Classical Planning in MDP Heuristics: with a Little Help from Generalization

Andrey Kolobov

Mausam Daniel S. Weld

{akolobov, mausam, weld} @cs.washington.edu
Dept of Computer Science and Engineering
University of Washington, Seattle
WA-98195

Abstract

Heuristic functions make MDP solvers practical by reducing
their time and memory requirements. Some of the most ef-
fective heuristics (e.g., the FF heuristic function) first deter-
minize the MDP and then solve a relaxation of the resulting
classical planning problem (e.g., by ignoring delete effects).
While these heuristic functions are fast to compute, they fre-
quently yield overly optimistic value estimates. It is natural
to wonder, then, whether the improved estimates of using a
full classical planner on the (non-relaxed) determinized do-
main will provide enough gains to compensate for the vastly
increased cost of computation.

This paper shows that the answer is “No and Yes”. If one
uses a full classical planner in the obvious way, the cost of
the heuristic function’s computation outweighs the benefits.
However, we show that one can make the idea practical by
generalizing the results of classical planning successes and
failures. Specifically, we introduce a novel heuristic function
called GOTH that amortizes the cost of classical planning by
1) extracting basis functions from the plans discovered during
heuristic computation, 2) using these basis functions to gener-
alize the heuristic value of one state to cover many others, and
3) thus invoking the classical planner many fewer times than
there are states. Experiments show that GOTH can provide
vast time and memory savings compared to the FF heuristic
function — especially on large problems.

INTRODUCTION

Heuristic functions, or heuristics, for short, are a popular
means of reducing space and memory requirements of state
space search-based probabilistic planning algorithms. In
MDP solvers guided by heuristic functions, e.g. LRTDP
[1] and LAO* [7], heuristics help avoid visiting many states
(and memoizing corresponding state-value pairs) that are not
part of the final policy.

While there are many ways of constructing a good heuris-
tic for probabilistic domains, some of the most effective ones
are derived from classical planning analogs. A notable ex-
ample is the FF heuristic [8], denoted hpp in this paper,
which calculates the value of a state in three conceptual
steps: (1) determinizing the probabilistic MDP actions into
a set of classical actions, (2) relaxing the domain further by
eliminating the delete lists of all actions, and (3) finding the
cost of the cheapest sequence of these modified actions to
the goal using a relaxed planning graph. This cost is taken
as the heuristic value of the state in the original probabilistic

problem. Although efficiently computable and quite infor-
mative, it is liable to highly underestimate the state’s true
value because of multiple levels of relaxation: once due to
determinization and once more due to ignoring delete ef-
fects.

On the other hand, a lot of promise has been
shown recently by several probabilistic planners that solve
full (non-relaxed) determinizations, e.g., FF-Replan [17],
HMDPP [9], and others. It is natural to wonder, then,
whether the improved heuristic estimates of using a full clas-
sical planner on the non-relaxed determinized domain would
provide enough gains to compensate for the potentially in-
creased cost of heuristic computation.

As we show in this paper, the answer is “No and Yes”. We
propose a new heuristic called GOTH (Generalization Of
Trajectories Heuristic), which efficiently produces heuristic
state values using deterministic planning. The most straight-
forward implementation of this method, in which a classical
planner is called every time a state is visited for the first time,
does produce better heuristic estimates and reduces search
but the cost of so many calls to the classical planner vastly
outweighs any benefits. The novelty of our work is in show-
ing that there is a way to amortize these expensive planner
calls by generalizing the resulting heuristic values to provide
guidance on similar states. We adapt the idea of generaliza-
tion from a recent planner, ReTrASE [10], although there it
is used in a somewhat ad hoc search procedure, whereas we
employ it for a heuristic computation that guides a princi-
pled decision-theoretic search algorithm.

By performing this generalization in a careful manner,
one may dramatically reduce the amount of classical plan-
ning needed, while still providing more informative heuristic
values than heuristics with more levels of relaxation. GOTH
performs extremely well, especially on large problems. The
rest of the paper explains this idea in more detail, focusing
on the generalization process. Specifically, we make the fol-
lowing contributions:

e We describe the approach of using non-relaxed deter-
minization for computing the heuristic. With its naive im-
plementation we obtain much more informative heuristic
values but at a large performance loss.

e We apply a generalization procedure to amortize the clas-
sical planner invocations leading to a very efficient pro-
cedure for heuristic computation. We implement it over

miniGPT’s version of labeled RTDP [2], and empirically
demonstrate that this new approach can be hundreds of
times faster than the naive one with very little sacrifice in
heuristic quality. Thus, we show generalization to be key
to GOTH’s time efficiency.

o We experimentally compare our GOTH implementation
against hpp, a state of the art heuristic for probabilis-
tic planning. Our results show that for large problems
in five out of six benchmark domains we massively out-
perform hpp in terms of memory requirements, attest-
ing to GOTH’s higher informativeness, as well as time
efficiency. We find that LRTDP+hrr exhausts memory
on several problems that LRTDP+GOTH is able to solve
easily. Additionally, our solution quality is never worse
and often better than LRTDP+A .

