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Abstract— The need to visualize large social networks is growing as hardware capabilities make analyzing large networks feasible
and many new data sets become available. Unfortunately, the visualizations in existing systems do not satisfactorily resolve the
basic dilemma of being readable both for the global structure of the network and also for detailed analysis of local communities. To
address this problem, we present NodeTrix, a hybrid representation for networks that combines the advantages of two traditional
representations: node-link diagrams are used to show the global structure of a network, while arbitrary portions of the network can
be shown as adjacency matrices to better support the analysis of communities. A key contribution is a set of interaction techniques.
These allow analysts to create a NodeTrix visualization by dragging selections to and from node-link and matrix forms, and to flexibly
manipulate the NodeTrix representation to explore the dataset and create meaningful summary visualizations of their findings. Finally,
we present a case study applying NodeTrix to the analysis of the InfoVis 2004 coauthorship dataset to illustrate the capabilities of
NodeTrix as both an exploration tool and an effective means of communicating results.

Index Terms—Network visualization, Matrix visualization, Hybrid visualization, Aggregation, Interaction.
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1 INTRODUCTION

Social network analysis is a growing area of the social sciences. Vast
new datasets are becoming available as people conduct ever more of
their social lives electronically. Online projects such as Wikipedia or
open-source software development are creating new social networks
on a global scale. At the same time, the challenges of a more in-
tegrated world generate new demands for analysis such as monitor-
ing terrorist networks or the spread of potentially pandemic diseases.
Social network visualization is becoming a popular topic in informa-
tion visualization, generating more and more tools for analysts. In
2006, 10 network-related articles (or 30%) were presented at the In-
foVis Symposium and 6 at the VAST symposium. The large major-
ity of network visualization systems use the node-link representation:
54 (out of 55) node-link based systems are referenced in the Social
Network Analysis Repository (http://www.insna.org/), and
49 (out of 52) on the Visual Complexity website (http://www.
visualcomplexity.com/). This representation is well suited to
show sparse networks, but social networks are known to be globally
sparse and locally dense. Therefore, social network visualization faces
a major challenge: obtaining a readable representation for both the
overall sparse structure of a social network and its dense communities.

In this article, we propose a novel visualization called NodeTrix to
address this challenge. NodeTrix integrates the best of the two tra-
ditional network representations by using node-link diagrams to vi-
sualize the overall structure of the network, within which adjacency
matrices show communities.

The article is organized as follows: after the related work section,
we describe the NodeTrix representation and the data structure we rely
on. We then detail the interaction techniques we designed for creating
a NodeTrix hybrid, either by starting from a standard node-link di-
agram or from a standard adjacency matrix. Finally, we describe a
case study using NodeTrix to explore and present the results of a co-
authorship social network.
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Fig. 1: NodeTrix Representation of the largest component of the Info-
Vis Co-authorship Network

2 RELATED WORK

In the rest of this article, we use “graph” to refer to the topological
structure with no associated attributes and “network” for a graph with
an arbitrary number of attributes associated with its vertices and edges.
“Vertices” and “edges” refer to topological features while “nodes” and
“links” refer to their visual counterparts in node-link diagrams. For
matrices, “rows” and “columns” refer to the visual representation of
vertices and “cells” are the visual representation of edges.

2.1 Social Network Analysis
Social networks are graphs where the vertices are actors (people) and
the edges are relationships. They vary from very sparse (genealogical
trees) to very dense (exports and imports between countries). Small-
world networks belong to an intermediate category that occurs very
frequently in social networks, including many acquaintanceship net-
works as well as the global Internet. They are the focus of many stud-
ies [23, 20] because of their interesting properties [33]. For social
network visualization, the most relevant of these properties are a high
clustering coefficient, corresponding to the presence of many locally
dense clusters, and a small cross-section, caused by a small number of
hub vertices connecting communities in a graph that is globally sparse.

Social network analysis relies on three important tasks [31, 27]:

• (T1) identify communities, i.e. cohesive groups of actors that are
strongly connected to each other;

• (T2) identify central actors, i.e. actors linked to many others or
that bridge communities together;

• (T3) analyze roles and positions — these are higher level tasks
relying on the interpretation of groups of actors (positions) and
connection patterns (roles).



We now consider each of these three tasks in more detail, point-
ing out the corresponding graph-theoretic properties or graph analysis
tasks using the taxonomy of tasks in [26].

