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Abstract
Submodular function maximization is one of the
key problems that arise in many machine learn-
ing tasks. Greedy selection algorithms are the
proven choice to solve such problems, where
prior theoretical work guarantees (1 − 1/e) ap-
proximation ratio. However, it has been empiri-
cally observed that greedy selection provides al-
most optimal solutions in practice. The main
goal of this paper is to explore and answer why
the greedy selection does significantly better than
the theoretical guarantee of (1 − 1/e). Applica-
tions include, but are not limited to, sensor se-
lection tasks which use both entropy and mutual
information as a maximization criteria. We give
a theoretical justification for the nearly optimal
approximation ratio via detailed analysis of the
curvature of these objective functions for Gaus-
sian RBF kernels.

1. Introduction
Consider a real-world scenario where the task is to sense
a certain physical phenomenon of interest, e.g., tempera-
ture, in an area (Krause et al., 2008) with a limited number
of sensors. Another scenario is selecting a subset of data
points to be labeled from a large corpus, for the purposes
of supervised learning (Settles, 2010). Similarly, the task
could consist of determining what tests to run on a medical
patient for diagnosing ailments (Kapoor & Horvitz, 2009).
The key underlying question in all these scenarios is how
to choose a subset of actions that would provide the most
useful information pertaining to the task at hand.
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All of the above scenarios can be considered as a subset
selection problem, where the goal is to determine which
subset maximizes a given objective function defined over
the subsets. Prior works have considered criteria such as
mutual information and entropy, which make the objec-
tive function submodular. Traditionally, these submodu-
lar maximization problems are solved via greedy selection
and often these prior works point to a result by Nemhauser
et al. (Nemhauser et al., 1978) which guarantees that the
greedy solution will be at least (1 − 1/e) times the opti-
mum. While there exist submodular functions for which
the (1−1/e) bound is tight, in several practical instances it
has been observed that the greedy algorithm performs sig-
nificantly better than (1− 1/e) times the optimum. For ex-
ample, we reproduce the figure (see Figure 1) from Krause
et al. (Krause et al., 2008), where the greedy method ob-
tains an approximation ratio of over 0.95. While the greedy
selection algorithms are popular in such subset selection
problems, a better analysis explaining their empirical near-
optimal performance is an unexplored direction to the best
of our knowledge.

1.1. Our results

In this paper, we aim to answer why greedy selection re-
sults in nearly optimal solutions. We specifically focus
on the popular kernels generated by Gaussian Radial Ba-
sis Functions (RBFs), and show that the greedy selection
of points achieves an approximation ratio close to 1 that is
much superior than the traditional guarantee of (1 − 1/e).
The key insight here is that the Gaussian RBF kernel ma-
trices for well-separated points have a very dominant di-
agonal, making the submodular objective function close
to linear (i.e., modular). Intuitively, it means that even
though the objective function is submodular and it satis-
fies the diminishing returns property, the returns diminish
only marginally even as we add more and more points.

Our main technical contribution is Theorem 5, where we
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Figure 1. Plot depicting comparison of greedy algorithm with op-
timal solutions in (Krause et al., 2008). The data set consisted of
16 locations of the Intel Berkeley temperature data. As noted in
the same work, the greedy algorithm is always within 95% of the
optimal value, although the best known theoretical guarantee is
about 63%.

bound the curvature of the subset selection criterion in
terms of the bandwidth of the kernel, and the underlying
dimensionality of the data points. An important conse-
quence of Theorem 5 is that the curvature is nearly zero,
which leads to an approximation ratio close to 1. A key
challenge in our analysis is the non-monotonicity of these
functions. Our work circumvents this using a monotone,
submodular proxy to the objective function, that preserves
the greedy selection choice at every step while having near-
zero curvature. We provide empirical evidence that vali-
dates and highlights the key ideas in our result and their
consequences.

1.2. Related work

Gaussian process (GP) model (Rasmussen & Williams,
2006) is a non-parametric generalization of linear regres-
sion, where the prediction error minimization reduces to
a problem of maximum entropy sampling. The model
is of fundamental significance to the problem of sensor
placements, and is known to outperform classical models
based on geometric assumptions, which turn out to be too
strong in practice (Krause et al., 2008). Greedy algorithm
is known to work well for the problem of maximum en-
tropy sampling (Cressie, 1991) (Shewry & Wynn, 1987).
However, for the problem of sensor placement, (Krause
et al., 2008) propose a modified criterion of maximizing the
mutual information of selected sensor locations, for which
again a greedy procedure gives good approximation.