BACKGROUND

Markov Decision Processes (MDPs). In this paper, we fo-
cus on probabilistic planning problems that are modeled by
factored indefinite-horizon MDPs. They are defined as tu-
ples of the form (S,.A,7,C,G, so), where S is a finite set
of states, A is a finite set of actions, 7 is a transition func-
tion S x A x § — [0, 1] giving the probability of moving
from s; to s; by executing a, C is amap S x A — RT
specifying action costs, g is the start state, and G is a set of
(absorbing) goal states. Indefinite horizon refers to the fact
that the total action cost is accumulated over a finite-length
action sequence whose length is unknown. In this paper, we
assume that all actions have conjunctive preconditions, since
the disjunctive ones can be compiled away, with the number
of actions in the resulting domain increasing linearly in the
number of disjuncts.

In factored MDPs, each state is represented as a con-
junction of values of the domain variables. Solving an
MDP means finding a good (i.e. cost-minimizing) policy
m: S — A that specifies the actions the agent should take
to eventually reach the goal. The optimal expected cost of
reaching the goal from a state s satisfies the following con-
ditions, called Bellman equations:

V*(s) = 0 ifse g, otherwise
V*(s) = (rlréig[C(s,a) + Z T (s,a,8)\V*(s")]

Given V*(s), an optimalS/eﬁSolicy may be com-
puted as follows: 7*(s) = argmin,4[C(s,a) +
YooesT(s,a,8)V*(s)].

Solution Methods. The above equations suggest a dynamic
programming-based way of finding an optimal policy, called
value iteration (VI), that iteratively updates state values us-
ing Bellman equations in a Bellman backup and follows the
resulting policy until the values converge.

VI has given rise to many improvements. Trial-based
methods, e.g. RTDP, try to reach the goal multiple times (in
multiple trials) and update the value function over the states
in the trial path using Bellman backups. A popular variant,
LRTDP, adds a termination condition to RTDP by labeling
those states whose values have converged as ‘solved’ [1].
Compared to VI, trial-based methods save space by consid-
ering fewer irrelevant states. LRTDP serves as the testbed in

our experiments, but the approach we present can be used by
many other search-based MDP solvers as well, e.g., LAO*.

Heuristic Functions. We define a heuristic function, here-
after termed simply as heuristic, as a value function used
to initialize the state values before the first time an algo-
rithm updates these values. In heuristic-guided algorithms,
heuristics help avoid visiting irrelevant states. To guaran-
tee convergence to an optimal policy, MDP solvers require
a heuristic to be admissible, i.e. to never overestimate the
optimal value of a state (importantly, admissibility is not a
requirement for convergence to a policy). However, inad-
missible heuristics tend to be more informative in practice,
approximating V'* better on average. Informativeness of-
ten translates into a smaller number of explored states (and
the associated memory savings) with reasonable sacrifices
in optimality. In this paper, we strive to obtain an informa-
tive heuristic even at the cost of admissibility, and adopt the
number of states visited by a planner under the guidance of a
heuristic as the measure of that heuristic’s informativeness.

Determinization. Some of the most effective domain-
independent heuristics known today are based on defer-
minizing the probabilistic domain at hand. Determiniz-
ing domain D removes the uncertainty about D’s action
outcomes in a variety of ways. For example, the all-
outcomes determinization, for each action a with precon-
dition ¢ and outcomes o1, ...,0, Wwith respective proba-
bilities py, ..., pn, produces a set of deterministic actions
ai,...,ay, each with precondition c and effect o;, yielding
a classical domain D,. To obtain a value for state s in D,
determinization heuristics try to approximate the cost of a
plan from s to a goal in Dy (finding a plan itself is generally
NP-hard). For instance, hr ignores the delete effects of all
actions in Dy and attempts to find the cost of the cheapest
solution to this new relaxed problem.

GOTH HEURISTIC

Given a problem P over a probabilistic domain D, the MDP
solver using GOTH starts with GOTH’s initialization. Dur-
ing initialization, GOTH determinizes D into its classic
counterpart, Dy (this operation needs to be done only once).
Our implementation performs the all-outcomes determiniza-
tion because it is likely to give much better value estimates
than the single-outcome one [17]. However, more involved
flavors of determinization described in the Related Work
section may yield even better estimation accuracy.

Calling a Deterministic Planner. Once D, has been com-
puted, the probabilistic planner starts exploring the state
space. For every state s that requires a heuristic initializa-
tion, GOTH first checks if it is an explicit dead end, i.e. has
no actions applicable in it. This check is in place for effi-
ciency, since GOTH should not spend time on them.

For state s that isn’t an explicit dead end GOTH con-
structs a problem P, with the original problem’s goal and
s as the initial state, feeding P, along with Dy to a classical
planner DetPlan, and setting a timeout (in our setup, 25
seconds). If s is an implicit dead end (i.e., has actions appli-
cable in it but no plan to the goal), Det Plan either quickly
proves this or unsuccessfully searches for a plan until the
timeout. In either case, it returns without a plan, at which

Algorithm 1 GOTH Heuristic

1: Input: probabilistic domain D, problem P =
(init. state sq, goal G), determinization routine Det,
classical planner Det Plan, timeout T, state s

Output: heuristic value of s

compute global determinization Dy = Det(D)
declare global map M from basis functions to weights

function computeGOTH(state s, timeout T")
if no action a of D is applicable in s then

9: return a large penalty // e.g., 1000000
10: else if a nogood holds in s then
11: return a large penalty // e.g., 1000000
12: else if some member f’ of M holds in s then
13: return minpagig functions f that subsume sIMIfT}
14: else

