

(1+ hr)

(1 hr)

(1 hr)

(1+ hr)

(remaining time)

INTRODUCTION

5

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAA

Planning

What action

next?

Percepts Actions

Environment

Static vs. Dynamic

Fully

vs.

 Partially

Observable

Perfect

vs.

Noisy

Deterministic
vs.

 Stochastic

Instantaneous
vs.

 Durative

Sequential
vs.

Concurrent

Classical Planning

What action

next?

Percepts Actions

Environment

Fully

Observable

Perfect

Instantaneous

Sequential

Deterministic

Static

Probabilistic Planning

What action

next?

Percepts Actions

Environment

Static

Fully

Observable

Perfect

Stochastic

Instantaneous

Sequential

Markov Decision Processes

• A fundamental framework for prob. planning

• History
– 1950s: early works of Bellman and Howard

– 50s-80s: theory, basic set of algorithms, applications

– 90s: MDPs in AI literature

• MDPs in AI
– reinforcement learning

– probabilistic planning

9

we focus on this

What are MDPs good for?

• Uncertain Domain Dynamics

• Sequential Decision Making

• Cyclic Domain Structures

• Full Observability and Perfect Sensors

• Fair Nature

• Rational Decision Making

10

Markov Decision Process

Operations

Research

Artificial

Intelligence

Gambling

Theory

Graph

Theory

Robotics
Neuroscience

/Psychology

Control

Theory

Economics

An MDP-Centric View

Shameless Plug

12

Mausam and Andrey Kolobov
“Planning with Markov Decision Processes: An AI Perspective”

Morgan and Claypool Publishers (Synthesis Lectures Series on Artificial Intelligence)

Outline of the Tutorial

• Introduction

• Fundamentals of MDPs

• Uninformed Algorithms

• Heuristic Search Algorithms

• Approximation Algorithms

• Extension of MDPs

13

(10 mins)

(1+ hr)

(1 hr)

(1 hr)

(1+ hr)

(remaining time)

FUNDAMENTALS OF
MARKOV DECISION PROCESSES

14

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAA

3 Questions

• What is an MDP?

• What is an MDP solution?

• What it an optimal MDP solution?

15

MDP: A Broad Definition

MDP is a tuple <S, D, A, T, R>,
where:

• S is a finite state space

• D is a sequence of discrete
time steps/decision epochs
(1,2,3, … , L), L may be ∞

• A is a finite action set

• T: S x A x S x D [0, 1] is a
transition function

• R: S x A x S x D  R is a reward
function

16

S1

S2

S3

S1

S2

S3

S1

S2

S3

a1

a1

a1 a1

a1

a1

a2

R(s3, a1, s3, 2) = 3.5

T(s3, a1, s3, 2) = 1.0

R(s3, a1, s2, 1) = -7.2

T(s3, a1, s2, 1) = 1.0

t =1 t =2 t = …

a2

a2

a2

a2

a2

MDP Solution: A Broad Definition

• Want a way to choose an action in a state, i.e., a policy π

• What does a policy look like?

– Can pick action based on states visited + actions used so far, i.e.,
execution history h = s(1) a(1) s(2) a(2)… s

– Can pick actions randomly

• Thus, in general an MDP solution is a probabilistic
history-dependent π: H x A  [0,1]

17

Evaluating MDP Solutions

• Executing a policy yields a sequence of rewards

• Let R1, R2, … be a sequence of random vars for rewards
due to executing a policy

18

S S‘ S’’

t = i t = i +1 t = i + 2

r1 = R(s, a, s’, i) r2 = R(s’, a’, s’’, i+1)

a a’ …

Evaluating MDP Solutions

• Define utility function u(R1, R2, …) to be some “quality
measure” of a reward sequence

– Need to be careful with definition, more on this later

• Define value function as V: H  [-∞, ∞]

• Define value function of a policy after history h to be
some utility function of subsequent rewards:

Vπ(h) = u (R1, R2, …)

19

h
π

Optimal MDP Solution: A Broad Definition

• Want: a behavior that is “best” in every situation.

• π* is an optimal policy if V*(h) ≥ Vπ(h) for all π, for all h

• Intuitively, a policy is optimal if its utility vector dominates

– π* not necessarily unique!

20

3 Questions Revisited

• What is an MDP?

– M = <S, D, A, T, R>

• What is an MDP solution?

– Policy π: H x A  [0,1], a mapping from histories to
distributions over actions

• What it an optimal MDP solution?

– π* s.t. V*(h) ≥ Vπ(h) for all π and h, where Vπ(h) is some utility
of rewards obtained after executing history h

21

Anything Wrong w/ These Definitions?

• What is an MDP?

– M = <S, D, A, T, R>

• What is an MDP solution?

– Policy π: H x A  [0,1], a mapping from histories to
distributions over actions.

• What it an optimal MDP solution?

– π* s.t. V*(h) ≥ Vπ(h) for all π and h, where Vπ(h) is some
utility of rewards obtained after executing history h

22

Optimality criterion
is underspecified,

optimal policy may
not exist!

Fundamentals of MDPs

General MDP Definition

• Expected Linear Additive Utility

• The Optimality Principle

• Finite-Horizon MDPs

• Infinite-Horizon Discounted-Reward MDPs

• Stochastic Shortest-Path MDPs

• A Hierarchy of MDP Classes

• Factored MDPs

• Computational Complexity

23

Dealing with Optimal Solution Existence

• Need to be careful when defining utility u(R1, R2, …),

– E.g., u(R1, R2, …) = R1 + R2 + … for the same h can be different
across policy executions (i.e., not a well-defined function)

• Even for a well-defined u(R1, R2, …), a policy π* s.t.
V*(h) ≥ Vπ(h) for all π and h may not exist!

25

Expected Linear Additive Utility

• Let’s use expected linear additive utility (ELAU)

 u(R1, R2, …) = E[R1 + γR2 + γ2R3 …]

 where γ is the discount factor

• Assume γ = 1 unless stated otherwise

– 0 ≤ γ < 1: agent prefers more immediate rewards

– γ > 1: agent prefers more distant rewards

– γ = 1: rewards are equally valuable, independently of time

26

Is ELAU What We Want?

Policy 1 Policy 2

– If it lands heads, you get $2M

– If it lands tails, you get nothin’

27

… your $1M … flip a fair coin

Is ELAU What We Want?

• ELAU: “the utility of a policy is as good as the amount of
reward the policy is expected to bring”
– Agents using ELAU are “rational” (sometimes, a bad misnomer!)

• Assumes the agent is risk-neutral

– Indifferent to policies with equal reward expectation
– E.g., disregards policies’ variance (in the previous example, policy

1 has lower variance)

• Not always the exact criterion we want, but...
– “Good enough”
– Convenient to work with
– Guarantees the Optimality Principle

28

Fundamentals of MDPs

General MDP Definition

Expected Linear Additive Utility

• The Optimality Principle

• Finite-Horizon MDPs

• Infinite-Horizon Discounted-Reward MDPs

• Stochastic Shortest-Path MDPs

• A Hierarchy of MDP Classes

• Factored MDPs

• Computational Complexity

29

The Optimality Principle

 If the quality of every policy can be measured by
its expected linear additive utility, there is a
policy that is optimal at every time step.

 (Stated in various forms by

 Bellman, Denardo, and others)

30

Guarantees that an optimal
policy exists when ELAU is

well-defined!

The Optimality Principle: Caveat #1

• When can policy quality not be measured by ELAU?

– Utility of above policy at s1 oscillates between 1 and 0

• ELAU isn’t well-defined unless the limit of the series
E[R1 + R2 + …] exists

31

S1 S2

a1

a1

R(s2, a1, s1) = -1

R(s1, a1, s2) = 1

The Optimality Principle: Caveat #2

• The utility of many policies may be infinite

– Every policy allows for ∞ reward from every state above

• ELAU may not be a meaningful criterion unless u(R1,
R2, …) = E[R1 + R2 + …] is bounded above.

32

S1 S2

a1

a1

R(s2, a1, s1) = 1

R(s1, a1, s2) = 1

a2 a2

R(s1, a2, s1) = 1 R(s2, a2, s2) = 1

Recap So Far

• What is an MDP?

– M = <S, D, A, T, R>

• What is an MDP solution?

– Policy π: H x A  [0,1], a mapping from histories to
distributions over actions.

• What it an optimal MDP solution?

– π* s.t. V*(h) ≥ Vπ(h) for all π and h,where Vπ(h) is the expected
linear additive utility of rewards obtained after executing h

33

Coming Up Next

• What is an MDP?

– Stationary M = <S, D, A, T, R>

• What is an MDP solution?

– Policy π: H x A  [0,1], a mapping from histories to
distributions over actions.

• What it an optimal MDP solution?

– π* s.t. V*(h) ≥ Vπ(h) for all π and h,where Vπ(h) is the expected
linear additive utility of rewards obtained after executing h

34

Make sure ELAU is
well-defined

3 Models with Well-Defined Policy ELAU

1) Finite-horizon MDPs

2) Infinite-horizon discounted-reward MDPs

3) Stochastic Shortest-Path MDPs

35

Fundamentals of MDPs

General MDP Definition

Expected Linear Additive Utility

The Optimality Principle

• Finite-Horizon MDPs

• Infinite-Horizon Discounted-Reward MDPs

• Stochastic Shortest-Path MDPs

• A Hierarchy of MDP Classes

• Factored MDPs

• Computational Complexity

36

Finite-Horizon MDPs: Motivation

• Assume the agent acts for a finite # time steps, L

• Example applications:

– Inventory management

 “How much X to order from

 the supplier every day ‘til

 the end of the season?”

– Maintenance scheduling

 “When to schedule

 disruptive maintenance

 jobs by their deadline?”

37

Finite-Horizon MDPs: Definition

FH MDP is a tuple <S, A, D, T, R>, where:

• S is a finite state space

• D is a sequence of time steps (1,2,3, …, L) up to a finite horizon L

• A is a finite action set

• T: S x A x S x D [0, 1] is a transition function

• R: S x A x S x D  R is a reward function

Policy value = ELAU over the remaining time steps

38

Puterman, 1994

Aside: Deterministic Markovian Policies

• For FH MDPs, we can consider only deterministic
Markovian solutions
– Will shortly see why

• A policy is deterministic if for every history, it assigns all
probability mass to one action:

π: H  A

• A policy is deterministic Markovian if its decision in each

state is independent of execution history:

π: S x D  A

39

Aside: Markovian Value Functions

• Markovian policies can be evaluated with Markovian
value functions

• Let hs,t denote history ending in state s at time t

• Vπ(hs,t) = Vπ(h’s,t) for all hs,t, h’s,t if π is Markovian

• Call V Markovian if for all hs,t, h’s,t, V(hs,t) = V(h’s,t)

– For each s, t denote Markovian V as V(s,t)

40

Finite-Horizon MDPs: Optimality Principle

For an FH MDP with horizon|D| = L < ∞, let:

– Vπ(hs,t) = Eh,s,t[R1 + … + RL - t] for all 1 ≤ t ≤ L
– Vπ(hs,L+1) = 0

Then:

– V* exists and is Markovian, π* exists and is det. Markovian
– For all s and 1 ≤ t ≤ L:

V*(s,t) = maxa in A [∑s’ in S T(s, a, s’, t) [R(s, a, s’, t) + V*(s’, t+1)]]

π*(s,t) =argmaxa in A [∑s’ in S T(s, a, s’, t) [R(s, a, s’, t) + V*(s’, t+1)]]

41

π

Exp. Lin. Add. Utility

Each E[Ri] is finite

terms in the series
is finite

For every history, the
value of every policy

is well-defined!