Both the entropy and the mutual information maximization
problems are known to be NP-hard (Ko et al., 1995; Krause
et al., 2008). However, the greedy selection gives an effi-
cient, polynomial time algorithm with at least (1−1/e) fac-

tor approximation to the optimum for both these objective
functions, and more generally, for any non-negative, mono-
tone, submodular function (Nemhauser et al., 1978). Con-
forti and Conuejols (Conforti & Cornuejols, 1984) gave a
tighter analysis to prove that the greedy selection actually
gives (1− e−c)/c factor approximation when the objective
function is monotone and has curvature c, which means
that the approximation ratio tends to 1 as c tends to 0. In-
tuitively, it means that the approximation ratio of greedy
selection tends to 1 as the function gets closer to being lin-
ear, as one would expect. This was the state of the art un-
til recently, when Sviridenko, Vondrak and Ward showed
that both a modified continuous greedy and local search
give almost (1− c/e) factor approximation, and this is es-
sentially the best possible in the value oracle model (Sviri-
denko et al., 2015). However, both these algorithms, mod-
ified continuous greedy as well as local search, are compu-
tationally quite expensive and not as practical as the usual
greedy selection. Note that curvature is defined only for
monotone, submodular functions, whereas entropy and mu-
tual information are submodular but not necessarily mono-
tone.

Krause et al. (Krause et al., 2008) get around non-
monotonicity of mutual information by showing that it is
approximately monotone over small sets, under some rea-
sonable assumptions on the underlying kernel as well as the
discretization of the underlying space. This allows them
to show an almost (1 − 1/e) approximation. This guar-
antee holds for any non-negative, monotone, submodular
function, and no better analysis is known even for spe-
cial cases such as Gaussian RBF kernels. In this work, we
prove near-optimal approximation guarantee for the maxi-
mum entropy sampling problem on Gaussian RBF kernels,
and also establish exact monotonicity of mutual informa-
tion over small subsets.

Finally we note that several fundamental problems in dis-
parate domains can be effectively formulated as sensor se-
lection problems. Among the more prominent ones are the
problem of state estimation in linear dynamical systems
(Shamaiah et al., 2010), target localization and tracking
(Wang et al., 2004), (Wang et al., 2005), (Isler & Bajcsy,
2005), graphical models (Krause & Guestrin, 2012), cover-
age problems and mission assignment schemes (Rowaihy
et al., 2007). Information-theoretic approaches, including
both entropy and mutual-information based methods, have
been widely acknowledged as prominent heuristics for sen-
sor placement and other active learning problems.

1.3. Outline

The outline of our paper is as follows. In Section 2 we de-
scribe submodular functions and their key properties such
as monotonicity and curvature. In Section 3 we describe
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the algorithms or pseudo-codes for maximum entropy sam-
pling as well as mutual information maximization. In Sec-
tion 4 we provide a better analysis of greedy for the maxi-
mum entropy sampling on Gaussian RBF kernels. The key
ideas here are

• A lower bound on the smallest eigenvalue of a Gaus-
sian RBF kernel matrix, depending only on the intrin-
sic dimensionality of the data points and their mini-
mum inter-point separation but independent of the to-
tal number of points.

• An upper bound on the Euclidean length of any row of
a Gaussian RBF kernel matrix, with a similar depen-
dence as above.

In Section 5 we prove exact monotonicity of mutual in-
formation over small subsets in Gaussian RBF kernels,
improving upon the approximate monotonicity of (Krause
et al., 2008).

2. Submodular functions and their properties
2.1. Submodularity, monotonicity, and curvature

We index a given set of n points by [n] = {1, 2, . . . , n} and
denote the set of all subsets of [n] by 2[n].

Definition 1. A function f : 2[n] → R is submodular if
f(S ∪ {i}) − f(S) ≥ f(T ∪ {i}) − f(T ), for all S ⊆ T
and i /∈ T .

In other words, submodular functions exhibit the property
of diminishing returns.