To perform community analysis, an analyst should be able to group
actors by attributes and study the connection patterns within each
group. The analysis of attributes such as actors’ names or interests is
important to label the community in question and interpret why these
actors are grouped. Studying the connection patterns reveals how ac-
tors of the community are linked and the strength of their relationships.
Analysts need to evaluate the density of a community in terms of con-
nections and also to quickly identify cliques (a group where each actor
is linked to every other actor) and missing relationships. Thus, com-
munity analysis relies on attribute-based tasks, involving attributes of
actors or relationships, and topology-based tasks, such as examining
adjacency (direct connections) between nodes.

Identifying central actors is revealed by performing essentially
topology-based tasks. Analysts need to identify the most connected
actors, as well as articulation points (actors bridging communities to-
gether). Such actors can be identified using measures of centrality,
several of which are based on path-related tasks. For example, the be-
tweenness centrality indicates the number of times a node is present
in a shortest path between every pair of nodes in the network. Identi-
fying central actors requires understanding the global structure of the
network, i.e. finding communities, how they are linked and what actors
link them.

Analyzing roles and positions is done by analyzing how actors are
connected within a community and outside a community. This task
requires more interpretation and relies also on attributes of actors and
relationships.

Many systems exist to analyze social networks. We classify them
into two categories: menu-based systems and exploration systems.

Menu-based systems provide a wide range of functionality but users
often need expert help or a cookbook to analyze their datasets. Exam-
ples of these systems include Ucinet [7] — based on statistics and
proposing a broad range of analysis functions — and Pajek [8] which
provides a large set of algorithms to partition, permute, cluster, hierar-
chize and layout networks.

Mastering all the richness of these menu-based systems to control
the analysis process requires considerable effort from the user, hence
recent systems are aimed at a more exploratory process. This process
is based on starting with an overview of the whole network and then,
using interaction (MatrixExplorer [16]) or simple scripts (Guess [2]),
manipulating the dataset (e.g. through filtering or clustering) to create
a set of visuals for further analysis. A number of recent systems forgo
the first step of this process because displaying a readable overview
of a large network is too difficult. PivotGraph [32] proposes start-
ing the exploration from a top level aggregation of network attributes.
The user visualizes categories and their relationships, and then inter-
acts with the visualization to explore lower levels. NetLens [21] fo-
cuses on simple visualizations (histograms) of the network attributes
and uses interaction to analyze the network. Semantic substrates [29]
relies essentially on filtering and organizing actors according to their
attributes. Finally, TreePlus [22] and Vizster [15] focus on a local rep-
resentation of the network and use interaction to navigate within the
whole dataset. These systems, while easy to use and sometimes en-
gaging, are not effective at showing global structures of the network
or global features such as central actors.

2.2 Graph Drawing
Graph drawing has a very rich history [9, 18], with early work on in-
teractive computerized visualizations extending back to the 1960s [4].
However, almost all visualizations of graphs amount to either node-
link diagrams or adjacency matrix representations. There are a few
examples of hybrid representations for graphs [14, 30] and for trees
[35, 12] but none so far have combined node-line diagrams with adja-
cency matrices.

Node-link diagrams are the most familiar representation of graphs
in general and of social networks in particular. They are good at show-
ing the overall structure of a sparse graph, but Ghoniem et al. [13]

showed that density has a strong impact on readability in these dia-
grams. Focusing on basic readability tasks such as finding an actor or
determining if two actors are linked, they conclude that node-link dia-
grams perform badly for dense networks even with few (e.g. 20) nodes.
Because node-link diagrams become unreadable in dense communi-
ties and around high-degree hub nodes, they do not lend themselves to
community analysis.

As an aside, in a community that is almost a clique and only miss-
ing a few edges, one might suggest using a “complementary” node-
link diagram, where the links displayed indicate the missing edges; all
the other edges being implicitly present. This would reduce clutter in
some case, but in general is not a viable solution, because a commu-
nity of n vertices with n2/4 = O(n2) edges is considered dense, but has
an approximately equal number of present and missing edges. Thus,
clutter remains a significant problem even with such “complementary”
node-link diagrams.