Highest utility
derivable from s at

time t

Highest utility
derivable from the

next state

Immediate utility of
the next action

In expectation

If you act optimally now

Perks of the FH MDP Optimality Principle

• V*, π* Markovian  consider only Markovian V, π!

• Can easily compute π*!
– For all s, compute V*(s, t) and π*(s, t) for t = L, …, 1

42

Probabilistic
history-dep. π

Deterministic
Markovian π

Number ∞ |A||S||D|

Size of each Ginormous! O(|S||D|)

Moving to In(de)finite Horizon

• Finite known horizon sometimes not good enough

– Doesn’t cover autonomous agents with long lifespans

• Two other options:

– Infinite horizon (horizon known to be infinite)

– Indefinite horizon (horizon known to be unbounded)

43

• Finite known horizon sometimes not good enough

– Doesn’t cover autonomous agents with long lifespans

• Two other options:

– Infinite horizon (horizon known to be infinite)

– Indefinite horizon (horizon known to be unbounded)

44

Moving to Infinite Horizon

Analyzing MDPs with In(de)finite Horizon

• Hard to specify time-dependent T, R, etc. for a large (infinite) #
steps

• Need stationary (time-independent) functions:

– Stationary transition function of the form

T: S x A x S [0, 1]

– Stationary reward function of the form
 R: S x A x S  R

– Stationary deterministic Markovian policy of the form
 π: S  A

– Stationary Markovian value function of the form
 V: S  [-∞, ∞]

45

Fundamentals of MDPs

General MDP Definition

Expected Linear Additive Utility

The Optimality Principle

Finite-Horizon MDPs

• Infinite-Horizon Discounted-Reward MDPs

• Stochastic Shortest-Path MDPs

• A Hierarchy of MDP Classes

• Factored MDPs

• Computational Complexity

46

Infinite-Horizon Discounted-Reward MDPs: Motivation

• Assume the agent acts for an infinitely long time

• Example applications:

– Portfolio management

 “How to invest money

 under a given rate of

 inflation?”

– Unstable system control

 “How to help fly

 a B-2 bomber?”

47

Infinite-Horizon Discounted MDPs: Definition

IHDR MDP is a tuple <S, A, T, R, γ>, where:

• S is a finite state space

• (D is an infinite sequence (1,2, …))

• A is a finite action set

• T: S x A x S [0, 1] is a stationary transition function

• R: S x A x S  R is a stationary reward function

• γ is a discount factor satisfying 0 ≤ γ < 1

Policy value = discounted ELAU over infinite time steps

48

Puterman, 1994

Infinite-Horizon Discounted-Reward MDPs:
Optimality Principle

For an IHDR MDP, let:

– Vπ(h) = Eh [R1 + γR2 + γ2R3 +…] for all h

Then:

– V* exists and is stationary Markovian, π* exists and is

stationary deterministic Markovian
– For all s:

V*(s) = maxa in A [∑s’ in S T(s, a, s’) [R(s, a, s’) + γV*(s’)]]

π*(s) =argmaxa in A [∑s’ in S T(s, a, s’) [R(s, a, s’) + γV*(s’)]]

49

π

Exp. Lin. Add. Utility

All γiE[Ri] are bounded by
some finite K and converge

geometrically

For every history, the
value of a policy is

well-defined thanks to
0 ≤ γ < 1!

Future utility is
discounted Optimal utility is time-independent!

Perks of the IFHD MDP Optimality Principle

• V*, π* stationary Markovian  consider only
stationary Markovian V, π!

50

Deterministic
Markovian π

Stationary
deterministic
Markovian π

Number ∞ |A||S|

Size of each ∞ O(|S|)

Where Does γ Come From?

• γ can affect optimal policy significantly

– γ = 0 + ε: yields myopic policies for “impatient” agents

– γ = 1 - ε: yields far-sighted policies, inefficient to compute

• How to set it?

– Sometimes suggested by data (e.g., inflation or interest rate)

– Often set to whatever gives a reasonable policy

51

Moving to Indefinite Horizon

• Finite known horizon sometimes not good enough

– Doesn’t cover autonomous agents with long lifespans.

• Two other options:

– Infinite horizon (horizon known to be infinite)

– Indefinite horizon (horizon known to be unbounded)

52

Fundamentals of MDPs

General MDP Definition

Expected Linear Additive Utility

The Optimality Principle

Finite-Horizon MDPs

Infinite-Horizon Discounted-Reward MDPs

• Stochastic Shortest-Path MDPs

• A Hierarchy of MDP Classes

• Factored MDPs

• Computational Complexity

53

Stochastic Shortest-Path MDPs: Motivation

• Assume the agent pays cost to achieve a goal

• Example applications:

– Controlling a Mars rover

 “How to collect scientific

 data without damaging

 the rover?”

– Navigation

 “What’s the fastest way

 to get to a destination, taking

 into account the traffic jams?”

54

Stochastic Shortest-Path MDPs: Definition

SSP MDP is a tuple <S, A, T, C, G>, where:
• S is a finite state space
• (D is an infinite sequence (1,2, …))
• A is a finite action set
• T: S x A x S [0, 1] is a stationary transition function
• C: S x A x S  R is a stationary cost function (= -R: S x A x S  R)
• G is a set of absorbing cost-free goal states

Under two conditions:
• There is a proper policy (reaches a goal with P= 1 from all states)
• Every improper policy incurs a cost of ∞ from every state from

which it does not reach the goal with P=1

55

Bertsekas, 1995

SSP MDP Details

• In SSP, maximizing ELAU = minimizing exp. cost

• Every cost-minimizing policy is proper!

• Thus, an optimal policy = cheapest way to a goal

• Why are SSP MDPs called “indefinite-horizon”?

– If a policy is optimal, it will take a finite, but apriori unknown,
time to reach goal

56

SSP MDP Example

57

S1 S2

a1

C(s2, a1, s1) = -1

C(s1, a1, s2) = 1

a2
a2

C(s1, a2, s1) = 7.2

C(s2, a2, sG) = 1

SG

C(sG, a2, sG) = 0

C(sG, a1, sG) = 0

C(s2, a2, s2) = -3

T(s2, a2, sG) = 0.3

T(s2, a2, sG) = 0.7

S3

C(s3, a2, s3) = 0.8 C(s3, a1, s3) = 2.4

a1 a2

C(s2, a1, s3) = 5

a1

T(s2, a1, s3) = 0.6

T(s2, a1, s1) = 0.4

No dead ends
allowed!

, not!

a1

a2

SSP MDP Example

58

S1 S2

a1

a1
C(s2, a1, s1) = -1

C(s1, a1, s2) = 1

a2
a2

C(s1, a2, s1) = 7.2

C(s2, a2, sG) = 1

SG

C(sG, a2, sG) = 0

C(sG, a1, sG) = 0

C(s2, a2, s2) = -3

T(s2, a2, sG) = 0.3

T(s2, a2, sG) = 0.7

No cost-free
“loops” allowed!

, also not!

a2

a1

SSP MDP Example

59

S1 S2

a1

a1
C(s2, a1, s1) = 0

C(s1, a1, s2) = 1

a2
a2

C(s1, a2, s1) = 7.2

C(s2, a2, sG) = 1

SG

C(sG, a2, sG) = 0

C(sG, a1, sG) = 0

C(s2, a2, s2) = 1

T(s2, a2, sG) = 0.3

T(s2, a2, sG) = 0.7

SSP MDPs: Optimality Principle

For an SSP MDP, let:

– Vπ(h) = Eh[C1 + C2 + …] for all h

Then:

– V* exists and is stationary Markovian, π* exists and is stationary

deterministic Markovian
– For all s:

V*(s) = mina in A [∑s’ in S T(s, a, s’) [C(s, a, s’) + V*(s’)]]

π*(s) = argmina in A [∑s’ in S T(s, a, s’) [C(s, a, s’) + V*(s’)]]

60

π

Exp. Lin. Add. Utility

Every policy either takes a
finite exp. # of steps to reach
a goal, or has an infinite cost.

For every history,
the value of a policy

is well-defined!

Fundamentals of MDPs

General MDP Definition

Expected Linear Additive Utility

The Optimality Principle

Finite-Horizon MDPs

Infinite-Horizon Discounted-Reward MDPs

Stochastic Shortest-Path MDPs

• A Hierarchy of MDP Classes

• Factored MDPs

• Computational Complexity

61

SSP and Other MDP Classes

• FH => SSP: turn all states (s, L) into goals

• IHDR => SSP: add (1-γ)-probability transitions to goal

• Will concentrate on SSP in the rest of the tutorial

62

SSP IHDR FH

Fundamentals of MDPs

General MDP Definition

Expected Linear Additive Utility

The Optimality Principle

Finite-Horizon MDPs

Infinite-Horizon Discounted-Reward MDPs

Stochastic Shortest-Path MDPs

A Hierarchy of MDP Classes

• Factored MDPs

• Computational Complexity

63

Factored SSP MDPs: Motivation

• How to describe an MDP instance?
– S = {s1, … , sn} – flat representation
– T(si, aj, sk) = pi,j,k for every state, action, state triplet
– …

• Flat representation too cumbersome!
– Real MDPs have billions of billions of states
– Can’t enumerate transition function explicitly

• Flat representation too uninformative!
– State space has no meaningful distance measure
– Tabulated transition/reward function has no structure

64

Factored SSP MDPs: Definition

Factored SSP MDP is a tuple <X, A, T, C, G>, where:
• X is a finite set of state variables (domain variables, features)

• (D is an infinite sequence (1,2, …))

• A is a finite action set

• T: (dom(X1) x … x dom(Xn)) x A x (dom(X1) x … x dom(Xn)) [0, 1] is
a stationary transition function

• C: (dom(X1) x … x dom(Xn)) x A x (dom(X1) x … x dom(Xn))  R is a
stationary cost function

• G, given by a conjunction over a subset of X, is a set of goal states

The conditions of the flat SSP MDP definition still apply

65

Factored Representation Languages

• PPDDL – Prob. Planning Domain Definition Language
[Younes and Littman, 2004]

• RDDL – Relational Domain Definition Language
[Sanner, 2011]

66

Example Factored SSP MDP in PPDDL

• Gremlin wants to sabotage an airplane

• Can use tools to fulfill its objective

• Needs to pick up the tools

• X = { }

67

Example Factored SSP MDP in PPDDL

68

G
e
t
S

G
e
t

W

G
e
t
H

A =

T =

C =

1.0

1

1.0

1

0.4

1

G =

0.6

1

Preconditions

Effects/outcomes

Example Factored SSP MDP in PPDDL

69

S
m
a
s
h

T
w
e
a
k

0.9 0.1

A =

T =

C =

1.0

2 1 100

Example Factored SSP MDP in RDDL

• Sysadmin needs to maintain a network of servers until time L
– Gets paid proportionately to the # of servers running at each time step

• Each server can go up or down with some probability
– And drag its neighbors down – probability of going down increases with the

number of down neighbors

• Sysadmin can restart just one server per time step

• Enormous number of uncorrelated effects for each action
– 2N for a problem with N servers

• X = { 1 , … , N}, G = any state at time L

70

? ?