Given a matrix X ∈ Rn×n, we use X[S, T ] to denote its
|S|×|T | submatrix with row indices in S ⊆ [n] and column
indices in T ⊆ [n]. We denote the complement [n]\S by S̄,
and we abbreviate X[S, {i}] as X[S, i] and X[S, [n] \ {i}]
as X[S, ī], respectively, for convenience.

Maximizing entropy and mutual information in Gaussian
processes are known to be equivalent to maximizing cer-
tain functions of submatrices of given RBF kernels (Krause
et al., 2008), so we directly define them by their corre-
sponding linear algebraic problems.

Proposition 1. Given any symmetric, positive semidefinite
matrix X ∈ Rn×n the entropy f(S) = log det (X[S, S])
and the mutual information F (S) = log det (X[S, S]) +
log det

(
X[S̄, S̄]

)
are both submodular functions, where

X[S, S] denotes the |S|×|S| principal submatrix ofX with
row and column indices in S ⊆ [n].

Proof. See Krause et al. (Krause et al., 2008).

Definition 2. A submodular function f : 2[n] → R is
monotone if, whenever S ⊆ T , we have f(S) ≤ f(T ).

Now we show that if X has its smallest eigenvalue at least
1 then the entropy log det (X[S, S]) is monotone.

Proposition 2. Given any symmetric X ∈ Rn×n with
λmin(X) ≥ 1, the function f(S) = log det (X[S, S]) is
monotone.

Proof. For monotonicity, it suffices to show that f(S) ≤
f(S ∪ {i}), for all S and i /∈ S. As in Proposition 1

f(S ∪ {i})− f(S)

= log

(
det (X[S ∪ {i}, S ∪ {i}])

det (X[S, S])

)
= − log

(
X[S ∪ {i}, S ∪ {i}]−1

)
ii

by Cramer’s rule

≥ log λmin (X[S ∪ {i}, S ∪ {i}])
≥ log λmin(X)

≥ 0 using λmin(X) ≥ 1.

See (Strang, 2009) for Cramer’s rule and the elementary
fact that the smallest eigenvalue of a principal submatrix is
at least the smallest eigenvalue of the bigger matrix.

Thus, it is easy to make entropy function monotone just
by scaling the matrix up so that its minimum eigenvalue is
at least 1. For monotone, submodular functions, one can
define their curvature as follows.

Definition 3. The curvature c(f) ∈ [0, 1] of a monotone,
submodular function f : 2[n] → R is defined as

c(f) = 1− min
S([n],i/∈S

f(S ∪ {i})− f(S)

f({i})− f(∅)
,

or equivalently, by submodularity, we can define

c(f) = 1− min
i∈[n]

f([n])− f([n] \ {i})
f({i})− f(∅)

.

Notice that submodularity along with curvature gives a
tighter control on f as f({i})−f(∅) ≥ f(S∪{i})−f(S) ≥
(1− c(f)) (f({i})− f(∅)), for all S ( [n] and i /∈ S.
Curvature c(f) = 0 means that the function f is linear.
Therefore, small c(f) is desirable and easier to handle.

Scaling the matrix up by α makes the new entropy
log det (X[S, S]) +α |S|, which also helps reduce the cur-
vature.

Proposition 3. Let f : 2[n] → R be a monotone, submod-
ular function, and let g(S) = f(S) + α |S|, for some fixed
α > 0. Then g is also a monotone, submodular function
with c(g) < c(f).

Proof. Submodularity and monotonicity are easy to verify
by observing g(S∪{i})−g(S) = f(S∪{i})+α |S ∪ {i}|−
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f(S)− α |S| ≥ f(S ∪ {i})− f(S).

c(g) = 1− min
i∈[n]

g([n])− g([n] \ {i})
g({i})− g(∅)

= 1− min
i∈[n]

f([n])− f([n] \ {i}) + α

f({i})− f(∅) + α

≤ 1− min
i∈[n]

f([n])− f([n] \ {i})
f({i})− f(∅)

= c(f).