The adjacency matrix representation, which is particularly effective
for dense graphs, have been proposed to solve this problem [1, 16].
However, it is ill-suited to path-related tasks [13] that are very im-
portant in social network analysis. Analysts following paths between
actors using a node-link network representation can exploit “Gestalt
continuation” preattentive visual processing, but in a matrix represen-
tation the same task requires aligning and matching nodes back and
forth between corresponding rows and columns, a tedious and error-
prone high-level cognitive task. So, matrix representations ease com-
munity analysis, but hinder identification of important global struc-
tures.

Thus, at one extreme are sparse social networks, which have an
almost tree structure and few communities, for which node-link dia-
grams are well suited. At the other end of the spectrum are very dense
networks in which matrices are well suited. The problem boils down
to deciding which visualization is more suitable for small-world net-
works that have an intermediate nature, being globally sparse but lo-
cally dense. Choosing between these representations requires a trade-
off between readability of global structure and ease of community
analysis.

Henry and Fekete [16] chose to provide users with both representa-
tions, side-by-side, synchronized by brushing and linking. They argue
that users can use the most appropriate visualization for each task.
However, their system requires the use of two screens and the au-
thors point out the potential cognitive load and divided attention from
switching between representations.

Other recent work by Henry and Fekete [17] attempts to overcome
the weaknesses of matrix representations by adding links on the sides
of the traditional matrix. While the authors experimentally demon-
strated that their visualization improves the traditional matrix, their re-
sults also show that the user fails to identify some important features,
in particular, the articulation points of networks.

Solutions have also been proposed to improve the readability of
node-link diagrams for communities. Auber et al. [3] introduce ag-
gregated node-link diagrams where each community is aggregated in
a single node within which a small overview is displayed. While com-
munities are quickly identifiable and the global structure more read-
able, detailed analysis of communities is impossible because links be-
tween communities are missing.

Holten proposed the Hierarchical Edge Bundles technique [19] to
improve the readability of hierarchical graphs; it can also be applied
to clustered graphs. Although it can improve the readability of the
global structure and inter-community relationships, it is still difficult
to identify intra-community organization as nodes inside clusters are
positioned along a circle, creating many link crossings.

3 NODETRIX

NodeTrix is a hybrid representation of networks based on the node-
link diagram where communities can be represented as matrices.
Intra-community relationships use the adjacency matrix representation
while inter-community relationships use normal links.



3.1 Data Structure and Design Choices
Two networks are involved in a NodeTrix representation: the raw un-
derlying network (composed of underlying nodes and links) that serves
as initial input, and an aggregated network (composed of aggregated
nodes and links) that is derived from the underlying network. Each
aggregate node may correspond to either a unique underlying node
or to a group of underlying nodes that typically form a community.
Underlying nodes are never shared by aggregate nodes, i.e. there is a
many-to-one mapping from underlying nodes to aggregate nodes (and
also from underlying links to aggregate links.)

Because our goal with NodeTrix is to provide a readable repre-
sentation for dense subgraphs, only a single level of aggregation is
used: dense subgraphs are simply aggregated and displayed as matri-
ces. Some aggregated nodes may correspond to only one underlying
node rather than a group of underlying nodes and these are displayed
as a simple node rather than a matrix. However, operations are de-
signed to be uniform over all aggregated nodes. In particular, the user
can add or merge aggregated nodes, whether each node involved cor-
responds to just one or many underlying nodes.

Attributes of the underlying nodes and underlying links are com-
bined and propagated up to the aggregated elements. For nominal
attributes, values are combined through simple concatenation. Nu-
merical attributes are aggregated either using the average, the min or
the max values. An interesting benefit of using matrices in NodeTrix
is that they can display the attributes of both underlying elements and
aggregated elements, for both links and nodes. Furthermore, because
users can dynamically switch between the two representations, more
visual variables are available to show attributes. For example, the
background color of a matrix can correspond to an aggregated node
attribute, while attributes of each underlying node can be shown along
the axes (the sides) of the matrix. Similarly, the axes can be used to
display labels of individual underlying nodes, while a global aggre-
gated node label is also shown.

3.2 NodeTrix Visualization
To render the NodeTrix representation, a standard node-link layout is
used for the aggregated graph, and in addition aggregated nodes con-
taining more than a single underlying node are overlaid with a matrix
representation.