Example Factored SSP MDP in RDDL

71

Restart(Ser2)

Restart(Ser1)

Restart(Ser3)

P(Ser1
t |Restartt-1(Ser1), Ser1

t-1, Ser2
t-1)

P(Ser2
t |Restartt-1(Ser2), Ser1

t-1, Ser2
t-1, Ser3

t-1)

P(Ser3
t |Restartt-1(Ser3), Ser2

t-1, Ser3
t-1)

Time t-1 Time t

T: A: C: -∑i [Seri = ↑]

Factored Representation Languages
Summary

• PPDDL – Prob. Planning Domain Definition Language
– Represents MDP actions as templates

– Good for MDPs with strongly correlated effects

– Inconvenient for MDPs with uncorrelated effects

• RDDL – Relational Domain Definition Language
– Represents MDP as a Dynamic Bayes Net

– Shows how each variable evolves under every action

– Good for MDPs with uncorrelated effects

– Inconvenient for MDPs with uncorrelated strongly
correlated effects

72

Benefits of Factored Representations

• Can meaningfully group states

– E.g., by similarity

– And assign the same policy to each group

• Can meaningfully express V as a function of state variables

– Using mathematical operations, e.g. V(s) = X1(s) + … + Xn(s)

– Basis of dimensionality reduction techniques

• Can manipulate values of sets of states

– Symbolic and approximate algorithms, more on this later

73

Fundamentals of MDPs

General MDP Definition

Expected Linear Additive Utility

The Optimality Principle

Finite-Horizon MDPs

Infinite-Horizon Discounted-Reward MDPs

Stochastic Shortest-Path MDPs

A Hierarchy of MDP Classes

Factored MDPs

• Computational Complexity

74

Computational Complexity of MDPs

• Good news:

– Solving IHDR, SSP in flat representation is P-complete

– Solving FH in flat representation is P-hard

– That is, they don’t benefit from parallelization, but are solvable
in polynomial time!

75

Computational Complexity of MDPs

• Bad news:

– Solving FH, IHDR, SSP in factored representation is EXPTIME-
complete!

– Flat representation doesn’t make MDPs harder to solve, it
makes big ones easier to describe.

76

Computational Complexity of MDPs

• Consolation:

– Introduce factored SSPs0 (FHs0, IFHDs0)– factored MDP with a
designated initial state s0

– Assume an optimal policy starting at s0 visits at most O(poly|X|)
states

– FH, IHDR SSPs0 with O(poly|X|) optimal policy size are PSPACE-
complete!

77

Summary So Far

• Introduced a broad MDP definition
– It had an ill-defined optimal solution concept

• Imposed restrictions on the general definition to make

optimal solution well-defined
– Based on expected linear additive utility
– Gave rise to FH, IHDR, and SSP

• Introduced factored representations

– Convenient to use, but make MDPs look hard to solve

– In fact, they are hard to solve…

78

Outline of the Tutorial

• Introduction

• Fundamentals of MDPs

• Uninformed Algorithms

• Heuristic Search Algorithms

• Approximation Algorithms

• Extension of MDPs

79

(10 mins)

(1+ hr)

(1 hr)

(1 hr)

(1+ hr)

(remaining time)

UNINFORMED ALGORITHMS

80

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAA

Uninformed Algorithms

• Definitions

• Fundamental Algorithms

• Prioritized Algorithms

• Partitioned Algorithms

• Other models

81

Stochastic Shortest-Path MDPs: Definition

SSP MDP is a tuple <S, A, T, C, G>, where:
• S is a finite state space
• A is a finite action set
• T: S x A x S [0, 1] is a stationary transition function
• C: S x A x S  R is a stationary cost function
• G is a set of absorbing cost-free goal states

Under two conditions:
• There is a proper policy (reaches a goal with P=1 from all states)
• Every improper policy incurs a cost of ∞ from every state from which

it does not reach the goal with P=1

• Solution of an SSP: policy (¼: S!A)

82

Uninformed Algorithms

• Definitions

• Fundamental Algorithms

• Prioritized Algorithms

• Partitioned Algorithms

• Other models

83

Brute force Algorithm

• Go over all policies ¼
– How many? |A||S|

• Evaluate each policy
– V¼(s) Ã expected cost of reaching goal from s

• Choose the best
– We know that best exists (SSP optimality principle)

– V¼*(s) · V¼(s)

84

finite

how to evaluate?

Policy Evaluation

• Given a policy ¼: compute V¼

• TEMPORARY ASSUMPTION: ¼ is proper

– execution of ¼ reaches a goal from any state

85

Deterministic SSPs

• Policy Graph for ¼

 ¼(s0) = a0; ¼(s1) = a1

• V¼(s1) = 1

• V¼(s0) = 6

86

s0 s1 sg

C=5 C=1

a0 a1

add costs on path to goal

Acyclic SSPs

• Policy Graph for ¼

• V¼(s1) = 1

• V¼(s2) = 4

• V¼(s0) = 0.6(5+1) + 0.4(2+4) = 6

87

s0

s1

s2

sg

Pr=0.6
C=5

Pr=0.4
C=2

C=1

C=4

a0
a1

a2

backward pass in
reverse topological
order

General SSPs can be cyclic!

• V¼(s1) = 1

• V¼(s2) = ?? (depends on V¼(s0))

• V¼(s0) = ?? (depends on V¼(s2))

88

a2

Pr=0.7
C=4

Pr=0.3
C=3

s0

s1

s2

sg

Pr=0.6
C=5

Pr=0.4
C=2

C=1

a0
a1

cannot do a
simple single pass

General SSPs can be cyclic!

• V¼(g) = 0
• V¼(s1) = 1+V¼(sg) = 1
• V¼(s2) = 0.7(4+V¼(sg)) + 0.3(3+V¼(s0))
• V¼(s0) = 0.6(5+V¼(s1)) + 0.4(2+V¼(s2))

89

a2

Pr=0.7
C=4

Pr=0.3
C=3

s0

s1

s2

sg

Pr=0.6
C=5

Pr=0.4
C=2

C=1

a0
a1

a simple system of
linear equations

Policy Evaluation (Approach 1)

• Solving the System of Linear Equations

• |S| variables.

• O(|S|3) running time

90

V ¼(s) = 0 if s 2 G
=

X

s02S
T (s; ¼(s); s0) [C(s; ¼(s); s0) + V ¼(s0)]

Iterative Policy Evaluation

91

a2

Pr=0.7
C=4

Pr=0.3
C=3

s0

s1

s2

sg

Pr=0.6
C=5

Pr=0.4
C=2

C=1

a0
a1

0

1

3.7+0.3V¼(s0)
3.7

5.464
5.67568

5.7010816
5.704129…

4.4+0.4V¼(s2)
0

5.88
6.5856

6.670272
6.68043..

Policy Evaluation (Approach 2)

92

iterative refinement

V ¼
n (s)Ã

X

s02S
T (s; ¼(s); s0)

£
C(s; ¼(s); s0) + V ¼

n¡1(s
0)
¤

(1)

V ¼(s) =
X

s02S
T (s; ¼(s); s0) [C(s; ¼(s); s0) + V ¼(s0)]

Iterative Policy Evaluation

93

iteration n

²-consistency

termination
condition

Convergence & Optimality

For a proper policy ¼

Iterative policy evaluation

 converges to the true value of the policy, i.e.

irrespective of the initialization V0

94

limn!1V ¼
n = V ¼

Brute force Algorithm

• Go over all policies ¼:
– How many? |A||S|

• Evaluate each policy
– V¼(s) Ã expected cost of reaching goal from s

• Choose the best
– We know that best exists (SSP optimality principle)

– V¼*(s) · V¼(s)

95

how to evaluate?

too slow
choose an
intelligent
order for ¼

Q-Value under a Value Function V

• The Q-value of state s and action a under a value
function V

– denoted as QV(s,a)

• one-step lookahead computation of the value of a

– assuming V is true expected cost to reach goal

96

QV (s; a) =
X

s02S
T (s; a; s0) [C(s; a; s0) + V (s0)]

Greedy Action/Policy

• Define a greedy action a wrt V

– an action that has the lowest Q-value, i.e.

– a = argmina’Q
V(s,a’)

• Define a greedy policy ¼V

– Policy with all greedy actions wrt V for each state

97

Policy Iteration [Howard 60]

• initialize ¼0 as a random proper policy

• repeat

Policy Evaluation: Compute V¼n-1

Policy Improvement: Construct ¼n greedy wrt V¼n-1

• until ¼n==¼n-1

• return ¼n

98

choose ¼n-1

if multiple greedy actions

Properties

• Policy Iteration for an SSP

 (initialized with a proper policy ¼0)

Successively improves the policy in each iteration, i.e.

V¼n(s) · V¼n -1(s), and

converges to an optimal policy

99

Modified Policy Iteration [van Nunen 76]

• initialize ¼0 as a random proper policy

• repeat

Approximate Policy Evaluation: Compute V¼n-1

 by running only few iterations of iterative policy eval.

Policy Improvement: Construct ¼n greedy wrt V¼n-1

• until …

• return ¼n

100

Limitations of PI

• Why do we need to start with a proper policy?

– Policy Evaluation will diverge

• How to get a proper policy?

– No domain independent algorithm

• PI for SSPs is not generally applicable

101

Policy Iteration  Value Iteration

• Changing the search space.

• Policy Iteration
– Search over policies

– Compute the resulting value

• Value Iteration
– Search over values

– Compute the resulting policy

102

Optimality Principle/Bellman Equations

103

V ¤(s) = 0 if s 2 G
= min

a2A

X

s02S
T (s; a; s0) [C(s; a; s0) + V ¤(s0)]

Q*(s,a)

V*(s) = mina Q*(s,a)

Fixed Point Computation in VI

104

iterative refinement

V ¤(s) = min
a2A

X

s02S
T (s; a; s0) [C(s; a; s0) + V ¤(s0)]

Vn(s)Ãmin
a2A

X

s02S
T (s; a; s0) [C(s; a; s0) + Vn¡1(s

0)]

non-linear

Running Example

105

s0

s2

s1

sg
Pr=0.6

a00 s4

s3

Pr=0.4
a01

a21 a1

a20 a40

C=5
a41

a3
C=2

V0= 0

V0= 2

Q1(s4,a40) = 5 + 0

Q1(s4,a41) = 2 + 0.6£ 0

 + 0.4£ 2

 = 2.8

min

V1= 2.8

agreedy = a41

a41

a40

s4

sg

s3

Bellman Backup

C=5

C=2

sg
Pr=0.6

s4

s3

Pr=0.4

a40

C=5
a41

a3
C=2

Value Iteration [Bellman 57]

107

iteration n

²-consistency

termination
condition

No restriction on initial value function

Running Example

108

s0

s2

s1

sg
Pr=0.6

a00 s4

s3

Pr=0.4
a01

a21 a1

a20 a40

C=5
a41

a3
C=2

n Vn(s0) Vn(s1) Vn(s2) Vn(s3) Vn(s4)

0 3 3 2 2 1

1 3 3 2 2 2.8

2 3 3 3.8 3.8 2.8

3 4 4.8 3.8 3.8 3.52

4 4.8 4.8 4.52 4.52 3.52

5 5.52 5.52 4.52 4.52 3.808

20 5.99921 5.99921 4.99969 4.99969 3.99969

Convergence & Optimality

• For an SSP MDP, 8s2 S,

lim n!1 Vn(s) = V*(s)

irrespective of the initialization.