The scaling trick does not work for mutual information be-
cause after scaling by α we get an additive α |S|+α

∣∣S̄∣∣ =
αn, for all S. Now we try to bound the curvature of
log det (X[S, S]) in terms of the row-lengths of X and
λmin(X). The reason being that the minimum eigenvalue
and the row-lengths can each be bounded independently of
n for Gaussian RBF kernels of well separated points (see
Lemma 7 and Lemma 8).
Proposition 4. For any positive semidefinite matrix X ∈
Rn×n with λmin(X) ≥ 1, if maxi∈[n] ‖X [̄i, i]‖ ≤
λmin(X) , then the curvature c(f) of the function f(S) =
log det (X[S, S]) can be upper bounded as follows.

c(f) ≤
λmin(X)−2 max

i∈[n]
‖X [̄i, i]‖2

log λmin(X)
.

Proof. By the definition of curvature and the well-known
identity for determinant of block matrices

det

[
A B
C D

]
= det (A) det

(
D − CA−1B

)
if A is invertible, we have

c(f) = 1− min
i∈[n]

f([n])− f([n] \ {i})
f({i})− f(∅)

= 1− min
i∈[n]

log
(
X[i, i]−X [̄i, i]TX [̄i, ī]−1X [̄i, i]

)
logX[i, i]

= max
i∈[n]

− log

(
1− X [̄i, i]TX [̄i, ī]−1X [̄i, i]

X[i, i]

)
logX[i, i]

≤ max
i∈[n]

− log

(
1− λmin(X [̄i, ī])−1 ‖X [̄i, i]‖2

X[i, i]

)
logX[i, i]

≤
− log

(
1− λmin(X)−2max

i∈[n]
‖X [̄i, i]‖2

)
log λmin(X)

≤
λmin(X)−2 max

i∈[n]
‖X [̄i, i]‖2

log λmin(X)
.

Algorithm 1 Greedy(f, k)

Initialize S ← ∅
for t = 1 to k do
imax ← argmax

i/∈S
f(S ∪ {i})− f(S)

S ← S ∪ {imax}
end for
Output S

We have used λmin(X[S, S]) ≥ λmin(X) ≥ 1, for any
S ⊆ [n], which gives λmin(X [̄i, ī]) ≥ λmin(X) as well
as X[i, i] ≥ λmin(X). We also used maxi∈[n] ‖X [̄i, i]‖ ≤
λmin(X) to ensure that the expression inside log is nonneg-
ative.

Note that our bound is stronger than the c(f) ≤ 1−1/λmin

bound mentioned in (Sviridenko et al., 2015).

3. Greedy algorithm and its variants
In each step, the greedy algorithm (see Algorithm 1) picks
the element that maximizes the marginal gain. The ap-
proximation guarantees of (1 − 1/e) by Nemhauser et al.
(Nemhauser et al., 1978) and (1 − e−c)/c by Conforti
and Cornuejols (Conforti & Cornuejols, 1984) discussed in
Subsection 1.2 also hold for monotone, submodular maxi-
mization over subsets of a predetermined size k.

In practice, it is possible to run a faster version of greedy
selection while not losing on the approximation guarantee.
Such algorithms include Lazy-Greedy (Krause et al., 2008)
and Stochastic-Greedy (Mirzasoleiman et al., 2015). Our
analysis of the curvature can be extended to these settings
as well, and will be included in the full version.

4. Greedy maximization of entropy
Now we are ready to show that the greedy selection gives
close to optimal solution for maximum entropy sampling
on Gaussian RBF kernels satisfying a reasonable condition
on the bandwidth parameter, the inter-point separation, and
the dimension of the underlying space but independent of
the number of points n.
Theorem 5. LetX ∈ Rn×n be a Gaussian RBF kernel ma-
trix, that is, its ij-th entryX[i, j] = exp

(
−γ ‖xi − xj‖2

)
,

for given points x1, x2, . . . , xn ∈ Rd and γ > 0. If
the minimum separation δ = mini 6=j ‖xi − xj‖, the band-
width parameter γ > 0 and the dimension d satisfy

d ≥ log

(
1

ε

)
and γδ2 ≥ 10d log d

then Greedy(f, k) on f(S) = log det (X[S, S]) outputs

f(S) ≥ (1− ε)f(O)− kε,
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where O = argmax
|S|=k

f(S) is the optimal solution.