3.2.1 Drawing Matrices
NodeTrix is built using the InfoVis Toolkit [10] and uses its render-
ing mechanism to create the visualization. The rendering mechanism
involves a pipeline of renderers which makes it simple to draw a ma-
trix over a standard node. For example, a simple rendering pipeline
for a node-link diagram would be: compute position, compute size,
set color, fill shape, draw border, draw label. To overlay matrices on
standard nodes, we introduced a matrix renderer between the fill shape
and the draw border renderers. This renderer displays the matrix after
having rendered the background node (with a given position, size and
color) and before drawing the border used for selection and the label.

Matrices have two advantages which make them more readable than
node-link diagrams to represent an aggregated node: first, as nodes are
placed linearly, links from the rest of the network to the underlying
nodes are readable and only suffer from a limited number of cross-
ings; secondly, as nodes are represented both in rows and columns,
links can be drawn from any of the four sides of the matrix, which
also reduces crossings and overlapping problems. Finally, rows and
columns of matrices can be reordered (manually or automatically) to
improve readability and further reduce the number of edge crossings.

To save memory and allow the user to control all the matrices’ prop-
erties with a single general control panel, the matrix renderer uses
a single matrix visualization object, applying a different permutation
and filtering for each aggregated node. Therefore, changing the color
attribute for the matrix axes will affect all displayed matrices. We
considered creating a separate matrix object for each aggregated node
instead, allowing the user to display different attributes on different
matrices. However, it would have been very confusing for the user to
manage all the controls in a single huge panel (one set of controls for

each matrix) or to force the user to select a matrix to see its controls.
We decided that sharing the visual attributes for all the matrices was
the best option.

3.2.2 Drawing Links
To display links in NodeTrix, we considered three options: displaying
only aggregated links, displaying only the underlying links, or display-
ing both.

Displaying aggregated links (Figure 2a) provides simple visual
feedback on how communities interact. Moreover, an aggregated at-
tribute can be mapped to a visual variable (e.g. color, thickness, opac-
ity) of this link. However, the details of which actors of the two com-
munities are interacting are not visible. On the other hand, displaying
each underlying link (2b) provides connectivity details and enables
visualization of the attributes of each link independently, but at the
cost of many more links and potential crossings. Because small-world
networks are globally sparse, they have few inter-community relation-
ships. However, displaying both aggregated and underlying links at
the same time could be confusing, due to the possible interaction be-
tween visual variables and link crossings or overlap.

We chose to visualize underlying links, but with the added flexibil-
ity of allowing the user to control the thickness of the links through
a slider. Increasing the thickness of the underlying links eventually
causes them to merge, and the resulting visual feedback (2c) is similar
to visualizing aggregated links (2a) with increased precision. More-
over, when an underlying link attribute has a color, the thickness of
the blended bands of color represents the number of underlying edges
(2d). The slider that interactively controls the thickness updates the vi-
sualization with smooth, immediate feedback. Manipulating this slider
allows the user to quickly switch from one kind of overview mode —
How are communities linked? What kinds of links? — to a detailed
mode — Who link the communities together?

3.2.3 Layout
Because the aggregated network in NodeTrix is laid out as a tradi-
tional node-link diagram, any existing graph layout could be used.
However, because NodeTrix is intended to be used as an interactive
exploration tool and we do not want to confuse the user with large,
sudden changes to the layout, it seems appropriate to support incre-
mental, interactively-driven changes to the layout, such as aggregat-
ing or splitting nodes. The initial layout computed for the graph is
Noack’s [24] LinLog layout, chosen to give prominence to clusters so
they can be quickly identified. After this initial layout step, the user
may make local changes by dragging nodes to change their positions,
grouping a set of nodes, or removing a node from a group.

To (re)order the nodes within an adjacency matrix, many different
algorithms can be used. As these matrices are typically small, the
running time is not an issue. Nevertheless, we chose not to reorder the
matrices automatically as they are usually very dense and do not need
any particular optimization. Instead, we preferred to allow the user to
interactively move rows and columns.

3.3 Visual Variables and Control Panel
NodeTrix relies on the InfoVis Toolkit to generate controls to filter and
affect visual variables. The user controls two sets of visual variables:
one for the node-link diagram, and one for the matrices displayed in
the aggregated nodes. Both sets of variables consist of the following,
for nodes and links: color, transparency, shape size, filled area of the
shape, border color, width, and labels.