109

Running Time

• Each Bellman backup:
– Go over all states and all successors: O(|S||A|)

• Each VI Iteration
– Backup all states: O(|S|2|A|)

• Number of iterations
– General SSPs: no good bounds

– Special cases: better bounds
• (e.g., when all costs positive [Bonet 07])

110

SubOptimality Bounds

• General SSPs

– weak bounds exist on |Vn(s) – V*(s)|

• Special cases: much better bounds exist

– (e.g., when all costs positive [Hansen 11])

111

Monotonicity

For all n>k

Vk ≤p V* ⇒ Vn ≤p V* (Vn monotonic from below)

Vk ≥p V* ⇒ Vn ≥p V* (Vn monotonic from above)

112

VI  Asynchronous VI

• Is backing up all states in an iteration essential?
– No!

• States may be backed up
– as many times

– in any order

• If no state gets starved
– convergence properties still hold!!

113

Residual wrt Value Function V (ResV)

• Residual at s with respect to V

– magnitude(¢V(s)) after one Bellman backup at s

• Residual wrt respect to V

– max residual

– ResV = maxs (ResV(s))

114

ResV (s) =

¯̄
¯̄
¯V (s)¡min

a2A

X

s02S
T (s; a; s0)[C(s; a; s0) + V (s0)]

¯̄
¯̄
¯

ResV <²

(²-consistency)

(General) Asynchronous VI

115

Uninformed Algorithms

• Definitions

• Fundamental Algorithms

• Prioritized Algorithms

• Partitioned Algorithms

• Other models

116

Prioritization of Bellman Backups

• Are all backups equally important?

• Can we avoid some backups?

• Can we schedule the backups more
appropriately?

117

Useless Backups?

118

s0

s2

s1

sg
Pr=0.6

a00 s4

s3

Pr=0.4
a01

a21 a1

a20 a40

C=5
a41

a3
C=2

n Vn(s0) Vn(s1) Vn(s2) Vn(s3) Vn(s4)

0 3 3 2 2 1

1 3 3 2 2 2.8

2 3 3 3.8 3.8 2.8

3 4 4.8 3.8 3.8 3.52

4 4.8 4.8 4.52 4.52 3.52

5 5.52 5.52 4.52 4.52 3.808

20 5.99921 5.99921 4.99969 4.99969 3.99969

Useless Backups?

119

s0

s2

s1

sg
Pr=0.6

a00 s4

s3

Pr=0.4
a01

a21 a1

a20 a40

C=5
a41

a3
C=2

n Vn(s0) Vn(s1) Vn(s2) Vn(s3) Vn(s4)

0 3 3 2 2 1

1 3 3 2 2 2.8

2 3 3 3.8 3.8 2.8

3 4 4.8 3.8 3.8 3.52

4 4.8 4.8 4.52 4.52 3.52

5 5.52 5.52 4.52 4.52 3.808

20 5.99921 5.99921 4.99969 4.99969 3.99969

Asynch VI  Prioritized VI

120

Convergence?
Interleave synchronous VI iterations

Which state to prioritize?

121

s1

s'

s'

s' ¢V=0

¢V=0

¢V=0

.

.

.
.

.

.

.
.

s2

s'

s'

s' ¢V=0

¢V=2

¢V=0

.

.

.
.

.

.

.
.

s3

s'

s'

s' ¢V=0

¢V=5

¢V=0

.

.

.
.

.

.

.
.

s1 is zero priority

0.8 0.1

s2 is higher priority s3 is low priority

Prioritized Sweeping [Moore & Atkeson 93]

122

priorityPS(s) = max

½
priorityPS(s);max

a2A
fT (s; a; s0)ResV (s0)g

¾

• Convergence [Li&Littman 08]

Prioritized Sweeping converges to optimal in the limit,

 if all initial priorities are non-zero.

(does not need synchronous VI iterations)

Prioritized Sweeping

123

s0

s2

s1

sg
Pr=0.6

a00 s4

s3

Pr=0.4
a01

a21 a1

a20 a40

C=5
a41

a3
C=2

V(s0) V(s1) V(s2) V(s3) V(s4)

Initial V 3 3 2 2 1

3 3 2 2 2.8

Priority 0 0 1.8 1.8 0

Updates 3 3 3.8 3.8 2.8

Priority 2 2 0 0 1.2

Updates 3 4.8 3.8 3.8 2.8

Generalized Prioritized Sweeping [Andre et al 97]

124

 priorityGPS2(s) = ResV (s)

• Instead of estimating residual

– compute it exactly

• Slightly different implementation

– first backup then push!

Intuitions

• Prioritized Sweeping

– if a state’s value changes prioritize its predecessors

• Myopic

• Which state should be backed up?

– state closer to goal?

– or farther from goal?

125

Useless Intermediate Backups?

126

s0

s2

s1

sg
Pr=0.6

a00 s4

s3

Pr=0.4
a01

a21 a1

a20 a40

C=5
a41

a3
C=2

n Vn(s0) Vn(s1) Vn(s2) Vn(s3) Vn(s4)

0 3 3 2 2 1

1 3 3 2 2 2.8

2 3 3 3.8 3.8 2.8

3 4 4.8 3.8 3.8 3.52

4 4.8 4.8 4.52 4.52 3.52

5 5.52 5.52 4.52 4.52 3.808

20 5.99921 5.99921 4.99969 4.99969 3.99969

Improved Prioritized Sweeping
[McMahan&Gordon 05]

127

 priorityIPS(s) =
ResV (s)

V (s)

• Intuition
– Low V(s) states (closer to goal) are higher priority initially

– As residual reduces for those states,
• priority of other states increase

• A specific tradeoff
– sometimes may work well

– sometimes may not work that well

Tradeoff

• Priority queue increases information flow

• Priority queue adds overhead

• If branching factor is high

– each backup may result in many priority updates!

128

Backward VI [Dai&Hansen 07]

• Prioritized VI without priority queue!

• Backup states in reverse order starting from goal

– don‘t repeat a state in an iteration
– other optimizations

• (backup only states in current greedy subgraph)

• Characteristics
– no overhead of priority queue
– good information flow
– doesn‘t capture the intuition:

• higher states be converged before propagating further

129

Comments

• Which algorithm to use?
– Synchronous VI: when states highly interconnected

– PS/GPS: sequential dependencies

– IPS: specific way to tradeoff proximity to goal/info flow

– BVI: better for domains with fewer predecessors

• Prioritized VI is a meta-reasoning algorithm
– reasoning about what to compute!

– costly meta-reasoning can hurt.

130

Uninformed Algorithms

• Definitions

• Fundamental Algorithms

• Prioritized Algorithms

• Partitioned Algorithms

• Other models

131

Partitioning of States

s0

s2

s1

sg
Pr=0.6

a00 s4

s3

Pr=0.4
a01

a21 a1

a20 a40

C=5
a41

a3
C=2

(General) Partitioned VI

133

How to construct a partition?
How many backups to perform per partition?

How to construct priorities?

Topological VI [Dai&Goldsmith 07]

• Identify strongly-connected components

• Perform topological sort of partitions

• Backup partitions to ²-consistency: reverse top. order

134

s0

s2

s1

sg
Pr=0.6

a00 s4

s3

Pr=0.4
a01

a21 a1

a20 a40

C=5
a41

a3
C=2

Other Benefits of Partitioning

• External-memory algorithms

– PEMVI [Dai etal 08, 09]

• partitions live on disk

• get each partition to the disk and backup all states

• Cache-efficient algorithms

– P-EVA algorithm [Wingate&Seppi 04a]

• Parallelized algorithms

– P3VI (Partitioned, Prioritized, Parallel VI) [Wingate&Seppi 04b]

135

Uninformed Algorithms

• Definitions

• Fundamental Algorithms

• Prioritized Algorithms

• Partitioned Algorithms

• Other models

136

Linear Programming for MDPs

137

• |S| variables

• |S||A| constraints
– too costly to solve!

Infinite-Horizon Discounted-Reward MDPs

138

V ¤(s) = max
a2A

X

s02S
T (s; a; s0) [R(s; a; s0) + °V ¤(s0)]

• VI/PI work even better than SSPs!!

– PI does not require a “proper” policy

– Error bounds are tighter

• Example. VI error bound: |V*(s)-V¼(s)| < 2²°/(1-°)

– We can bound #iterations

• polynomial in |S|, |A| and 1/(1-°)

Finite-Horizon MDPs

139

V ¤(s; t) = 0 if t > L

= max
a2A

X

s02S
T (s; a; s0) [R(s; a; s0) + V ¤(s0; t + 1)]

• Finite-Horizon MDPs are acyclic!

– There exists an optimal backup order

• t=Tmax to 0

– Returns optimal values (not just ²-consistent)

– Performs one backup per augmented state

Summary of Uninformed Algorithms

• Definitions

• Fundamental Algorithms
– Bellman Equations is the key

• Prioritized Algorithms
– Different priority functions have different benefits

• Partitioned Algorithms
– Topological analysis, parallelization, external memory

• Other models
– Other popular models similar

140

Outline of the Tutorial

• Introduction

• Fundamentals of MDPs

• Uninformed Algorithms

• Heuristic Search Algorithms

• Approximation Algorithms

• Extension of MDPs

141

(10 mins)

(1+ hr)

(1 hr)

(1 hr)

(1+ hr)

(remaining time)

HEURISTIC SEARCH ALGORITHMS

142

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAA

Heuristic Search Algorithms

• Definitions

• Find & Revise Scheme.

• LAO* and Extensions

• RTDP and Extensions

• Other uses of Heuristics/Bounds

• Heuristic Design

143

Limitations of VI/PI/Extensions

• Scalability
– Memory linear in size of state space

– Time at least polynomial or more

• Polynomial is good, no?
– state spaces are usually huge.

• Think PPDDL.

– if n state vars then 2n states!

• Curse of Dimensionality!

144

Heuristic Search

• Insight 1

– knowledge of a start state to save on computation

~ (all sources shortest path  single source shortest path)

• Insight 2

– additional knowledge in the form of heuristic function

~ (dfs/bfs  A*)

145

Model

• SSP (as before) with an additional start state s0

– denoted by SSPs0

• What is the solution to an SSPs0

• Policy (S !A)?

– are states that are not reachable from s0 relevant?

– states that are never visited (even though reachable)?

146

Partial Policy

• Define Partial policy

– ¼: S’ ! A, where S’µ S

• Define Partial policy closed w.r.t. a state s.

– is a partial policy ¼s

– defined for all states s’ reachable by ¼s starting from s

147

Partial policy closed wrt s0

148

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

s9

Partial policy closed wrt s0

149

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

s9

¼s0(s0)= a1

¼s0(s1)= a2

¼s0(s2)= a1

Is this policy closed wrt s0?

Partial policy closed wrt s0

150

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

s9

¼s0(s0)= a1

¼s0(s1)= a2

¼s0(s2)= a1

¼s0(s6)= a1

Is this policy closed wrt s0?

Policy Graph of ¼s0

151

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

s9

¼s0(s0)= a1

¼s0(s1)= a2

¼s0(s2)= a1

¼s0(s6)= a1

Greedy Policy Graph

• Define greedy policy: ¼V = argmina Q
V(s,a)

• Define greedy partial policy rooted at s0
– Partial policy rooted at s0

– Greedy policy

– denoted by

• Define greedy policy graph
– Policy graph of : denoted by

152

¼Vs0

¼Vs0 GV
s0

Heuristic Function

• h(s): S!R

– estimates V*(s)

– gives an indication about “goodness” of a state

– usually used in initialization V0(s) = h(s)

– helps us avoid seemingly bad states

• Define admissible heuristic

– optimistic

– h(s) · V*(s)

153

Heuristic Search Algorithms

• Definitions

• Find & Revise Scheme.