Proof. Consider Y = 2λmin(X)−1 X . λmin(Y ) = 2 and
g(S) = log det (Y [S, S]) = f(S) + |S| log(2λmin(X)−1)
is a monotone, submodular function by Proposition 2.
For a fixed cardinality constraint |S| = k, g(S) is a
fixed translation of f(S) by k log

(
2λmin(X)−1

)
, and

hence, optimal solutions coincide, giving g(O) = f(O) +
k log

(
2λmin(X)−1

)
. Moreover, the choices made by

Greedy(f, k) and Greedy(g, k) are the same. Therefore, we
analyze Greedy(g, k) instead to infer about Greedy(f, k).

This helps in two ways. Firstly, even though f is not mono-
tone and does not have a well-defined curvature in [0, 1], g
is monotone with curvature c(g) ∈ [0, 1]. Moreover, c(g)
can be bounded using Proposition 4 as follows.

c(g) ≤
λmin(Y )−2 maxi∈[n] ‖Y [̄i, i]‖2

log λmin(Y )

=
maxi∈[n] ‖Y [̄i, i]‖2

4 log 2

=
λmin(X)−2 maxi∈[n] ‖X [̄i, i]‖2

log 2

≤ C exp
(
d log(dγδ2)− γδ2

)
,

by Lemma 7 and Lemma 8, and the condition
maxi∈[n] ‖Y [̄i, i]‖ = λmin(X)−1 maxi∈[n] ‖X [̄i, i]‖ ≤
2 = λmin(Y ) of Proposition 4 is also satisfied. Here C is
the constant from the big-Oh notation in Lemma 8. No-
tice that since γδ2 ≥ 10d log d, we can bound c(g) ≤
C exp

(
d log(dγδ2)− γδ2

)
≤ exp(−d log d).

Secondly, adding α |S| to a monotone submodular func-
tion, for a fixed α > 0, decreases its curvature (see Propo-
sition 3). Therefore, if we could control the curvature in
terms of α, we may be able to exploit better approximation
guarantees for smaller curvature. That is exactly our strat-
egy. Notice that we actually scaleX up slightly beyond the
λmin(Y ) ≥ 1 condition for monotonicity. Thus, if S is the
output of Greedy(f, k) then

f(S) = g(S)− k log(2λmin(X)−1)

≥ 1− e−c(g)

c(g)
g(O)− k log(2λmin(X)−1)

=
1− e−c(g)

c(g)

(
f(O) + k log(2λmin(X)−1)

)
− k log(2λmin(X)−1)

=
1− e−c(g)

c(g)
f(O)

+
1− c(g)− e−c(g)

c(g)
k log(2λmin(X)−1)

≥ 1− e−c(g)

c(g)
f(O)− c(g) k log(2λmin(X)−1)

≥
(

1− c(g)

2

)
f(O)− c(g)kd log d

≥ (1− exp(−d log d)) f(O)− exp(−d log d)kd log d

≥ (1− ε)f(O)− εk,

for large enough d ≥ log (1/ε).

The main point here is that we can get an approximation
guarantee very close to 1, and the approximation guaran-
tee and the required bandwidth parameter do not depend
on the total number of points n at all. It may be noted that
the constant 10 in the requirement γδ2 ≥ 10d log d can be
made close to 1 with the same analysis but done more care-
fully, which gives interesting values for minimum separa-
tion (exp

(
−γδ2

)
≈ exp (−d log d)) for the case of small

d (for d = 2, the value is 0.25).

4.1. Condition numbers of RBF kernels

Schoenberg (Schoenberg, 1937) showed a striking result
that if x1, x2, . . . , xn are distinct points in a Hilbert space
then the matrix (‖xi − xj‖)ij is invertible, which gave
rise to radial basis interpolation methods. To implement
such methods, it is important that this matrix be well-
conditioned, in particular its eigenvalues be bounded away
from 0. Keith Ball (Ball, 1992) showed such a bound, in-
dependent of n.

Proposition 6. For any points x1, x2, . . . , xn ∈ Rd with
minimum separation δ, all the eigenvalues of the matrix
(‖xi − xj‖)ij have absolute value at least Ω

(
δ/
√
d
)

.

This idea was later generalized to various RBF kernel ma-
trices by Narcowich and Ward (Narcowich & Ward, 1992).
The case of interest to us is that of Gaussian RBF ker-
nels, although similar results hold for other RBF kernels
too, e.g., exponential RBF kernel. Here we state a simple
corollary of Theorem 2.3 from (Narcowich & Ward, 1992).