The user filters and associates visual variables to aggregated and
underlying network attributes using simple controls such as combo
boxes or sliders. The visualization is immediately updated, following
the principles of direct manipulation [28].

4 INTERACTION

We designed a set of interaction techniques to create, edit and manip-
ulate NodeTrix in a very simple and powerful way because we believe
that manipulation is key to understanding a network and its potential
multiple interpretations.



(a) Aggregated links (b) Underlying links (c) Underlying links with full size (d) Underlying links with attributes

Fig. 2: Drawing links

4.1 NodeTrix Editing

NodeTrix can be created starting with a pure, traditional node-link di-
agram. We propose a set of interactions based on dragging and drop-
ping nodes, matrix axis items, and matrix core elements (cells). We
feel these interactions are easy to understand as the user simply grabs
one of these elements and drops it to another location (possibly over
existing elements) to perform an action. When dragging an element,
the user has immediate visual feedback and is able to read the ele-
ment’s label.

Moving a node or a matrix to adjust its position and improve the
readability of the representation can be done by grabbing the matrix or
the node, dragging it and releasing it at a new position. As the element
is dragged, its connecting links are updated.

To aggregate a group of nodes into a matrix, the user may lasso-
select the desired nodes, which are then immediately converted into a
matrix. To make the transition to a matrix smooth, the transformation
from node-link diagram to matrix is animated. The animation speed
is adjustable to suit both novice users (who may benefit from seeing
a slow animation, to better understand how nodes and edges become
organized into a matrix) and advanced users (who would presumably
prefer a brief animation). Splitting a matrix back into a group of nodes
is done by right-clicking on it, in which case nodes are positioned with
a circular layout around the center of the previous matrix.

To complete these basic aggregation features, we provide additional
interactions for finer-grain editing of the aggregated elements. If users
missed an element with the lasso selection or simply wants to add an
additional node to a matrix, they can drag-and-drop a single node into
the matrix. The node will integrate with the matrix, appearing in the
matrix axis items (in both the rows and columns). Its connections with
the matrix elements will be displayed in the matrix core, whereas its
connections with the external elements will be displayed as links start-
ing from the matrix axis items and ending at the external elements. If
a single node is dragged onto another single node, then the two will
be aggregated into a 2×2 matrix. On the other hand, if users wish to
extract a node from a matrix, they can grab the corresponding matrix
axis item (either on the row or column axis) and drop it outside the ma-
trix. The dropped item will then be displayed as a standard node with
appropriate links between itself and the matrix, and the corresponding
row and column in the matrix will be removed.

To increase readability or visualize different combinations, users
may want to move an item from one matrix to another. This can done
by grabbing a matrix axis item and dropping it on the other matrix.
During the transfer, the user is able to read the node label and may
cancel the interaction by dropping the element back into the original
matrix. This may result in a change to the ordering of nodes in the ma-
trix. The order of items in the matrix normally corresponds to the item
addition order, with the last item added in the last position. However,
when two matrices are merged, the item ordering follows the indices
of nodes in the underlying network. The ordering of nodes can be
changed by grabbing nodes and dropping them back into the matrix,
one at a time, in the desired order.

Finally, users can merge matrices together by dragging-and-
dropping a matrix over another.

4.2 Geometric Zoom on Matrices and Axis Labels

An aggregated matrix may occupy more space than the original group
of nodes in node-link representation. This is partly due to the labels
displayed on each side of the resulting matrix. However, while read-
ing labels on each side of the matrix is required to perform community
analysis and local editing operations, the axis labels are not required
on all matrices at all times, and the size of the matrix core can be re-
duced to fit the minimum level of readability. Moreover, as each matrix
possesses a label (reflecting its composition), axis labels for individual
underlying nodes may not be necessary at all in a final layout.

We tried displaying the axis labels on demand following the excen-
tric label principles [11]. For example, if the mouse pointer hovered
over a matrix, its axis labels as well as its neighbors’ axis labels would
be displayed. In this case, axis labels needed to remain visible after the
mouse pointer moved (to avoid frustrating the user by losing a land-
mark when pointing at another item). However, during a case study,
we observed that it was more comfortable to be able to read all axis
labels when editing, and to remove all axis labels at once and reduce
the size of the matrices to get an overview of a final layout.

For these reasons, we added two sliders in the control panel to con-
trol the size of the matrices and the axis labels.