• LAO* and Extensions

• RTDP and Extensions

• Other uses of Heuristics/Bounds

• Heuristic Design

154

A General Scheme for
Heuristic Search in MDPs

• Two (over)simplified intuitions
– Focus on states in greedy policy wrt V rooted at s0

– Focus on states with residual > ²

• Find & Revise:
– repeat

• find a state that satisfies the two properties above

• perform a Bellman backup

– until no such state remains

155

FIND & REVISE [Bonet&Geffner 03a]

• Convergence to V* is guaranteed

– if heuristic function is admissible

– ~no state gets starved in 1 FIND steps

156

(perform Bellman backups)

F&R and Monotonicity

• Vk ≤p V* ⇒ Vn ≤p V* (Vn monotonic from below)

– If h is admissible: V0 = h(s) ·p V*

) Vn ·p V* (8n)

Q*(s,a1) < Q(s,a2) < Q*(s,a2) aaaa

 a2 can’t be optimal aaaa
157

s
Q(s,a1)=5

.

.

Q(s, a2)=10

.

.

All values < V*, Q* All values = V*, Q*

Heuristic Search Algorithms

• Definitions

• Find & Revise Scheme.

• LAO* and Extensions

• RTDP and Extensions

• Other uses of Heuristics/Bounds

• Heuristic Design

158

159

LAO* family

add s0 to the fringe and to greedy policy graph

repeat
 FIND: expand some states on the fringe (in greedy graph)
 initialize all new states by their heuristic value
 choose a subset of affected states
 perform some REVISE computations on this subset
 recompute the greedy graph

until greedy graph has no fringe & residuals in greedy
graph small

output the greedy graph as the final policy

160

LAO* [Hansen&Zilberstein 98]

add s0 to the fringe and to greedy policy graph

repeat
 FIND: expand best state s on the fringe (in greedy graph)
 initialize all new states by their heuristic value
 subset = all states in expanded graph that can reach s
 perform PI on this subset
 recompute the greedy graph

until greedy graph has no fringe & residuals in greedy
graph small

output the greedy graph as the final policy

161

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

add s0 in the fringe and in greedy graph

s0
V(s0) = h(s0)

162

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0
V(s0) = h(s0)

FIND: expand some states on the fringe (in greedy graph)

163

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform PI on this subset

s0

s1 s2 s3 s4

V(s0)

h h h h

164

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform PI on this subset

recompute the greedy graph

s0

s1 s2 s3 s4

V(s0)

h h h h

165

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

s1 s2 s3 s4

s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform PI on this subset

recompute the greedy graph

h h h h

h h

V(s0)

166

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

s1 s2 s3 s4

s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform PI on this subset

recompute the greedy graph

h h h h

h h

V(s0)

167

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

s1 s2 s3 s4

s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform PI on this subset

recompute the greedy graph

h h V h

h h

V

168

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

s1 s2 s3 s4

s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform PI on this subset

recompute the greedy graph

h h V h

h h

V

169

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform PI on this subset

recompute the greedy graph

h h V h

h h

V

V

h 0

170

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform PI on this subset

recompute the greedy graph

h h V h

h h

V

V

h 0

171

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform PI on this subset

recompute the greedy graph

V h V h

h h

V

V

h 0

172

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform PI on this subset

recompute the greedy graph

V h V h

h h

V

V

h 0

173

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform PI on this subset

recompute the greedy graph

V V V h

h h

V

V

h 0

174

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform PI on this subset

recompute the greedy graph

V V V h

h h

V

V

h 0

175

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

output the greedy graph as the final policy

V V V h

V h

V

V

h 0

176

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

output the greedy graph as the final policy

V V V h

V h

V

V

h 0

177

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

s0

Sg

s1 s2 s3 s4

s5 s6 s7

s4 was never expanded
s8 was never touched

V V V h

V h

V

V

h 0 s8

178

LAO* [Hansen&Zilberstein 98]

add s0 to the fringe and to greedy policy graph

repeat
 FIND: expand best state s on the fringe (in greedy graph)
 initialize all new states by their heuristic value
 subset = all states in expanded graph that can reach s
 perform PI on this subset
 recompute the greedy graph

until greedy graph has no fringe

output the greedy graph as the final policy

one expansion

lot of computation

179

Optimizations in LAO*

add s0 to the fringe and to greedy policy graph

repeat
 FIND: expand best state s on the fringe (in greedy graph)
 initialize all new states by their heuristic value
 subset = all states in expanded graph that can reach s
 VI iterations until greedy graph changes (or low residuals)
 recompute the greedy graph

until greedy graph has no fringe

output the greedy graph as the final policy

180

Optimizations in LAO*

add s0 to the fringe and to greedy policy graph

repeat
 FIND: expand all states in greedy fringe
 initialize all new states by their heuristic value
 subset = all states in expanded graph that can reach s
 VI iterations until greedy graph changes (or low residuals)
 recompute the greedy graph

until greedy graph has no fringe

output the greedy graph as the final policy

181

iLAO* [Hansen&Zilberstein 01]

add s0 to the fringe and to greedy policy graph

repeat
 FIND: expand all states in greedy fringe
 initialize all new states by their heuristic value
 subset = all states in expanded graph that can reach s
 only one backup per state in greedy graph
 recompute the greedy graph

until greedy graph has no fringe

output the greedy graph as the final policy

in what order?
(fringe  start)
DFS postorder

• LAO* may spend huge time until a goal is found

– guided only by s0 and heuristic

• LAO* in the reverse graph

– guided only by goal and heuristic

• Properties

– Works when 1 or handful of goal states

– May help in domains with small fan in

183

Reverse LAO* [Dai&Goldsmith 06]

• Go in both directions from start state and goal

• Stop when a bridge is found

184

Bidirectional LAO* [Dai&Goldsmith 06]

regular graph

soln:(shortest) path

A*

acyclic AND/OR graph

soln:(expected shortest)

 acyclic graph

AO* [Nilsson’71]

cyclic AND/OR graph

soln:(expected shortest)

 cyclic graph

LAO* [Hansen&Zil.’98]

All algorithms able to make effective use of reachability information!

A*  LAO*

186

AO* for Acyclic MDPs [Nilsson 71]

add s0 to the fringe and to greedy policy graph

repeat
 FIND: expand best state s on the fringe (in greedy graph)
 initialize all new states by their heuristic value
 subset = all states in expanded graph that can reach s
 a single backup pass from fringe states to start state
 recompute the greedy graph

until greedy graph has no fringe

output the greedy graph as the final policy

Heuristic Search Algorithms

• Definitions

• Find & Revise Scheme.

• LAO* and Extensions

• RTDP and Extensions

• Other uses of Heuristics/Bounds

• Heuristic Design

187

Real Time Dynamic Programming
[Barto et al 95]

• Original Motivation
– agent acting in the real world

• Trial
– simulate greedy policy starting from start state;

– perform Bellman backup on visited states

– stop when you hit the goal

• RTDP: repeat trials forever
– Converges in the limit #trials ! 1

188

Trial

189

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

Trial

190

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

h h h h

V

start at start state

repeat

 perform a Bellman backup

 simulate greedy action

Trial

191

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

h h h h

V

start at start state

repeat

 perform a Bellman backup

 simulate greedy action

h h

Trial

192

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

h h V h

V

start at start state

repeat

 perform a Bellman backup

 simulate greedy action

h h

Trial

193

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

h h V h

V

start at start state

repeat

 perform a Bellman backup

 simulate greedy action

h h

Trial

194

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

h h V h

V

start at start state

repeat

 perform a Bellman backup

 simulate greedy action

V h

Trial

195

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

h h V h

V

start at start state

repeat

 perform a Bellman backup

 simulate greedy action

until hit the goal

V h

Trial

196

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

h h V h

V

start at start state

repeat

 perform a Bellman backup

 simulate greedy action

until hit the goal

V h

Backup all states
on trajectory

RTDP

repeat
forever

Real Time Dynamic Programming
[Barto et al 95]

• Original Motivation
– agent acting in the real world

• Trial
– simulate greedy policy starting from start state;

– perform Bellman backup on visited states

– stop when you hit the goal

• RTDP: repeat trials forever
– Converges in the limit #trials ! 1

197

No termination
condition!

RTDP Family of Algorithms

repeat
 s Ã s0

 repeat //trials
 REVISE s; identify agreedy

 FIND: pick s’ s.t. T(s, agreedy, s’) > 0
 s Ã s’
 until s 2 G

until termination test

 198

• Admissible heuristic & monotonicity

⇒ V(s) · V*(s)

⇒ Q(s,a) · Q*(s,a)

• Label a state s as solved

– if V(s) has converged

best action

ResV(s) < ²

) V(s) won’t change!
label s as solved

sg s

Labeling (contd)

200

best action

ResV(s) < ²

s' already solved
) V(s) won’t change!

label s as solved

sg s

s'

Labeling (contd)

201

best action

ResV(s) < ²

s' already solved

) V(s) won’t change!

label s as solved

sg s

s'

 best action

ResV(s) < ²

ResV(s’) < ²

V(s), V(s’) won’t change!
label s, s’ as solved

sg s

s'
best action

Labeled RTDP [Bonet&Geffner 03b]

repeat
 s Ã s0
 label all goal states as solved

 repeat //trials
 REVISE s; identify agreedy

 FIND: sample s’ from T(s, agreedy, s’)
 s Ã s’
 until s is solved

 for all states s in the trial
 try to label s as solved
until s0 is solved

202

• terminates in finite time

– due to labeling procedure

• anytime

– focuses attention on more probable states

• fast convergence

– focuses attention on unconverged states

 203

LRTDP

Picking a Successor Take 2

• Labeled RTDP/RTDP: sample s’ / T(s, agreedy, s’)

– Adv: more probable states are explored first

– Labeling Adv: no time wasted on converged states

– Disadv: labeling is a hard constraint

– Disadv: sampling ignores “amount” of convergence

• If we knew how much V(s) is expected to change?

– sample s’ / expected change

204

Upper Bounds in SSPs

• RTDP/LAO* maintain lower bounds

– call it Vl

• Additionally associate upper bound with s

– Vu(s) ¸ V*(s)

• Define gap(s) = Vu(s) – Vl(s)

– low gap(s): more converged a state

– high gap(s): more expected change in its value

205

Backups on Bounds

• Recall monotonicity

• Backups on lower bound
– continue to be lower bounds

• Backups on upper bound
– continues to be upper bounds

• Intuitively
– Vl will increase to converge to V*
– Vu will decrease to converge to V*

206

Bounded RTDP [McMahan et al 05]

repeat
 s Ã s0

 repeat //trials
 identify agreedy based on Vl

 FIND: sample s’ / T(s, agreedy, s’).gap(s’)
 s Ã s’
 until gap(s) < ²

 for all states s in trial in reverse order
 REVISE s

until gap(s0) < ²

207

Focused RTDP [Smith&Simmons 06]

• Similar to Bounded RTDP except
– a more sophisticated definition of priority that

combines gap and prob. of reaching the state

– adaptively increasing the max-trial length

208

Picking a Successor Take 3

[Slide adapted from Scott Sanner] 209

Q(s,a1) Q(s,a2)

Q(s,a2) Q(s,a1)

Q(s,a2) Q(s,a1)

Q(s,a2) Q(s,a1)

• What is the expected value of knowing V(s’)

• Estimates EVPI(s’)

– using Bayesian updates

– picks s’ with maximum EVPI

210

Value of Perfect Information RTDP [Sanner et al 09]

Heuristic Search Algorithms

• Definitions

• Find & Revise Scheme.