15: declare problem P, « (init. state s, goal G)
16: declare plan pl <+ DetPlan(Dgy, Ps,T)
17: if pl == none then

18: return a large penalty // e.g., 1000000

19: else

20: declare basis function f «— goal G

21: declare weight < 0

22: for all i = length(pl) through 1 do

23: declare action a « pl|[i]

24: weight — weight + Cost(s, a)

25: f— (fUprecond(a)) — ef fect(a)

26: if f is notin M then

27: insert (f, weight) into M

28: else

29: update M[f] by incorporating weight into
M f]’s running average

30: end if

31: end for

32: if SchedulerSaysYes then

33: learn nogoods from discovered dead ends

34: end if

35: return weight

36: end if

37: end if

point s is presumed to be a dead end and assigned a very
high value. If s is not a dead end, Det Plan usually returns
a plan from s to the goal. The cost of this plan is taken as the
heuristic value of s. In rare cases, Det Plan may fail to find
a plan before the timeout, leading the MDP solver to falsely
assume s to be a dead end. In practice, we haven’t seen this
hurt GOTH’s performance.

Regression-Based Generalization. By using a full-fledged
classical planner, GOTH produces more informative state
estimates than hp, as evidenced by our experiments. How-
ever, invoking the classical planner for every newly encoun-
tered state is costly; as it stands, GOTH would be pro-
hibitively slow. To ensure speed, we modify the procedure
based on the following insight. Regressing a successful de-
terministic plan in domain Dy yields a set of literal conjunc-
tions with an important property: each such conjunction is
a precondition for the plan suffix that was regressed to gen-

erate it. We call these conjunctions basis functions, and de-
fine the weight of a basis function to be the cost of the plan
it enables. Crucially, every deterministic plan in Dy cor-
responds to a positive-probability trajectory in the original
domain D therefore, a basis function is a certificate of such
a trajectory. Every state subsumed by a given basis function
is thus proved to have a possible trajectory to the goal.

We make this process concrete in the pseudocode of Al-
gorithm 1. Whenever GOTH computes a deterministic plan,
it regresses it and caches the resulting basis functions with
associated weights. When GOTH encounters a new state s,
it minimizes over the weights of all basis functions stored
so far that subsume s. In doing so, GOTH sets the heuris-
tic value of s to be the cost of the cheapest currently known
trajectory that originates at s. Thus, the weight of one ba-
sis function can become generalized as the heuristic value
of many states. This way of computing a state’s value is
very fast, and GOTH employs it before invoking a classical
planner. However, by the time state s needs to be evaluated
GOTH may have no basis functions that subsume it. In this
case, GOTH uses the classical planner as described above,
computing a value for s and augmenting its basis function
set. Evaluating a state first by generalization and then, if
generalization fails, by classical planning greatly amortizes
the cost of each classical solver invocation and drastically
reduces the computation time compared to using a determin-
istic planner alone.

Weight Updates. Different invocations of the determinis-
tic planner occasionally yield the same basis function more
than once, each time potentially with a new weight. Which
of these weights should we use? The different weights are
caused by a variety of factors, not the least of which are
non-deterministic choices made within the classical plan-
ner. For instance, LPG [5], which relies on a stochastic
local search strategy for action selection, may produce dis-
tinct paths to the goal even when invoked twice from the
same state, with concomitant differences in basis functions
and/or their weights. Thus, the basis function weight from
any given invocation may be irrepresentative of the cost of
the plans for which this basis function is a precondition. For
this reason, it is generally beneficial to assign a basis func-
tion the average of the weights computed for it by classical
planner invocations so far. This is the approach we take on
line 27 of Algorithm 1. Note that to compute the average
we need to keep the number of times the function has been
re-discovered.

Dealing with Implicit Dead Ends. The discussion so far
has ignored an important detail. When a classical planner is
called on an implicit dead end, by definition no trajectory is
discovered, and hence no basis functions. Thus, this invoca-
tion is seemingly wasted from the point of view of general-
ization: it does not contribute to reducing the average cost
of heuristic computation.

Fortunately, we can, in fact, amortize the cost of discov-
ery of implicit dead ends in a way similar to reducing the
average time of other states’ evaluation. For this purpose,
we compute conjunctions of literals called nogoods with the
property that all states subsumed by a nogood are dead-ends.
Just like basis functions guarantee the existence of a goal
trajectory from any states they subsume, nogoods guarantee

its non-existence. The algorithm for nogood construction
and deciding when to perform it, SixthSense [11], is rather
involved theoretically but very fast. SixthSense includes a
scheduler that decides when learning should be attempted.
Crucially, when the decision has been made (situation rep-
resented in line 30 of Algorithm 1), the technique makes use
of the basis functions and implicit dead ends discovered so
far, utilizing both as training data to induce nogoods (details
are abstracted away in line 31). The produced nogoods are
sound [11], i.e. all the states each of them subsumes are im-
plicit dead ends. With nogoods available, deciding whether
a state is a dead end is as simple as checking whether any of
the known nogoods subsume it (lines 8-9 of Algorithm 1).
Only if none do may deterministic planning be necessary to
answer the question. Experiments indicate [11] that Sixth-
Sense significantly reduces the amount of resources GOTH
uses. For instance, when GOTH is used with LRTDP, Sixth-
Sense can help reduce the running time and memory use
(since most implicit dead ends don’t need to be memoized
anymore) of the combination by 50% and more.