Lemma 7. Let X ∈ Rn×n be a Gaussian RBF kernel ma-
trix, that is, its ij-th entryX[i, j] = exp

(
−γ ‖xi − xj‖2

)
,

for given points x1, x2, . . . , xn ∈ Rd and γ > 0. If the
minimum separation δ = mini 6=j ‖xi − xj‖ and satisfies
γδ2 ≥ d then λmin(X) = Ω

(
exp(−d2 log(dγδ2))

)
.

Proof. By Theorem 2.3 of Narcowich-Ward (Narcowich &
Ward, 1992) mentioned above,

λmin(X) ≥ Cd γ−d/2
(
δ

2

)−d
e−α

2( δ2 )
−2
γ−1

,
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where

α = 12

(
πΓ2

(
1 + d

2

)
9

) 1
d+1

≈ d
1
d+1

(
d

2e

) d
d+1

≈ d,

and

Cd =
α2

2d+1Γ
(
1 + d

2

) ≈ d3/2(2d

e

)− d2
,

up to constants. Plugging in and simplifying gives

λmin(X) = Ω

(
d3/2 exp

(
−d

2
log

(
dγδ2

4

)
− 4d2

γδ2

))
,

which becomes Ω
(
exp(−d2 log(dγδ2))

)
for γδ2 ≥ d.

4.2. Off-diagonal row-lengths in Gaussian RBF kernels

Now we show that the off-diagonal entries of Gaussian
RBF kernels decay rapidly if the points satisfy a minimum
separation condition. This helps us bound the row-lengths
of Gaussian RBF kernels independent of n.
Lemma 8. Let X ∈ Rn×n be a Gaussian RBF kernel ma-
trix, that is, its ij-th entryX[i, j] = exp

(
−γ ‖xi − xj‖2

)
,

for given points x1, x2, . . . , xn ∈ Rd and γ > 0. If the
minimum separation δ = mini 6=j ‖xi − xj‖ and γδ2 ≥ d
then

‖X [̄i, i]‖2 = O
(
exp(−γδ2)

)
, for all i ∈ [n].

Proof. For any fixed i, define

Ct(i) =

{
j :

tδ

2
≤ ‖xi − xj‖ ≤

(t+ 1)δ

2

}
.

Let B (x, r) denote the ball of radius r centered at
x. For any j ∈ Cj , the ball B (xj , δ/2) lies outside
B (xi, (t− 1)δ/2) and inside B (xi, (t+ 2)δ/2). More-
over, the balls B (xj , δ/2) are all disjoint because δ is the
minimum separation between all pairs. Thus,

|Ct(i)| ≤
vol
(
B
(
xi,

(t+2)δ
2

))
− vol

(
B
(
xi,

(t−1)δ
2

))
vol (B (xj , δ/2))

≤ (t+ 2)d − (t− 1)d

≤ exp(d log t).

We can bound ‖X [̄i, i]‖2 as

‖X [̄i, i]‖2 ≤
∞∑
t=1

|Ct(i)| exp

(
−γt2δ2

4

)

≤
∞∑
t=1

exp

(
d log t− γt2δ2

4

)

≤
∞∑
t=1

exp

(
γδ2

(
log t− t2

4

))
,

using γδ2 ≥ d. Notice that the terms decay rapidly with
t and can be upper bounded by a geometric progression
exp

(
−tγδ2

)
, giving the final exp(−γδ2) upper bound (up

to constants).

5. Extending to mutual information
Instead of using entropy for sensor placement, Guestrin-
Krause-Singh (Krause et al., 2008) use mutual information,
which is another submodular function.
Proposition 9. Given any symmetric, positive semidef-
inite matrix X ∈ Rn×n the mutual information
F (S) = log det (X[S, S]) + log det

(
X[S̄, S̄]

)
is submod-

ular, where X[S, S] denotes the |S| × |S| principal subma-
trix of X with row and column indices in S, and S̄ denotes
the complement [n] \ S.

Proof. See (Krause et al., 2008).