• LAO* and Extensions

• RTDP and Extensions

• Other uses of Heuristics/Bounds

• Heuristic Design

211

Action Elimination

If Ql(s,a1) > Vu(s) then a1 cannot be optimal for s.

212

Q(s,a1) Q(s,a2)

Topological VI [Dai&Goldsmith 07]

• Identify strongly-connected components

• Perform topological sort of partitions

• Backup partitions to ²-consistency: reverse top. order

213

s0

s2

s1

sg
Pr=0.6

a00 s4

s3

Pr=0.4
a01

a21 a1

a20 a40

C=5
a41

a3
C=2

Topological VI [Dai&Goldsmith 07]

• Identify strongly-connected components

• Perform topological sort of partitions

• Backup partitions to ²-consistency: reverse top. order

214

s0

s2

s1

sg
Pr=0.6

a00 s4

s3

Pr=0.4
a01

a21 a1

a20 a40

C=5
a41

a3
C=2

Focused Topological VI [Dai et al 09]

• Topological VI

– hopes there are many small connected components

– can‘t handle reversible domains…

• FTVI

– initializes Vl and Vu

– LAO*-style iterations to update Vl and Vu

– eliminates actions using action-elimination

– Runs TVI on the resulting graph

215

Factors Affecting Heuristic Search

• Quality of heuristic

• #Goal states

• Search Depth

216

One Set of Experiments [Dai et al 09]

217

What if the number of reachable states is large?

Heuristic Search Algorithms

• Definitions

• Find & Revise Scheme.

• LAO* and Extensions

• RTDP and Extensions

• Other uses of Heuristics/Bounds

• Heuristic Design

218

Admissible Heuristics

• Basic idea

– Relax probabilistic domain to deterministic domain

– Use heuristics(classical planning)

• All-outcome Determinization

– For each outcome create a different action

• Admissible Heuristics

– Cheapest cost solution for determinized domain

– Classical heuristics over determinized domain

219

s1 s

s2

a

s1 s

s2

a1

a2

Summary of Heuristic Search

• Definitions

• Find & Revise Scheme
– General scheme for heuristic search

• LAO* and Extensions
– LAO*, iLAO*, RLAO*, BLAO*

• RTDP and Extensions
– RTDP, LRTDP, BRTDP, FRTDP, VPI-RTDP

• Other uses of Heuristics/Bounds
– Action Elimination, FTVI

• Heuristic Design
– Determinization-based heuristics

220

A QUICK DETOUR

221

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAA

Domains with Deadends

• Dead-end state
– a state from which goal is unreachable

• Common in real-world
– rover

– traffic

– exploding blocksworld!

• SSP/SSPs0 do not model such domains
– assumption of at-least one proper policy

222

Modeling Deadends

• How should we model dead-end states?
– V(s) is undefined for deadends

) VI does not converge!!

• Proposal 1
– Add a penalty of reaching the dead-end state = P

• Is everything well-formed?

• Are there any issues with the model?

223

Simple Dead-end Penalty P

• V*(s) = ²(P+1) + ².0 + (1-²).P

 = P + ²

224

d s

sg

a Pr=1-²

Pr=²

C=²(P+1)

V(non-deadend) > P

Proposal 2

• fSSPDE: Finite-Penalty SSP with Deadends

• Agent allowed to stop at any state
– by paying a price = penalty P

• Equivalent to SSP with special astop action
– applicable in each state

– leads directly to goal by paying cost P

• SSP = fSSPDE

 225

V ¤(s) = min

Ã
P;min

a2A

X

s02S
T (s; a; s0)C(s; a; s0) + V ¤(s0)]

!

fSSPDE Algorithms

• All SSP algorithms applicable…

– PI works for all domains

• Initial proper policy: (all states: astop)

– Other algorithms also work.

• Efficiency: unknown so far…

– Efficiency hit due to presence of deadends

– Efficiency hit due to magnitude of P

– Efficiency hit due to change of topology (e.g., TVI)

226

SSPs0 with Dead-ends

• SSPADE: SSP with Avoidable Dead-ends [Kolobov et al 12]
– dead-ends can be avoided from s0

– there exists a proper (partial) policy rooted at s0

• Heuristic Search Algorithms
– LAO*: may not converge

• V(dead-ends) will get unbounded: VI may not converge

– iLAO*: will converge
• only 1 backup) greedy policy will exit dead-ends

– RTDP/LRTDP: may not converge
• once stuck in dead-end  won’t reach the goal
• add max #steps in a trial… how many? adaptive?

227

Unavoidable Dead-ends

• fSSPUDE: Finite-Penalty SSP with Unavoidable

Dead-Ends [Kolobov et al 12]
– same as fSSPDE but now with a start state

• Same transformation applies

– add an astop action from every state

• SSPs0 = fSSPUDE

228

Outline of the Tutorial

• Introduction

• Fundamentals of MDPs

• Uninformed Algorithms

• Heuristic Search Algorithms

• Approximation Algorithms

• Extension of MDPs

229

(10 mins)

(1+ hr)

(1 hr)

(1 hr)

(1+ hr)

(remaining time)

APPROXIMATION ALGORITHMS

230

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAA

Motivation

• Even π* closed wr.t. s0 is often too large to fit in memory…

• … and/or too slow to compute …

• … for MDPs with complicated characteristics
– Large branching factors/high-entropy transition function

– Large distance to goal

– Etc.

• Must sacrifice optimality to get a “good enough” solution

231

Overview

232

Determinization-based
techniques

Monte-Carlo planning

Heuristic search with
inadmissible

heuristics

Hybridized
planning

Hierarchical
planning

Dimensionality
reduction

Offline Online

Overview

• Not a “golden standard” classification

– In some aspects, arguable

– Others possible, e.g., optimal in the limit vs. suboptimal in the limit

• All techniques assume factored fSSPUDE MDPs (SSPs0 MDPs
with a finite dead-end penalty)

• Approaches differ in the quality aspect they sacrifice

– Probability of reaching the goal

– Expected cost of reaching the goal

– Both

233

Approximation Algorithms

Overview

• Online Algorithms
– Determinization-based Algorithms

– Monte-Carlo Planning

• Offline Algorithms
– Heuristic Search with Inadmissible Heuristics

– Dimensionality Reduction

– Hierarchical Planning

– Hybridized Planning

234

Online Algorithms: Motivation

• Defining characteristics:

– Planning + execution are
interleaved

– Little time to plan
• Need to be fast!

– Worthwhile to compute
policy only for visited states
• Would be wasteful for all

states

235

Determinization-based Techniques

• A way to get a quick’n’dirty solution:

– Turn the MDP into a classical planning problem

– Classical planners are very fast

• Main idea:

1. Compile MDP into its determinization

2. Generate plans in the determinization

3. Use the plans to choose an action in the curr. state

4. Execute, repeat

236

All-Outcome Determinization

Each outcome of each probabilistic action  separate action

237

P = 9/10

P = 1/10

Most-Likely-Outcome Determinization

238

P = 4/10
G
e
t
H

P = 6/10

FF-Replan: Overview & Example
1) Find a goal plan in

a determinization

239

2) Try executing it

in the original MDP

3) Replan&repeat if

unexpected outcome

Yoon, Fern, Givan, 2007

FF-Replan: Details

• Uses either the AO or the MLO determinization

– MLO is smaller/easier to solve, but misses possible plans

– AO contains all possible plans, but bigger/harder to solve

• Uses the FF planner to solve the determinization

– Super fast

– Other fast planners, e.g., LAMA, possible

• Does not cache computed plans

– Recomputes the plan in the 3rd step in the example

240

FF-Replan: Theoretical Properties

• Optimizes the MAXPROB criterion – PG of reaching the goal
– In SSPs, this is always 1.0 – FF-Replan always tries to avoid cycles!

– Super-efficient on SSPs w/o dead ends

– Largely ignores expected cost

• Ignores probability of deviation from the found plan
– Results in long-winded paths to the goal

– Troubled by probabilistically interesting MDPs [Little, Thiebaux, 2007]
• There, an unexpected outcome may lead to catastrophic consequences

• In particular, breaks down in the presence of dead ends
– Originally designed for MDPs without them

241

g

FF-Replan and Dead Ends

242

Deterministic plan: Its possible execution:

b

Putting “Probabilistic” Back Into Planning

• FF-Replan is oblivious to probabilities

– Its main undoing

– How do we take them into account?

• Sample determinizations probabilistically!

– Hopefully, probabilistically unlikely plans will be rarely found

• Basic idea behind FF-Hindsight

243

FF-Hindsight: Overview
(Estimating Q-Value, Q(s,a))

1. For Each Action A, Draw Future Samples

2. Solve Time-Dependent Classical Problems

3. Aggregate the solutions for each action

4. Select the action with best aggregation

S: Current State, A(S) → S’

Each Sample is a Deterministic Planning Problem

See if you have goal-reaching solutions, estimate Q(s,A)

Max A Q(s,A)

244

Slide courtesy of S. Yoon, A. Fern, R. Givan, and R. Kambhampati

FF-Hindsight: Example
Action

Probabilistic
Outcome

Time 1

Time 2

Goal State

245

Action

State

Objective: Optimize MAXPROB criterion

Dead End

Left Outcomes
are more likely

A1 A2

A1 A2 A1 A2 A1 A2 A1 A2

I

Slide courtesy of S. Yoon, A. Fern, R. Givan, and R. Kambhampati

FF-Hindsight: Sampling a Future-1
Action

Probabilistic
Outcome

Time 1

Time 2

Goal State

246

Action

State

Maximize Goal Achievement

Dead End A1: 1
A2: 0

Left Outcomes
are more likely

A1 A2

A1 A2 A1 A2 A1 A2 A1 A2

I

Slide courtesy of S. Yoon, A. Fern, R. Givan, and R. Kambhampati

FF-Hindsight: Sampling a Future-2
Action

Probabilistic
Outcome

Time 1

Time 2

Goal State

247

Action

State

Maximize Goal Achievement

Dead End

Left Outcomes
are more likely

A1: 2
A2: 1

A1 A2

A1 A2 A1 A2 A1 A2 A1 A2

I

Slide courtesy of S. Yoon, A. Fern, R. Givan, and R. Kambhampati

FF-Hindsight: Sampling a Future-3
Action

Probabilistic
Outcome

Time 1

Time 2

Goal State

248

Action

State

Maximize Goal Achievement

Dead End

Left Outcomes
are more likely

A1: 2
A2: 1

A1 A2

A1 A2 A1 A2 A1 A2 A1 A2

I

FF-Hindsight: Details & Theoretical Properties

• For each s, FF-Hindsight samples w L-horizon futures FL
– In factored MDPs, amounts to choosing a’s outcome for each h

• Futures are solved by the FF planner
– Fast, since they are much smaller than the AO determinization

• With enough futures, will find MAXPROB-optimal policy
– If horizon H is large enough and a few other assumptions

• Much better than FF-Replan on MDPs with dead ends
– But also slower – lots of FF invocations!