Speed and Memory Performance. To facilitate empirical
analysis of GOTH, it is helpful to look at the extra speed
and memory cost an MDP solver incurs while using it.

Concerning GOTH’s memory utilization, we emphasize
that, similar to hrr and many other heuristics, GOTH does
not store any of the states it is given for evaluation. It merely
returns heuristic values of these states to the MDP solver,
which can then choose to store the resulting state-value pairs
or discard them. However, to compute the values, GOTH
needs to memoize the basis function and nogoods it has ex-
tracted so far. As our experiments demonstrate, the set of
basis functions and nogoods discovered by GOTH through-
out the MDP solver’s running time is rather small and is
more than compensated for by the reduction in the explored
fraction of the state space due to GOTH’s informativeness,
compared to hpp.

Timewise, GOTH’s performance is largely determined
by the speed of the employed deterministic planner(s) and
the number of times it is invoked. Another component that
may become significant is determining the “cheapest” basis
function that holds in a state (line 11 of Algorithm 1), as
it requires iterating, on average, over a constant fraction of
known basis function. Although faster solutions are possible
for this pattern-matching problem, all that we are aware of
(e.g., [4]) pay for the increase in speed with degraded mem-
ory performance.

Theoretical properties. Two especially noteworthy theo-
retical properties of GOTH are the informativeness of its
estimates and its inadmissibility. The former ensures that,
compared to hpr, GOTH causes MDP solvers to explore
fewer states. At the same time, just like hpp, GOTH is
inadmissible, but for different reasons. One source of in-
admissibility comes from the general lack of optimality of
deterministic planners. Even if they were optimal, however,
employing timeouts to terminate the classical planner occa-
sionally causes GOTH to falsely assume states to be dead
ends. Finally, the basis function generalization mechanism
also contributes to inadmissibility. The set of discovered ba-
sis functions is almost never complete, and hence even the
smallest basis function weight known so far may be an over-

estimate of a state’s true value, as there may exist an even
cheaper goal trajectory from this state that GOTH is un-
aware of. In spite of theoretical inadmissibility, in practice
using GOTH usually yields very good policies whose qual-
ity is often better than of those found under the guidance of
h FF-

EXPERIMENTAL RESULTS

Our experiments compare the performance of a proba-
bilistic planner using GOTH to that of the same planner un-
der the guidance of hpp across a wide range of domains.
In our experience, hpp, included as a part of miniGPT
[2], outperforms all other well-known MDP heuristics on
most IPPC domains, e.g., the min-min and atom-min heuris-
tics supplied in the same package. Our implementation of
GOTH uses a portfolio of two classical planners, FF and
LPG [5]. To evaluate a state, it launches both planners as
in line 12 of Algorithm 1 in parallel and takes the heuristic
value from the one that returns sooner. We tested GOTH
and hrp as a part of the LRTDP planner available in the
miniGPT package. Our benchmarks were six probabilis-
tic domains, five of which come from the two most recent
IPPCs: Machine Shop [13], Triangle Tireworld (IPPC-08),
Exploding Blocks World (IPPC-08 version), Blocks World
(IPPC-06 version), Elevators (IPPC-06), and Drive (IPPC-
06). All of the remaining domains from IPPC-06 and IPPC-
08 are either easier versions of the above (e.g., Tireworld
from IPPC-06) or have features not supported by our im-
plementation of LRTDP (e.g., rewards, universal quantifica-
tion, etc.) so we weren’t able to test on them. Additionally,
we perform a brief comparison of LRTDP+GOTH against
ReTrASE [10] and FF-Replan [17], since these share some
insights with GOTH. In all experiments except measuring
the effect of generalization, the planners had a 24-hour limit
to solve each problem.

Comparison against hrpr. In this subsection, we use
each of the domains to illustrate various aspects and modes
of GOTH’s behavior and compare it to the behavior of
hrpr. As shown below, on five of the six test domains
LRTDP+GOTH massively outperforms LRTDP+hpp.

We start the comparison by looking at a domain whose
structure is especially inconvenient for hpr. The Machine
Shop domain involves two machines and a number of ob-
jects equal to the ordinal of the corresponding problem.
Each object needs to go through a series of manipulations,
of which each machine is able to do only a subset. The ef-
fects of some manipulations may cancel the effects of others
(e.g., shaping an object destroys the paint sprayed on it).
Thus, the order of actions in a plan is critical. This domain
illuminates the drawbacks of h g, which ignores delete ef-
fects and doesn’t distinguish good and bad action sequences
as a result. Machine Shop has no dead ends.

Figures 1 and 2 show the speed and memory performance
of LRTDP equipped with the two heuristics. As implied by
the previous discussion of GOTH’s space requirements, the
memory consumption of LRTDP+GOTH is measured by
the number of states, basis functions, and nogoods whose
values need to be maintained (GOTH caches basis func-
tions and LRTDP caches states). In the case of LRTDP+h g

1000
meuh

800 A7

600 == GOTH A

400 0
200 D

TIME IN SECONDS
~
TIME IN SECONDS

1 2 3 4 5 6 7 8 9 10 1 2 3
MACHINE SHOP PROBLEM #

5

4
TRIANGLE TIRE PROBLEM #

TIME IN SECONDS

6 7 8 9 10 12345678 9101112131415

BLOCKSWORLD PROBLEM #

Figure 1: GOTH outperforms hrr on Machine Shop, Triangle Tireworld, and Blocksworld by a large margin both in speed...