Now we show that mutual information is monotone over
sets of small size for Gaussian RBF kernels satisfying the
same conditions we used in the previous section about en-
tropy.
Proposition 10. Let X ∈ Rn×n be a Gaussian RBF
kernel matrix satisfying the conditions as in Theorem 5.
Then the mutual information F (S) = log det (X[S, S]) +
log det

(
X[S̄, S̄]

)
is monotone over sets of size k � n.

Proof. For any S ⊆ [n] and i /∈ S,

F (S ∪ {i})− F (S) = log

(
det (X[S ∪ {i}, S ∪ {i}])

det (X[S, S])

)
− log

(
det
(
X[S̄, S̄]

)
det
(
X[S̄ \ {i}]

))
However, we can show

det (X[S ∪ {i}, S ∪ {i}])
det (X[S, S])

= X[i, i]−X[S, i]TX[S, S]−1X[S, i]

≥ 1− λmax

(
X[S, S]−1

)
‖X[S, i]‖2

≥ 1− λmin(X)−1 ‖X[S, i]‖2

≥ 1−O
(
exp

(
−γδ2

))
.

and

det
(
X[S̄, S̄]

)
det
(
X[S̄ \ {i}]

)
= X[i, i]−X[S̄ \ {i}, i]TX[S̄ \ {i}, S̄ \ {i}]−1X[S̄ \ {i}, i]

≤ 1− λmin

(
X[S̄ \ {i}, S̄ \ {i}]−1

) ∥∥X[S̄ \ {i}, i]
∥∥2

≤ 1− λmax(X)−1 (n− k − 1) exp
(
−γ∆2

)
≤ 1− exp

(
−γ∆2

)
,
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using λmax(X) ≤ tr (X) = n and k � n, where ∆ =
maxi 6=j ‖xi − xj‖ is the maximum separation.

Therefore,

F (S ∪ {i})− F (S) ≥ log

(
1−O

(
exp

(
−γδ2

))
1− exp (−γ∆2)

)
≥ 0.

The main difficulty in obtaining improved performance
bounds for mutual information based greedy algorithm is
the lack of monotonicity which makes it impossible to use
the notion of curvature here. Our result on monotonicity
for small k is a first step in removing this difficulty. Em-
pirically mutual information is also known to exhibit the
near-optimal performance of the greedy approach, and it
should be interesting to theoretically establish the same un-
der reasonable assumptions.

Table 1. Data sets for multivariate classification with real at-
tributes, chosen to demonstrate our analysis.

DATA SET # INSTANCES # ATTRIBUTES

IRIS 147 4
SONAR MINES 111 60
CLOUD 1024 10

6. Experiments
In this section, we empirically verify the applicability of
our analysis on three real world data sets as tabulated in Ta-
ble 1. The data sets have been chosen to capture variation
of both number of examples and number of features. They
have been used to generate Gaussian kernels of different
sizes and in different dimensions, over which our results
have been studied. The experiments essentially consist of
construction of these Gaussian kernels with appropriately
chosen parameters and comparison of entropy of the greedy
algorithm with the entropy of the optimal subset, computed
for some small value of k. The experiments were repeated
for mutual information based optimization, with exact op-
timality of the greedy algorithm for large range of parame-
ters and small values of k.

6.1. Pre-processing

Data sets were first cleaned to remove duplicate instances1

as presence of duplicates makes the smallest eigenvalue of

1It is easy to argue that introduction of duplicates does not
change either the greedy set or the optimal set of sensors, so long
as total number of chosen sensors, k is less than the total number
of distinct instances.

the Gaussian kernel zero and our results cannot be stud-
ied (λmin = δ = 0). This step only reduced the size of
the Iris data set by 3, and the other data sets remained un-
changed. The features were then normalized to lie in the
interval [0, 1]. These normalized features were finally used
to generate Gaussian kernels with carefully chosen band-
width parameter, γ.

6.2. Variation of approximation ratio with bandwidth
parameter

As in Lemma 7, γ ≥ γ0 = d log d
δ2 suffices for the greedy

algorithm to have near optimal approximation ratio. In
the following we experimentally observe the transition of
the greedy algorithm’s approximation ratio to near optimal
values as the bandwidth parameter is incremented to γ0
from below. Figure 2(a) depicts these plots for the three
chosen data sets. Note that in order to overlay the plots for
different data sets on the same figure, the horizontal scale
has been normalized for the different data sets to range
over the interval [log γ0 − 9, log γ0].
An interesting observation from the plot is that the
transition to near-optimality is rather steep and occurs at
approximately the same value of log γ for different data
sets, of about log γ0 − 4. This indicates that our results
qualitatively capture the requirement for near-optimal ra-
tios quite accurately, and are probably tight up to constant
factors in the worst case.