4.3 Supporting the Exploration of Matrices

One weakness of the matrix representation, when exploring a network,
is the tedious work required to perform path-related tasks. For ex-
ample, finding how two communities are connected is tedious as it
requires going back and forth alternately reading rows and columns.
Moreover, if communities are far apart in the matrix, this task requires
a scan of the full length of matrix rows or columns, and connections
in a large matrix may lie outside the viewport. Obviously, the task is
worse when dealing with three matrices as the user needs to check for
intersections of rows and columns in each of the three communities.

We noticed in a participatory-design session reported in [16] that
social network analysts also use the matrix representation for some of
their analyses. To help perform community analysis and provide sup-
port for path-related tasks in general, we provide users with a couple
of interaction techniques that work across separate matrix-NodeTrix
windows, that might be arranged in a dual-viewport or split-screen
fashion. These techniques are still based on drag-and-drop, however
this time, the user drags a group of elements from one window to an-
other one.

The interaction is made of two steps: first, the user selects a group
of nodes in the window of the pure matrix visualization and then drags
this group to the NodeTrix window. To select the group of nodes,
we provide lasso selection directly on the pure matrix representation.
Alternatively, the selection can be done on an axis (rows and columns).
When a group of cells is selected, the corresponding set of vertices
transferred is the union of the edges’ source vertices and sink vertices.
Dropping the selected group inside the NodeTrix window performs
the addition of an aggregated node to the NodeTrix visualization. The
group is then displayed as a matrix. Selecting and dropping a second
group allows the user to see how these groups are connected to each
other visualizing the result with links. The process can continue to
visualize connections between several communities.



5 ANIMATION

Proper use of animation has much potential to increase the effective-
ness of user interfaces and visualizations [34, 5, 6]. To help users
maintain their mental model of the network across interactions, we
considered how to continuously animate the aggregation of nodes into
an adjacency matrix. Typically, animating over transitions involves
some kind of interpolation of graphical elements from one state to
another. In the case of transitioning from a node-link diagram to a ma-
trix, however, the visual design of the animation is non-trivial, because
node-link diagrams and adjacency matrices are composed of very dif-
ferent graphical elements. There is a sort of duality between the two
forms: nodes correspond to points in node-link diagrams, but to line
segments (rows and columns) in matrices, and, conversely, edges cor-
respond to line segments in node-link diagrams, but to points (inter-
sections of rows and columns) in matrices. The key problem is to find
an intermediate graphical form or layout through which we can inter-
polate during an animation.

To find solutions, we conducted sessions of sketching, brainstorm-
ing, and analysis of how networks can be depicted with node-link dia-
grams and matrices. We noticed that, although each node corresponds
strictly to an entire row and column within a matrix, the node can also
be identified with special points in the matrix, that occur where the
diagonal and the axes (or sides) of the matrix intersect the node’s row
and/or column. Furthermore, it is possible to draw a node-link dia-
gram overlaid on a matrix grid, in such a way that the nodes fall on
some of these special points, and such that the edges (drawn as poly-
lines or curves) pass through their own corresponding locations in the
matrix. Figure 3, sub-figures 3–7, show some possibilities.

Fig. 3: 1: A node-link diagram of a network. 2: The corresponding
adjacency matrix. For simplicity, only the upper half is shown, since
the matrix is symmetric. 3 through 5: different ways of depicting the
edges in a node-link diagram laid out over the matrix, using poly-lines
or curves. The “corners” of the edges coincide with the filled-in cells
of the matrix in 2. 3 and 4: inspired by circuit wiring diagrams. 5
through 7: different choices for the locations of nodes in the node-link
diagram laid out over the matrix. 6 and 7: each node is duplicated and
has two locations in the node-link diagram.

As can be seen, there are several possibilities for the intermediate
state that an animation might interpolate through. We identify a few
different design dimensions. First, the edges in the intermediate state
might be depicted using poly-lines or curves (Figure 3, sub-figures
3–5). Second, the location of nodes might be along the diagonal or
along the sides of the matrix (sub-figures 5–7); in the latter case, each
node must be duplicated at some point during the animation. (We also
note that a simple calculation shows that the average length of links
in sub-figures 5, 6, and 7, for large matrices, is 1/3, 1/3, and 1/2 of
the side of the matrix, respectively; so 5 and 6 minimize average link
length.) Third, the intermediate state might show only the upper half
of the matrix (after which the animation might fade in or unfold the
other half of the matrix as a mirror image), or the intermediate state
might show the whole matrix (before which the animation would have
to duplicate the edges somehow, since they occur in each half of the
matrix).