6

(%] 5 [%)]
Lz)loxlo %10)(10
2 s meahpp ’ 2

9] %)

@ ¢ |=e=GOTH ’ %

3 : 3

+ 4 o +

(] o n

L 4 L

E 2 . =

0 -] e

[7p] >4 >4 v = [)]

1 2 3 4 5 6 7 8 9 10 % 1 2 3 4

MACHINE SHOP PROBLEM #

all memory used is only due to LRTDP’s state caching be-
cause hpp by itself does not memoize anything. On Ma-
chine Shop, the edge of LRTDP+GOTH is clearly vast,
reaching several orders of magnitude. In fact, LRTDP+hpp
runs out of memory on the three hardest problems, whereas
LRTDP+GOTH is far from that.

Concerning the policy quality, we found the use of GOTH
to yield optimal or near-optimal policies on Machine Shop.
This contrasts with hpr whose policies were on average
30% more costly than the optimal ones.

The Triangle Tireworld domain, unlike Machine Shop,
doesn’t have structure that is particularly adversarial for
hrpr. However, LRTDP+GOTH noticeably outperforms
LRTDP+hppr on it too, as Figures 1 and 2 indicate.
Nonetheless, neither heuristic saves enough memory to let
LRTDP solve past problem 8.

The results on Exploding Blocks World (EBW) are
similar to those on Triangle Tireworld, where the
LRTDP+GOTH’s more economical memory consumption
eventually translates to a speed advantage. Importantly,
however, on several EBW problems LRTDP+GOTH is su-
perior to LRTDP+hpp in a more illustrative way: it man-
ages to solve four problems on which LRTDP+h i runs out
of space.

The Drive domain is small, and using GOTH on it may
be an overkill. On Drive problems, planners spend most of
the time in decision-theoretic computation but explore no
more than around 2000 states. LRTDP under the guidance
of GOTH and hpp explores roughly the same number of
states, but since so few of them are explored generalization
does not play a big role and GOTH incurs the additional
overhead of maintaining the basis functions without getting
a significant benefit from them.

On the remaining test domains, Elevators and
Blocksworld, LRTDP+GOTH dominates LRTDP+hrp in
both speed and memory while providing policies of equal
or better quality. Figures 1 and 2 shows the performance
on Blocksworld as an example. Classical planners in our
portfolio cope with determinized versions of these domains
very quickly, and generalization ensures that the obtained
heuristic values are spread over many states. Similar to the

5
TRIANGLE TIRE PROBLEM #

Figure 2: ... and in memory

¢? _x10*

-

w

FF
=8= GOTH

N

[4
'
'
'
[
'
]
[
'
]

#STATES+BASIS FUNC

6 7 8 9 10 3456 7 8 9101112131415

BLOCKSWORLD PROBLEM #

situation on EBW, the effectiveness of GOTH is such that
LRTDP+GOTH can solve even the five hardest problems
of Blocksworld, which LRTDP+h rr could not.

Figure 3 provides the big picture of the comparison. For
each problem we tried, it contains a point whose coordi-
nates are the logarithms of the amount of time/memory that
LRTDP+GOTH and LRTDP+h g f took to solve that prob-
lem. Thus, points that lie below the Y = X line corre-
spond to problems on which LRTDP+GOTH did better ac-
cording to the respective criterion. The axes of the time plot
of Figure 3 extend to log,(86400), the logarithm of the time
cutoff (86400s, i.e. 24 hours) that we used. Similarly, the
axes of the memory plot reach log, (10000000), the number
of memoized states/basis functions at which the hash tables
where they are stored become too inefficient to allow a prob-
lem to be solved within the 86400s time limit. Thus, the
points that lie on the extreme right or top of these plots de-
note problems that could not be solved under the guidance
of at least one of the two heuristics. Overall, the time plot
shows that, while GOTH ties or is slightly beaten by hpg
on Drive and smaller problems of other domains, it enjoys
a comfortable advantage on most large problems. In terms
of memory, this advantage extends to most medium-sized
and small problems as well, and sometimes translates into a
qualitative difference, allowing GOTH to handle problems
that hpp can’t.

Why does GOTH’s and hpr’s comparative performance
differ from domain to domain? For an insight, refer to Table
1. It displays the ratio of the number of states explored by
LRTDP+hprp to the number explored by LRTDP+GOTH,
averaged over the problems that could be solved by both
planners in each domain. Thus, these numbers reflect the
relative informativeness of the heuristics. Note the impor-
tant difference between the data in this chart and memory
usage as presented on the graphs: the information in the
table disregards memory consumption due to the heuris-
tics, thereby separating the description of heuristics’ infor-
mativeness from a characterization of their efficiency. As-
sociating the data in the table with the relative speeds of
LRTDP+hfrr and LRTDP+GOTH on the test domains re-
veals a clear trend; the size of LRTDP+GOTH’s speed ad-

18« ms
141 & TTW -

124 + EBW 7

10y .