6.3. Variation of approximation ratio with scaling

Scaling increases the curvature, and hence the multiplica-
tive term in the approximation inequality of Theorem 5,
but also increases the negative additive term. The net
effect can be seen as a sub-logarithmic increase in the
approximation ratio, as in Figure 2(b). For the plots, we
fix the value of log γ at log γ0 − 6, i.e. slightly before the
transition to optimal. Two useful observations can be made
from the plot. Scaling improves the approximation ratio
of the Gaussian kernel, although rather slowly. Even an
exponential increase in scaling seems to improve the ratio
only in a sub-logarithmic fashion. Also, the qualitative
nature of effect of scaling the matrix on the approximation
ratio does not seem to vary significantly over the different
data sets or choices of the bandwidth parameter.

We repeated the same sets of experiments for the mutual
information criterion and interestingly observed that the
greedy algorithm is able to find the optimal subset for the
entire range of bandwidth parameter and the scaling param-
eter for each of the data sets.
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Figure 2. (a) Plot of approximation ratio of the greedy algorithm against logarithm of Gaussian kernel bandwidth parameter. Zero
reference for the x-axis corresponds to the critical bandwidth (log γ0) for each data set. Size of subset selected, k = 3. (b) Plot of
approximation ratio of the greedy algorithm against logarithm of factor with which the kernel is scaled. The bandwidth parameter of
the kernel is fixed at log γ = log γ0 − 6 for each data set. Size of subset selected, k = 3. (c) Plot of approximation ratio of the greedy
algorithm against the size k of the subset selected. The bandwidth parameter is the same as in (b), and no scaling is used.

6.4. Variation of approximation ratio with k

The variation of the approximation ratio for the greedy al-
gorithm with k, the size of subset to be selected, is rela-
tively more complex. The decrease due to the small nega-
tive additive term in Theorem 5 is countered by increase in
f(O) with k to an indeterminate extent. Thus, for reason-
ably small k the approximation ratio does not decrease or
vary significantly with increase in the number of sensors,
as in Figure 2(c). For the experiments, the value of log γ
was fixed at log γ0 − 6 and the scaling was fixed at unity.

6.5. Variation of λmin with d

Finally we evaluate the lower bound of Ω (exp (−d log d))
on the minimum eigenvalue (Lemma 7) used in our anal-
ysis by using the Sonar data set. To generate the plot we
randomly sample d features from the data set and deter-
mine the minimum eigenvalue for the corresponding Gaus-
sian kernel. We observe that the blue curve representing
our bound is a rather pessimistic bound for the minimum
eigenvalue (shown in red in Figure 3), even though it suf-
fices in our analysis to establish near-optimality.

This indicates that it might be possible to obtain signifi-
cantly better lower bounds for decrease in the minimum
eigenvalue with increasing dimensions for real world data
sets. Plugging them in our analysis will give stronger ap-
proximation guarantees on the greedy performance, by al-
lowing for weaker assumptions than those used here in or-
der to establish near-optimality. it should be interesting
to obtain an understanding of the properties that the data
points satisfy which could be exploited to get such an im-
provement.
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Figure 3. Plot of minimum eigenvalue of the Gaussian kernel ob-
tained using subset of Sonar data set by randomly sampling d
features and taking a minimum over a few iterations for smooth-
ness. A logarithmic scale is used on the vertical axis for sake of
clarity.

7. Conclusion and Future Work
The main result of this paper is to establish a theoretical ba-
sis for the empirically observed near optimal performance
of the greedy algorithm for maximum entropy sampling,
which has important applications in sensor placement. This
is the first improvement over the general (1 − 1/e) bound
for submodular optimization, and holds for the extremely
common case of Gaussian RBF kernels.
There is great scope for extension of this result to similar
results for other kernels and also to other optimization cri-
teria like mutual information. In fact, it seems that greedy
performs close to the optimal result even with random ker-
nels, with overwhelming probability.
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