We made a first set of choices along each of these design dimensions
and implemented an animated transition from node-link diagrams to

adjacency matrices, both in the NodeTrix software and in an additional
piece of software. Figure 4 shows the latter implementation, where the
network has colored nodes and edges. As can be seen, the intermediate
state (sub-figure 3) shows both halves of the matrix, hence the anima-
tion begins by duplicating edges (sub-figure 2). The positions of the
nodes, and of the control points for the edge curves, are gradually in-
terpolated to reach their final locations (sub-figure 3). Then, the edge
curves are faded out as the normal depiction of the matrix is faded in
(sub-figure 4). Notice that the “corners” of the edge curves coincide
with the appropriate cells of the matrix (sub-figure 4), and the opac-
ity of the curves is varied such that these corners are the last part of
the curve to fade away, to reinforce their visual correspondence to the
matrix cells that fade in.

Fig. 4: The stages of an animation from a node-link diagram (1) to
an adjacency matrix (5). Figure 3, sub-figure 5 was chosen as the
intermediate form through which we interpolate.

Compared with other animated transitions in visualization systems,
this animation may seem rather complicated, and in practice an expert
user may prefer that the animation be brief (e.g. lasting 0.5 seconds).
However, novice users may appreciate having these animations last
longer, at least initially. We expect that, in addition to helping the user
maintain a mental model of the visualization across transitions, these
animations may also have an educational benefit, to help users learn
how adjacency matrices are constructed and how to interpret them. We
expect it would be worthwhile to implement variations on the anima-
tion corresponding to the other design choices we identified, and to
solicit feedback from users as to their preferences.

A fourth design dimension relevant for education involves deciding
whether to animate all the nodes and edges at the same time, or to
animate them in sequence. For example, edges might be animated one
at a time, constructing the matrix cell-by-cell, or alternatively, each
node (with all its edges) might be animated one at a time, constructing
the matrix row-by-row. Such a sequential animation might be made to
accelerate as more of the matrix is built-up, allowing the user to see
the process in detail at first, and then to see it quickly complete the rest
of the matrix.

6 CASE STUDY: EXPLORING AND PRESENTING PUBLICA-
TIONS DATA

In this case study, we present how NodeTrix can be used both for ex-
ploring and presenting publications data. We also show how this repre-
sentation can tackle the three important tasks for social network anal-
ysis (identify communities (T1), identify central actors (T2), and ana-
lyze roles and positions (T3)). The InfoVis 2004 contest [25] provided
us with a clean dataset from which we extracted the co-authorship net-
work of the Information Visualization field. This network is discon-
nected into 291 components and contains 1104 vertices (researchers)
and 1787 edges (co-authorship). It has a low density and a high clus-
tering coefficient, making it a small-world network.



We only present here the analysis of the largest connected com-
ponent, containing 122 vertices and 311 edges. This network could
be considered small, but it already presents challenges for exploration
and presentation using traditional matrix and node-link diagrams. De-
tailed communities are not readable in node-link diagrams, while find-
ing connections between communities is tedious in matrices.

Moreover, presenting results on paper generally requires some fil-
tering when using either pure matrices or pure node-link diagrams.
The matrix representation requires space that grows quadratically with
the number of nodes: it cannot fit in a printed article with readable la-
bels for networks of more than about a hundred nodes. On the other
hand, edge-crossings and node-overlap are issues with node-link dia-
grams. Thus, with these traditional non-hybrid represenentations, fil-
tering is required to reduce the size and density of the network to make
it more readable. Using NodeTrix solves these presentation problems
since dense subgraphs are aggregated as matrices, completely elimi-
nating edge-crossings and node-overlap in those portions of the net-
work. Furthermore, communities (aggregated nodes) remain readable.

6.1 Setup
To manipulate NodeTrix, we used an interactive pen display. Pen-
based interactions on NodeTrix are intuitive and comfortable using
this input device. The user can simply grab elements by pressing the
pen over them, drag them moving the pen on the screen and finally
release them by raising the pen. Lasso selection provides also a very
intuitive feedback similar to the use of a real pen.