LOGZ(LRTDP+GOTH TIME)
[ee]
@
e
q-\ v
o
*
e

4 6 10 12 16
LOG,(LRTDP+h., TIME)

* Ms
= 200 A TTW |
g + EBW 9
w o 9
S . ¢ EL Ao © *

15 5
T > DR 4 * i
O -

B Bw
? 7 '-#’"*

g 10 o
= bl-"f *

5 4

ON ?r L)
5 . b

0 e *

— e

5 10 15
LOG,(LRTDP+h_. MEMORY)

Figure 3: The big picture: GOTH provides a significant advantage on large problems. (Note that the axes are on the Log scale.)

10000
=*=GOTH/NO GEN.

== GOTH K
6000} .

8000

4000+ .*

TIME IN SECONDS

2000+ __‘_-"
am= e =
o ® ® i ®
1 2 3 4 5 6 7 8 9 10
MACHINE SHOP PROBLEM #

Figure 4: GOTH is much faster with generalization than without.

EBW | EL | TTW | DR MS | BW
207 | 418 | 1.71 | 1.00 | 14.40 | 7.72

Table 1: Average ratio of the number of states memoized by
LRTDP under the guidance of hrr to the number under GOTH
across each test domain. The bigger these numbers, the more mem-
ory GOTH saves the MDP solver compared to hrr.

vantage is strongly correlated with its memory advantage,
and hence with its advantage in informativeness. In par-
ticular, GOTH’s superiority in informativeness is not al-
ways sufficient to compensate for its computation cost. In-
deed, the 1.71 x average reduction (compared to h) in the
number of explored states on Triangle Tireworld is barely
enough to make good the time spent on deterministic plan-
ning (even with generalization). In contrast, on domains like
Blocksworld, where GOTH causes LRTDP to visit many
times fewer states than hpr, LRTDP+GOTH consistently
solves the problems much faster.
Benefit of Generalization. A central hypothesis of this pa-
per is that generalization is vital for making GOTH compu-
tationally feasible. To test it and measure the importance of
basis functions for GOTH’s operation, we ran a version of
GOTH with generalization turned off on several domains,
ie. with the classical planner being invoked from every
state passed to GOTH for evaluation. (As an aside, note
that this is similar to the strategy of FF-Replan, with the
fundamental difference that GOTH’s state values are even-
tually overridden by the decision-theoretic training process
of LRTDP. We explore the relationship between FF-Replan
and GOTH further in the next section.)

As expected, GOTH without generalization proved to be
vastly slower than full GOTH. For instance, on Machine
Shop LRTDP+GOTH with generalization turned off is ap-

proximately 30-40 times slower (Figure 4) by problem 10,
and the gap is growing at an alarming rate, implying that
without our generalization technique the speedup over hpp
would not have been possible at all. On domains with im-
plicit dead ends, e.g. Exploding Blocks World, the differ-
ence is even more dramatic, reaching over two orders of
magnitude.

Furthermore, at least on the relatively small problems on
which we managed to run LRTDP+GOTH without gener-
alization, we found the quality of policies (measured by the
average plan length) yielded by generalized GOTH to be
typically better than with generalization off. This result is
somewhat unexpected, since generalization is an additional
layer of approximation on top of determinizing the domain.
We attribute this phenomenon to our averaging weight up-
date strategy. As pointed out earlier, the weight of a ba-
sis function (i.e., the length of a plan, in the case of non-
generalized GOTH) from any single classical planner in-
vocation may not be reflective of the basis function’s qual-
ity, and non-generalized GOTH will suffer from such noise
more than regular GOTH. While we don’t know if the trend
holds on the largest problems of most domains we tried, even
if it is reversed the slowness of GOTH without generaliza-
tion makes its use unjustifiable in practice.

One may wonder whether generalization can also bene-
fit hpp the way it helped GOTH. While we haven’t con-
ducted experiments to verify this, we believe the answer is
no. Unlike full deterministic plan construction, finding a
relaxed plan sought by hrr is much easier and faster. Con-
sidering that the generalization mechanism involves iterat-
ing over many of the available basis functions to evaluate a
state, any savings that may result from avoiding hpp’s re-
laxed plan computation will be negated by this iteration.
Computational Profile. An interesting aspect of GOTH’s
modus operandi is the fraction of the computational re-
sources an MDP solver uses that is due to GOTH. E.g.,
across the Machine Shop domain, LRTDP+GOTH spends
75-90% of the time in heuristic computation, whereas
LRTDP+hrp only 8-17%. Thus, GOTH is computation-
ally much heavier but causes LRTDP to spend drastically
less time exploring the state space.

Comparison against ReTrASE. Superficially, ReTrASE
extracts and uses basis functions in a way similar to GOTH.

=*=ReTrASE
601! == | RTDP+GOTH

SUCCESS RATE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ELEVATORS PROBLEM #

Figure 5: LRTDP+GOTH vastly outperforms ReTrASE on Ele-
vators.

