Insight Types Specification

Introduction

We have developed 12 different types of insights, corresponding to 12 different perspectives commonly
adopted in practice. They are:

Attribution
Outstanding No. 1
Outstanding Top 2
Outstanding Last
Evenness

Change Point
Outlier
Seasonality

. Trend

10. 2DClustering

11. Correlation
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12. Cross-Measure Correlation

These 12 insight types can be grouped into 3 categories according to their definitions and semantics, as
depicted in Table 1.

5 insight types fall into the category of SinglePointInsight. SinglePointinsight refers to the insights with
single subspace and single measure, and breakdown by a non-ordinal dimension.

4 insight types belong to the category of SingleShapelnsight, which only differs from SinglePointInsight
by the use of ordinal breakdown dimension. Semantically, SingleShapelnsight refers to the insights
related to time series.

3 insight types belong to the category of Compoundinsight. CompoundInsight refers to the insights with
multiple subspaces or measures, which provides relatively richer semantics. Specifically, Correlation
insight compares two subspaces in the insight subject; Cross-Measure-Correlation and 2DClustering
compare two measures in the insight subject.

Table 1. Insight Categorization

C;r‘ts::::y SinglePointInsight SingleShapelnsight Compoundinsight
Outstanding No. 1 Change Point Correlation
Outstanding No. Last Trend Cross-Measure-Correlation
Insight types | Attribution Seasonality 2DClustering
Outstanding Top 2 Outlier
Evenness
#Types 5 4 3




Insight Type Specification
SinglePointInsight

Insight type
Outstanding No.1

Outstanding No.last

Artribution

Outstanding top 2

Evenness

Description Example
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Figure 1. Description of SinglePointInsight

The significance calculation of SinglePointInsight shares similar logic. Take Outstanding No. 1 as an

example:

Significance of Outstanding No. 1: Given a group of non-negative numerical values {x} and their biggest
value X4, the significance of x,,,,, being Outstanding No.1 of {x} is defined based on the p-value



against the null hypothesis of {x} obeys an ordinary long-tail distribution. The p-value will be calculated
as follows:

1. We sort {x} in descending order;

2. We assume the long-tail shape obeys a power-law function. Then we conduct regression analysis
for the values in {x}\ X, Using power-law functions - i "%, where i is an order index and in our
current implementation we fix § = 0.7 in the power-law fitting;

3. We assume the regression residuals obey a Gaussian distribution. Then we use the residuals in the
preceding regression analysis to train a Gaussian model H;

4. We use the regression model to predict x,,,, and get the corresponding residual R;

5. The p-value will be calculated via P(R|H).



SingleShapelnsight

Insight type
Change point

Outlier

Trend

Seasonality

Description Example

Change point of time-series signals regarding significant change
of (1) mean value or (2] curve slope or (3) their combination
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Figure 2. Description of SingleShapelnsight

Since all SingleShapelnsights are time series related insights, we can follow the standard statistical
hypothesis testing procedure for time series data. Take Change Point as an example:

Significance of Change Point. A change point is typically modelled as a mean-value change point.



1. A change point candidate is evaluated against its left window of n preceding points and its right
windows of n successive points, denoted as {Xleft, Yleft} and {Xn-ght, Yright} respectively. The
entire window surrounding the change point candidate is denoted as {X, Y}.

2. For mean-value change point
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and we define the significance based on the p-value of k,, .4, against Gaussian distribution
N(0, 1).
CompoundInsight
Insight type Description Example
Correlation Two time series have remarkable positive/negative correlation. I
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Cross-measure correlation It reports cross-measure analysis results regarding remarkable correlation

between two measures.

Scatterplot Clustering A scatterplot is generated by: two measure breakdown by a specific R —
(2DClustering) dimension. Clustering on scatterplot is complementary to the Cross-

measure correlation, to address the cases where data distribution over

the 2-dimensional scatterplot is complicated.

Figure 3. Description of CompoundInsight



Significance of Correlation. The significance of two time-series signals X and Y being correlated is
defined based on testing using Student’s t-distribution with Pearson’s correlation coefficient r, where r is
defined as
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Following are the detailed steps for significance calculation
1 — specify the null and alternative hypotheses:

Null hypothesis Hy: p = 0

Alternative hypothesis Hy: p # 0

2 —calculate the value of test statistic

3 — use the resulting test statistic t to calculate the p-value, which is determined by referring to
a t-distribution with n-2 degrees of freedom.
4 — the p-value is translated into significance. The lower the p-value, the higher the significance.