250

Providing Solution Guarantees

• FF-Replan provides no solution guarantees

– May have PG = 0 on SSPs with dead ends, even if P*G > 0

– Wastes solutions: generates them, then forgets them

• FF-Hindsight provides some theoretical guarantees

– Practical implementations distinct from theory

– Wastes solutions: generates them, then forgets them

• RFF (Robust FF) provides quality guarantees in practice

– Constructs a policy tree out of deterministic plans

251

RFF: Overview

252

Make sure the probability of
ending up in an unknown

state is < ε

F. Teichteil-Königsbuch, U. Kuter, G. Infantes, AAMAS’10

RFF: Initialization

253

S0 G

1. Generate either the AO or MLO determinization. Start with the
policy graph consisting of the initial state s0 and all goal states G

RFF: Finding an Initial Plan

254

S0 G

2. Run FF on the chosen determinization and add all the states
along the found plan to the policy graph.

RFF: Adding Alternative Outcomes

255

S0 G

3. Augment the graph with states to which other outcomes of the
actions in the found plan could lead and that are not in the graph
already. They are the policy graph’s fringe states.

RFF: Run VI (Optional)

256

S0 G

4. Run VI to propagate heuristic values of the newly added states.
This possibly changes the graph’s fringe and helps avoid dead ends!

RFF: Computing Replanning Probability

257

S0 G

5. Estimate the probability P(failure) of reaching the fringe states
(e.g., using Monte-Carlo sampling) from s0. This is the current
partial policy’s failure probability w.r.t. s0.

 If P(failure) > ε

P(failure) = ?

Else, done!

RFF: Finding Plans from the Fringe

258

S0 G

6. From each of the fringe states, run FF to find a plan to reach
the goal or one of the states already in the policy graph.

Go back to step 3: Adding Alternative Outcomes

RFF: Details

• Can use either the AO or the MLO determinization

– Slower, but better solutions with AO

• When finding plans in st. 5, can set graph states as goals

– Or the MDP goals themselves

• Using the optional VI step is beneficial for solution quality

– Without this step, actions chosen under FF guidance

– With it – under VI guidance

– But can be expensive

259

RFF: Theoretical Properties

• Fast

– FF-Replan forgets computed policies

– RFF essentially memorizes them

• When using AO determinization, guaranteed to find a
policy that with P = 1 - ε will not need replanning

260

Anticipatory Vs. Preemptive Planning

• FF-Hindsight and RFF use an anticipatory strategy

– Try to foresee deviations from a deterministic plan

• Can also try to use deterministic plans that will likely
not be deviated from

– Main idea of HMDPP

– Implemented with a self-loop determinization

261

Self-Loop Determinization

262 262

0.1

T = 0.9

C = 1 1

T = 1.0

C = 1/0.9 = 1.11

T = 1.0
C = 1/0.1 = 10

Self-Loop Determinization

• Like AO determinization, but modifies action costs

– Assumes that getting “unexpected” outcome when executing a
deterministic plan means staying in the current state

– In SL det, CSL(Outcome(a, i)) is the expected cost of repeating a
in the MDP to get Outcome(a, i).

– Thus, CSL(Outcome(a, i)) = C(a) / T(Outcome(a, i))

• “Unlikely” deterministic plans look expensive in SL det.!

• Estimate hSL (s’) ≈ cost of the cheapest goal plan in the SL det.

263

HMDPP: Overview

264

1. For Each Action A, Estimate QSL(s, a) and Qpdb(s, a)
• QSL(s, a) = C(a) + ∑s’[T(s,a,s’) + hSL (s’)]
• Qpdb(s, a) = C(a) + ∑s’[T(s,a,s’) + hpdb (s’)]

• hpdb (s’) helps recognize dead ends

2. Choose an action based on a combination of QSL(s, a)
and Qpdb(s, a)

S: Current State, A(S) → S’

Summary of Determinization Approaches

• Revolutionized SSP MDPs approximation techniques
– Harnessed the speed of classical planners
– Eventually, “learned” to take into account probabilities
– Help optimize for a “proxy” criterion, MAXPROB

• Classical planners help by quickly finding paths to a goal
– Takes “probabilistic” MDP solvers a while to find them on their own

• However…
– Still almost completely disregard expect cost of a solution
– Often assume uniform action costs (since many classical planners do)
– So far, not useful on FH and IHDR MDPs turned into SSPs

• Reaching a goal in them is trivial, need to approximate reward more directly

– Impractical on problems with large numbers of outcomes

265

Approximation Algorithms

Overview

• Online Algorithms
– Determinization-based Algorithms

– Monte-Carlo Planning

• Offline Algorithms
– Heuristic Search with Inadmissible Heuristics

– Dimensionality Reduction

– Hierarchical Planning

– Hybridized Planning

266

Monte-Carlo Planning

• Recall the Sysadmin problem:

267

Restart(Ser2)

Restart(Ser1)

Restart(Ser3)

P(Ser1
t |Restartt-1(Ser1), Ser1

t-1, Ser2
t-1)

P(Ser2
t |Restartt-1(Ser2), Ser1

t-1, Ser2
t-1, Ser3

t-1)

P(Ser3
t |Restartt-1(Ser3), Ser2

t-1, Ser3
t-1)

Time t-1 Time t

T: A: R: ∑i [Seri = ↑]

Monte-Carlo Planning: Motivation

• Characteristics of Sysadmin:

– FH MDP turned SSPs0 MDP
• Reaching the goal is trivial, determinization approaches not really helpful

– Enormous reachable state space

– High-entropy T (2|X| outcomes per action, many likely ones)
• Building determinizations can be super-expensive

• Doing Bellman backups can be super-expensive

• Try Monte-Carlo planning

– Does not manipulate T or C/R explicitly – no Bellman backups

– Relies on a world simulator – indep. of MDP description size

268

UCT: A Monte-Carlo Planning Algorithm

• UCT [Kocsis & Szepesvari, 2006] computes a solution by
simulating the current best policy and improving it
– Similar principle as RTDP

– But action selection, value updates, and guarantees are different

• Success stories:
– Go (thought impossible in ‘05, human grandmaster level at 9x9 in ‘08)

– Klondike Solitaire (wins 40% of games)

– General Game Playing Competition

– Real-Time Strategy Games

– Probabilistic Planning Competition

– The list is growing…

269

Current World State

Rollout
policy

Terminal
(reward = 1)

1

1

1

1

At a leaf node perform a random rollout

Initially tree is single leaf

UCT Example

Slide courtesy of A. Fern
270

Current World State

1

1

1

1

Must select each action at a node at least once

0

Rollout
Policy

Terminal
(reward = 0)

Slide courtesy of A. Fern
271

UCT Example

Current World State

1

1

1

1

Must select each action at a node at least once

0

0

0

0

Slide courtesy of A. Fern
272

UCT Example

Current World State

1

1

1

1

0

0

0

0

When all node actions tried once, select action according to tree policy

Tree Policy

Slide courtesy of A. Fern
273

UCT Example

Can throw away
(“forget”) the
states beyond
the tree policy

that were
visited by the

rollouts

Current World State

1

1

1

1

When all node actions tried once, select action according to tree policy

0

0

0

0

Tree Policy

0

Rollout
Policy

Slide courtesy of A. Fern
274

UCT Example

Current World State

1

1

1

1/2

When all node actions tried once, select action according to tree policy

0

0

0

0
Tree
Policy

0

0

0

0

What is an appropriate
tree policy?
Rollout policy?

Slide courtesy of A. Fern
275

UCT Example

• Rollout policy:

– Basic UCT uses random

• Tree policy:
– Q(s,a) : average reward received in current trajectories after

taking action a in state s

– n(s,a) : number of times action a taken in s

– n(s) : number of times state s encountered

),(

)(ln
),(maxarg)(

asn

sn
casQs aUCT 

Theoretical constant that must
be selected empirically in practice.

Slide courtesy of A. Fern
276

UCT Details

Exploration term

Current World State

1

1

1

1/2

When all node actions tried once, select action according to tree policy

0

0

0

0
Tree
Policy

0

0

0

0

a1 a2
),(

)(ln
),(maxarg)(

asn

sn
casQs aUCT 

Slide courtesy of A. Fern
277

UCT Example

• To select an action at a state s
– Build a tree using N iterations of Monte-Carlo tree search

• Default policy is uniform random up to level L
• Tree policy is based on bandit rule

– Select action that maximizes Q(s,a)
(note that this final action selection does not take the exploration
term into account, just the Q-value estimate)

• The more simulations, the more accurate

– Guaranteed to pick suboptimal actions exponentially rarely after
convergence (under some assumptions)

• Possible improvements

– Initialize the state-action pairs with a heuristic (need to pick a weight)
– Think of a better-than-random rollout policy

Slide courtesy of A. Fern
278

UCT Summary & Theoretical Properties

Approximation Algorithms

Overview

Online Algorithms
– Determinization-based Algorithms

– Monte-Carlo Planning

• Offline Algorithms
– Heuristic Search with Inadmissible Heuristics

– Dimensionality Reduction

– Hierarchical Planning

– Hybridized Planning

279

Moving on to Approximate Offline Planning

• Useful when there is no time to plan as you go …

– E.g., when playing a fast-paced game

• … and not much time/space to plan in advance, either

• Like in online planning, oftern, no quality guarantees

• Some online methods (e.g., MCP) can be used offline too

280

Inadmissible Heuristic Search

• Why?
– May require less space than admissible heuristic search

• Sometimes, intuitive suboptimal policies are small
– E.g., taking a more expensive direct flight vs a cheaper 2-leg

• Apriori, no reason to expect an arbitrary inadmissible
heuristic to yield a small solution
– But, empirically, those based on determinization often do

• Same algos as for admissible HS, only heuristics differ

281

The FF Heuristic

• Taken directly from deterministic planning
– A major component of the formidable FF planner

• Uses the all-outcome determinization of a PPDDL MDP

– But ignores the delete effects (negative literals in action outcomes)
– Actions never “unachieve” literals, always make progress to goal

• hFF(s) = approximate cost of a plan from s to a goal in the
delete relaxation

• Very fast due to using the delete relaxation

• Very informative

282

Hoffmann and Nebel, 2001

The GOTH Heuristic

• Designed for MDPs at the start (not adapted classical)

• Motivation: would be good to estimate h(s) as cost of a
non-relaxed deterministic goal plan from s

– But too expensive to call a classical planner from every s

– Instead, call from only a few s and generalize estimates to others

• Uses AO determinization and the FF planner

283

Kolobov, Mausam, Weld, 2010a

GOTH Overview

284

AOdet(M)

Start running an MDP
solver (e.g., LRTDP)

MDP M

State s

Policy

hGOTH (s)

GOTH

Evaluate s

Plan prec & cost

Determinize M

Plan

Run a classical planner (e.g., FF)

Regress
plan SixthSense

State s

Dead End

Nogoods

Regressing Trajectories

285

Plan
preconditions

 = 1

 = 2

Precondition
costs

Plan Preconditions

286

Nogoods

287

Nogood

Kolobov, Mausam, Weld, 2010b

288

Computing Nogoods

• Machine learning algorithm

– Adaptively scheduled generate-and-test procedure

• Fast, sound

• Beyond the scope of this tutorial…

Estimating State Values

• Intuition

– Each plan precondition cost is a “candidate”
heuristic value

• Define hGOTH(s) as MIN of all available plan precondition
values applicable in s

– If none applicable in s, run a classical planner and find some

– Amortizes the cost of classical planning across many states

289

Open Questions in Inadmissible HS

• hGOTH is still much more expensive to compute than hFF…

• … but also more informative, so LRTDP+hGOTH is more
space/time efficient than LRTDP+hFF on most benchmarks

• Still not clear when and why determinization-based
inadmissible heuristics appear to work well
– Because they guide to goals along short routes?