The major difference lies in the fact that ReTrASE tries to
learn weights for the basis functions, whereas GOTH, being
only a heuristic, employs basis functions to initialize state
values and lets a conventional MDP solver improve on these
values. In practice, this discrepancy translates to ReTrASE’s
learning procedure providing very few quality guarantees.
While it is very memory-efficient on many hard problems,
the solutions are poor on some domains with rather simple
structure, e.g. Elevators from IPPC-06 [10]. In contrast,
GOTH admits the use of conventional MDP solvers with
strong theoretical machinery, making the outcome of its ap-
plication more predictable. In particular, LRTDP+GOTH
achieves a 100% success rate on all 15 Elevators prob-
lems (Figure 5) and takes at most 5 minutes per problem.
This is not to say, however, that LRTDP+GOTH generally
outmatches ReTrASE. For example, while LRTDP+GOTH
achieves a 100% success rate on the first 8 problems of Tri-
angle Tire, ReTrASE performs equally well on the first 8
problems but, unlike LRTDP+GOTH, can also solve prob-
lems 9 and 10. Thus, GOTH’s use of basis functions yields
qualitatively different results than ReTrASE’s.
Comparison against FF-Replan. One can also find similar-
ities between the techniques used by GOTH and FF-Replan.
Indeed, both employ deterministic planners, FF-Replan —
for action selection directly, while GOTH — for state eval-
uation. One key difference again lies in the fact that GOTH
is not a complete planner, and lets a dedicated MDP solver
correct its judgment. As a consequence, even though GOTH
per se ignores probabilistic information in the domain, prob-
abilities are (or can be) nonetheless taken into account dur-
ing the solver’s search for a policy. FF-Replan, on the other
hand, ignores them entirely. Due to this discrepancy, per-
formance of FF-Replan and a planner guided by GOTH is
typically vastly distinct. For instance, FF-Replan is faster
than most decision-theoretic planners. On the other hand,
FF-Replan has difficulty dealing with probabilistic subtleties
and is known to come up with low success rate policies
[12] on domains that contain them, e.g., Triangle Tireworld.
LRTDP+GOTH can handle such domains much better, as
our experiments demonstrate.

We conclude by stressing that, since GOTH is not a full
planner, any performance comparison between it and vari-
ous MDP solvers is inconclusive without the specification
of and highly dependent upon the planner that uses GOTH.

DISCUSSION

Promise shown by GOTH indicates several directions for
further development. The experiments have demonstrated
that GOTH generally performs well but its advantage in in-

formativeness isn’t always sufficient to secure an advantage
in speed. GOTH’s speed, in turn, depends critically on how
fast the deterministic planners from its portfolio are on the
deterministic version of the domain at hand. Therefore, one
way this issue can be alleviated is by adding more classi-
cal planners to the portfolio and launching them in parallel
in the hope that at least one will be able to cope quickly
with the given domain. Of course, this method may backfire
when the number of employed classical planners exceeds
the number of cores on the machine where the MDP solver
is running, since the planners will start contending for re-
sources. Nonetheless, up to that limit, increasing the portfo-
lio size should only help, and a prominent candidate for in-
clusion is LAMA [14], the winner of the deterministic track
of IPC-2008. In addition, using a reasonably-sized portfolio
of planners may help reduce the variance of the time it takes
to arrive at a heuristic estimate.

Another direction is experimenting with domain deter-
minizations GOTH could rely on. One alternative is pro-
posed by the authors of HMDPP [9] and described in Re-
lated Work. Its use could improve GOTH’s informativeness
further, and possibly also ease the task of the classical plan-
ners provided that the determinization avoids enumerating
all outcomes of every action without significant losses in so-
lution quality.

An entirely different set of ideas suggested by GOTH
concerns applicability of generalization in other planning
algorithms. We firmly believe that generalization has the
ability to enhance many existing probabilistic planning tech-
niques as well as inspire new ones. As an example, note that
FF-Replan could benefit from generalization in the follow-
ing way. It could extract basis functions from deterministic
plans it is producing while trying to reach the goal and store
each of them along with their weight and the last action re-
gressed before obtaining that particular basis function. Upon
encountering a state subsumed by at least one of the known
basis functions, “generalized FF-Replan” would select the
action corresponding to the basis function with the small-
est weight. Besides an accompanying speed boost, which
is a minor point in the case of FF-Replan since it is very
fast as is, FF-Replan’s robustness could be greatly improved,
since this way its action selection would be informed by sev-
eral trajectories from the state to the goal, as opposed to just
one. Employed analogously, basis functions could speed up
FF-HOP [18], an MDP solver that has great potential but
is somewhat slow in its current form. In fact, it appears
that virtually any algorithm for solving MDPs could have its
convergence accelerated if it regresses the trajectories found
during policy search and carries over information from well
explored parts of the state space to the weakly probed ones
with the help of basis functions. We hope to verify this con-
jecture in the future.

RELATED WORK

The use of determinization for solving MDPs was inspired
by advances in classical planning, most notably the FF
solver [8]. The practicality of the new technique was demon-
strated by FF-Replan [17] that used the FF planner on an
MDP determinization for direct selection of an action to ex-
ecute in a given state. More recent planners to employ deter-

minization that are, in contrast to FF-Replan, successful at
dealing with probabilistically interesting problems include
RFF-RG/BG [16]. Unlike GOTH, they normally use deter-
ministic planners to learn the state or action values, not just
to initialize their values heuristically. As a consequence,
they invoke FF many more times than we do. This forces
them to avoid all-outcome determinization as invoking FF
would be too costly otherwise.

In spirit, GOTH’s strategy of extracting useful state
information in the form of basis functions is related to
explanation-based learning (EBL) [3]. However, EBL sys-
tems suffer from accumulating too much of such informa-
tion, whereas GOTH doesn’t.

To a large degree, the FF planner owes its performance to
hrr [8]. LRTDP [1] and HMDPP [9] adopted this heuristic
with no modifications as well. In particular, HMDPP runs
hpr on a “self-loop determinization” of an MDP, thereby
forcing hpr’s estimates to take into account some of the
problem’s probabilistic information.

Several algorithms generate basis functions by regression
like we do, [6], [15], and [10] to name a few. However, the
role of basis functions in them is entirely different. In these
methods, basis functions serve to map the planning prob-
lems to smaller parameter spaces consisting of basis func-
tion weights. Parameter learning in such transformed spaces
is usually approximate and gives few theoretical guaran-
tees (see, for instance, [10]). In GOTH, basis functions
are used to generalize heuristic values over multiple states
and thereby to avoid invoking the classical planner too many
times. Importantly, however, the parameter space in which
learning takes place is unchanged — it is still the set of
state values. We can therefore use conventional techniques
like LRTDP in conjunction with GOTH that give substan-
tial predictability of the solution quality. GOTH achieves
the reduction in the number of required parameters through
the increased informativeness of initial heuristic estimates,
not through parameter space transformation.

CONCLUSION

We have proposed GOTH, a new heuristic that uses
full-fledged deterministic planners to solve MDP deter-
minizations. Although invoking a classical solver naively is
too expensive to be practical, we show that one may amor-
tize this cost by generalizing the resulting heuristic values
to cover many states. When a deterministic trajectory to the
goal is found, GOTH regresses the trajectory to calculate
basis functions summarizing where such a trajectory is
feasible. GOTH’s use of basis functions greatly reduces
the number of times the deterministic planner is called and
renders our idea practical. While, like hrp, the resulting
heuristic is inadmissible, it usually gives more informative
state value estimates than hpp and provides significant
memory savings to the MDP solvers. The experiments show
that GOTH outperforms hpp in time and memory on five
out of six domains. We also demonstrate generalization
to be the key idea enabling GOTH to compete with hpp
in terms of speed. We believe that GOTH’s notion of
generalization has considerable potential to improve other
planning techniques as well.

Acknowledgments. We would like to thank Rao Kamb-
hampati, William Cushing, the anonymous reviewers, and
our colleagues at the University of Washington Al group
for their insightful comments. This work was supported by
ONR grants N000140610147 and N0O00140910051 and the
WREF/TJ Cable Professorship.

References

[1] B.Bonet and H. Geffner. Labeled RTDP: Improving the con-
vergence of real-time dynamic programming. In /CAPS’03,
pages 12-21, 2003.

[2] B. Bonet and H. Geffner. mGPT: A probabilistic planner
based on heuristic search. Journal of Artificial Intelligence
Research, 24:933-944, 2005.

[3] S. Minton C. Knoblock and O. Etzioni. Integrating abstrac-
tion and explanation-based learning in PRODIGY. In Ninth
National Conference on Artificial Intelligence, 1991.

[4] C. Forgy. Rete: A fast algorithm for the many pattern/many
object pattern match problem. In Artificial Intelligence, vol-
ume 19, pages 17-37, 1982.

[5] A. Gerevini, A. Saetti, and I. Serina. Planning through
stochastic local search and temporal action graphs. Journal
of Artificial Intelligence Research, 20:239-290, 2003.

[6] C. Gretton and S. Thiebaux. Exploiting first-order regression
in inductive policy selection. In UAI’04, 2004.

[7] E.Hansen and S. Zilberstein. LAO*: A heuristic search algo-
rithm that finds solutions with loops. In Artificial Intelligence,
pages 129(1-2):35-62, 2001.

[8] J. Hoffman and B. Nebel. The FF planning system: Fast plan
generation through heuristic search. Journal of Artificial In-
telligence Research, 14:253-302, 2001.

[9] E.Keyder and H. Geffner. The HMDPP planner for planning
with probabilities. In Sixth International Planning Competi-
tion at ICAPS’08, 2008.

[10] A. Kolobov, Mausam, and D. Weld. ReTrASE: Integrat-
ing paradigms for approximate probabilistic planning. In 1J-
CAI’09, 2009.

[11] A. Kolobov, Mausam, and D. Weld. SixthSense: Fast and
reliable recognition of dead ends in MDPs. In submission,
2010.

[12] Tain Little and Sylvie Thiebaux. Probabilistic planning vs.
replanning. In ICAPS Workshop on IPC: Past, Present and
Future, 2007.

[13] Mausam, P. Bertoli, and D. Weld. A hybridized planner for
stochastic domains. In IJCAI’07, 2007.

[14] S. Richter, M. Helmert, and M. Westphal. Landmarks revis-
ited. In AAAI’08, 2008.

[15] S. Sanner and C. Boutilier. Practical linear value-
approximation techniques for first-order MDPs. In UAI’06,
2006.

[16] F. Teichteil-Koenigsbuch, G. Infantes, and U. Kuter. RFF:
A robust, FF-based MDP planning algorithm for generating
policies with low probability of failure. In Sixth International
Planning Competition at ICAPS’08, 2008.

[17] S. Yoon, A. Fern, and R. Givan. FF-Replan: A baseline for
probabilistic planning. In ICAPS’ 07, pages 352-359, 2007.

[18] S. Yoon, A. Fern, S. Kambhampati, and R. Givan. Probabilis-
tic planning via determinization in hindsight. In AAAI’0S,
2008.