– Due to an experimental bias (MDPs with uniform action costs)?

• Need more research to figure it out…

290

Approximation Algorithms

Overview

Online Algorithms
– Determinization-based Algorithms

– Monte-Carlo Planning

• Offline Algorithms
– Heuristic Search with Inadmissible Heuristics

– Dimensionality Reduction

– Hierarchical Planning

– Hybridized Planning

291

Dimensionality Reduction: Motivation

• No approximate methods so far explicitly try to save space
– Inadmissible HS can easily run out of memory

– MCP runs out of space unless allowed to “forget” visited states

• Dimenstionality reduction attempts to do exactly that
– Insight: V* and π* are functions of ~|S| parameters (states)

– Replace it with an approximation with r << |S| params …

– … in order to save space

• How to do it?
– Factored representations are crucial for this

– View V/π as functions of state variables, not states themselves!

292

ReTrASE

• Largely similar to hGOTH
– Uses preconditions of deterministic plan to evaluate states

• For each plan precondition p, defines a basis function

– Bp(s) = 1 iff p holds in s, ∞ otherwise

• Represents V(s) = minp wpBp(s)
– Thus, the parameters are wp for each basis function
– Problem boils down to learning wp
– Does this with modified RTDP

• Crucial observation: # plan preconditions sufficient for
representing V is typically much smaller than |S|
– Because one plan precondition can hold in several states
– Hence, the problem dimension is reduced!

293

Kolobov, Mausam, Weld, 2009

ReTrASE Theoretical Properties

• Empirically, gives a large reduction in memory vs LRTDP

• Produces good policies (in terms of MAXPROB) when/if
converges

• Not guaranteed to converge (weights may oscillate)

• No convergence detection/stopping criterion

295

Approximate PI/LP: Motivation

• ReTrASE considers a very restricted type of basis functions

– Capture goal reachability information

– Not appropriate in FH and IHDR MDPs; e.g., in Sysadmin:

296

Restart(Ser2)

Restart(Ser1)

Restart(Ser3)

Time t-1 Time t

R(s) = ∑i [Seri = ↑]

A server is less likely
to go down if its
neighbors are up

State value ~increases
with the number of

running servers!

Approximate PI/LP: Motivation

• Define basis function bi(s) = 1 if Seri = ↑, 0 otherwise

• In Sysadmin (and other MDPs), good to let V(s)=∑iwi bi(s)

– A linear value function approximation

• If general, if a user gives a set B of basis functions, how
do we pick w1, …, w|B| s.t. |V* - ∑iwi bi| is the smallest?

– Use API/ALP!

297

Approximate Policy Iteration

• Assumes IHDR MDPs

• Reminder: Policy Iteration

– Policy evaluation

– Policy improvement

• Approximate Policy Iteration

– Policy evaluation: compute the best linear approx. of Vπ

– Policy improvement: same as for PI

298

Approximate Policy Iteration

• To compute the best linear approximation, find

• Linear program in |B| variables and 2|S| constraints

• Does API converge?

– In theory, no; can oscillate if linear approx. for some policies coincide

– In practice, usually, yes

– If converges, can bound solution quality

299

A linear
approximation

toVπ

Bellman backup
applied to the linear
approximation Vπ

Guestrin, Koller, Parr, Venkataraman, 2003

Approximate Linear Programming

• Same principle as API: replace V(s) with ∑iwi bi(s) in LP

• Linear program in |B| variables and |S||A| constraints

• But wait a second…

– We have at least one constraint per state! Solution dimension is
reduced, but finding solution is still at least linear in |S|!

300

Making API and ALP More Efficient

• Insight: assume each b depends on at most z << |X| vars

• Then, can reformulate LPs with only O(2z) constraints

– Much smaller than O(2|X|)

• Very nontrivial…

301

FPG

• Directly learns a policy, not a value function

• For each action, defines a desirability function

• Mapping from state variable values to action “quality”
– Represented as a neural network

– Parameters to learn are network weights θa,1, …, θa,m for each a
302

X1 Xn … …

fa (X1, …, Xn)

θa,1 θa,2 θa,m-1 θa,m θa, …

θa, …

[Buffet and Aberdeen, 2006, 2009]

FPG

• Policy (distribution over actions) is given by a softmax

• To learn the parameters:

– Run trials (similar to RTDP)

– After taking each action, compute the gradient w.r.t. weights

– Adjust weights in the direction of the gradient

– Makes actions causing expensive trajectories to be less desirable

303

FPG Details & Theoretical Properties

• Can speed up by using FF to guide trajectories to the goal

• Gradient is computed approximately

• Not guaranteed to converge to the optimal policy

• Nonetheless, works well

304

Approximation Algorithms

Overview

Online Algorithms
– Determinization-based Algorithms

– Monte-Carlo Planning

• Offline Algorithms
– Heuristic Search with Inadmissible Heuristics

– Dimensionality Reduction

– Hierarchical Planning

– Hybridized Planning

305

Hierarchical Planning: Motivation

• Some MDPs are too hard to solve w/o prior knowledge

– Also, arbitrary policies for such MDPs may be hard to interpret

• Need a way to bias the planner towards “good” policies

– And to help the planner by providing guidance

• That’s what hierarchical planning does

– Given some prespecified (e.g., by the user) parts of a policy …

– … planner “fills in the details”

– Essentially, breaks up a large problem into smaller ones

306

Hierarchical Planning with Options

• Suppose a robot knows precomputed policies (options)
for some primitive behaviors

307

Hierarchical Planning with Options

• Options are almost like actions, but their transition
function needs to be computed

• Suppose you want to teach the robot how to dance

• You provide a hierarchical planner with options for the
robot’s primitive behaviors

• Planner estimates the transition function and computes a
policy for dancing that uses options as subroutines.

308

Task Hierarchies

• The user breaks down a task into a hierarchy of subgoals

• The planner chooses which subgoals to achieve at each level,
and how

– Subgoals are just hints

– Not all subgoals may be necessary to achieve the higher-level goal

309

Get into the car

Walk up to
the car

Open left
front door

Open right
front door

Go
outside

Cross the
street

… …

Hierarchies of Abstract Machines (HAMs)

• More general hierarchical representation

• Each machine is a finite-state automaton w/ 4 node types

• The user supplies a HAM

• The planner needs to decide what to do in choice nodes

310

Execute
action a

Call
another

machine H

Choose a machine from
{H1, … , Hn} and execute it

Stop execution/return
control to a higher-level

machine

Optimality in Hierarchical Planning

• Hierarchy constraints may disallow globally optimal π*

• Next-best thing: a hierarchically optimal policy
– The best policy obeying the hierarchy constraints

– Not clear how to find it efficiently

• A more practical notion: a recursively optimal policy
– A policy optimal at every hierarchy level, assuming that policies at lower

hierarchy levels are fixed

– Optimization = finding optimal policy starting from lowest level

• Hierarchically optimal doesn’t imply recursively optimal, and v. v.
– But hierarchically optimal is always at least as good as recursively optimal

311

Learning Hierarchies

• Identifying useful subgoals

– States in “successful” and not in “unsuccessful” trajectories

– Such states are similar to landmarks

• Breaking up an MDP into smaller ones

– State abstraction (removing variables irrelevant to the subgoal)

• Still very much an open problem

312

Approximation Algorithms

Overview

Online Algorithms
– Determinization-based Algorithms

– Monte-Carlo Planning

• Offline Algorithms
– Heuristic Search with Inadmissible Heuristics

– Dimensionality Reduction

– Hierarchical Planning

– Hybridized Planning

313

Hybridized Planning: Motivation

• Sometimes, need to arrive at a provably “reasonable”
(but possibly suboptimal) solution ASAP

314

Fast suboptimal planner with
guarantees

Slower optimal planner

Suboptimal policy

Optimal policy
(if enough time)

Hybridize!

Hybridized Planning

• Hybridize MBP and LRTDP

• MBP is a non-deterministic planner

– Gives a policy guaranteed to reach the goal from everywhere

– Very fast

• LRTDP is an optimal probabilistic planner

– Amends MBP’s solution to have a good expected cost

• Optimal in the limit, produces a proper policy quickly

315

[Mausam, Bertoli, Weld, 2007]

Summary

• Surveyed 6 different approximation families
– Dimensionality reduction

– Monte-Carlo sampling

– Inadmissible heuristic search

– Dimensionality reduction

– Hierarchical planning

– Hybridized planning

• Sacrifice different solution quality aspects

• Lots of work to be done in each of these areas

316

Outline of the Tutorial

• Introduction

• Fundamentals of MDPs

• Uninformed Algorithms

• Heuristic Search Algorithms

• Approximation Algorithms

• Extension of MDPs

317

(10 mins)

(1+ hr)

(1 hr)

(1 hr)

(1+ hr)

(remaining time)

One set of techniques we didn’t cover

• Compact value function representations

• ADD-based planners
– Symbolic VI (SPUDD)

– Symbolic Prioritized Sweeping

– Symbolic LAO*

– Symbolic RTDP

– Approximations (APRICODD)

• Better representations: Affine ADDs.

318

Continuous State/Action MDPs

• See Scott’s Tutorial.

319

Concurrent Probabilistic Temporal Planning

What action

next?

Percepts Actions

Environment

Static

Fully

Observable

Perfect

Stochastic

Durative

Concurrent

Results

• MDPs with Durative Actions, No Concurrency
– VI, RTDP, Incremental Contingency Planning

– Simple Temporal Nets, Piecewise linear vfs…

• MDPs with Concurrent Actions, No Time
– CoMDPs

– Action Elimination, ALP, Hierarchical planning, …

• MDPs with Concurrent, Durative Actions
– Generalized Semi-Markov Decision Process (GSMDP)

– Augmented state MDPs, Generate-test-debug,
hybridized planning…

321

Relational MDPs

• PPDDL/RDDL are first-order representations

– Algorithms ground it into propositional domains

• Relational MDPs actively use first-order structure

– First-order VI, PI, ALP

– Inductive approaches

• Generalizes to many problems

– with variable number of objects

322

Well-formed MDPs beyond SSPs

• All improper policies may not have infinite cost
• VI doesn’t work

– has multiple fixed points
– greedy policy over optimal value may not be optimal

• Heuristic Search much trickier
• Generalized SSP MDPs [Kolobov et al 11]

• Stochastic Safest & Shortest Path [Teichteil-Konigsbuch 12]

• Fun recent work…
 323

S0
0

0 S1 S2 S3 S4
0

0

0
1

0

0
G

Other Models

• Reinforcement Learning
– model/costs unknown
– Monte-Carlo planning

• Partially Observable MDP
– MDP with incomplete state information
– Large Continuous MDP
– Lots of applications

• Multi-objective MDP
• MDPs with Imprecise Probabilities
• Collaborative Multi-agent MDPs
• Adversarial Multi-agent MDPs

324

Thanks!

325

Mausam and Andrey Kolobov
“Planning with Markov Decision Processes: An AI Perspective”

Morgan and Claypool Publishers (Synthesis Lectures Series on Artificial Intelligence)