6.2 Aggregation and Exploration
NodeTrix is a flexible representation for which the level of aggregation
as well as the level of details is controllable. For example, Figure 7 and
Figure 1 show almost the same dataset: the largest component of the
InfoVis co-authorship network. We removed a couple of authors in
Figure 7 as we found them duplicated in the dataset. In the compact
representation (Figure 1), the goal was to provide a brief overview of
main communities in the field (T1), whereas in the second represen-
tation, the goal was to be able to identify all nodes of the network
including actors bridging communities together (T2). In both repre-
sentations, patterns of connections inside matrices and between them
are readable (T3).

While exploring the network, the interactions provided with Node-
Trix ease the analysis. For example, moving an actor in and out of
a community (matrix) helps clarify his influence on this community
(T2, T3). Figure 5 illustrates this operation, showing that if Ed Chi
is extracted from the PARC community, then the community is dis-
connected. This operation also helps clarify the matrix representation
to novice users, as they can drag each actor out of the matrix, one
at a time, comparing the visualization of his relationships within and
outside the matrix representation.

(a) PARC Community (b) Ed Chi’s influence

Fig. 5: Moving a node in and out of a matrix. In the second case, red
lines indicate that the matrix is disconnected in two groups (upper left
and lower right). Ed Chi is the bridge between these two groups.

6.3 Patterns of Collaboration
The main result of our case study is the identification of different col-
laboration patterns: cross patterns and block patterns (T1, T3).

Figure 6a reveals the collaboration pattern of Ben Shneiderman,
main actor of the InfoVis field. This aggregated matrix is very sparse
and shows only a complete row and column. We named this pattern a
cross pattern because if Shneiderman is placed almost anywhere in the
matrix (except on the first and last rows-columns), the visible pattern
is a large cross. This pattern reveals that Shneiderman collaborates
with all researchers in this matrix. However, the low density shows
that Shneiderman’s collaborators generally do not work together: they
are perhaps students he has supervised. Figure 1 reveals several matri-
ces with this pattern of collaboration: Plaisant et al., Bederson et al.,
and Eick et al.

Figure 6b reveals the collaboration pattern of researchers from
Berkeley. The aggregated matrix is almost a clique, it is a very dense
community. Contrary to the previous pattern, this one reveals re-
searchers strongly collaborating with each other rather than only a sin-
gle one. Figure 1 shows that PARC has the same collaboration pattern.

Note that the community formed by Stephen Roth is in an interme-
diate category (Figure 6c). Roth is central in this community, but a
large block is also visible, meaning that some researchers also collab-
orate with each other.

(a) Cross pattern (b) Block pattern (c) Intermediate pattern

Fig. 6: Three collaboration patterns: (a) Shneiderman and his collab-
orators, (b) Researchers at Berkeley, (c) Roth and his collaborators at
CMU.

7 CONCLUSION AND FUTURE WORK

We have introduced a novel visualization called NodeTrix. This repre-
sentation integrates the best of two traditional network representations:
node-link diagrams and adjacency matrix-based representations. The
strength of this representation for analyzing social networks is in com-
bining the familiarity of node-link diagrams to understand the global
structure of the network with the readability of matrices for detailed
community analysis.

We described a set of interactions to support the manipulation of
NodeTrix and help analyze networks. We also proposed an animation
for smoothly transitioning between node-link diagrams and matrices.
In a slower mode, this animation can be used to help novice users
understand how matrices work. Finally, we have illustrated the ef-
fectiveness of NodeTrix with a case study of the InfoVis publications
data.

We have already collected very positive feedback from our group of
users as well as from external analysts. We plan to extend our system
in several directions and to perform formal evaluations on its use with
analysts. The interactive capabilities of NodeTrix are well suited to
collaborative analysis so an obvious extension includes collaborative
editing, either through the network or in a shared environment with
large displays.

We have iterated on several alternative representations to visualize
social networks and believe that NodeTrix is among the most effec-
tive and simplest to understand. We plan to run further experiments
to quantitatively demonstrate its efficiency compared to state-of-the-
art representations. NodeTrix will be released as a component of the
InfoVis Toolkit (ivtk.sourceforge.net).
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Fig. 7: NodeTrix visualization of the information visualization field. This is the largest connected component extracted from the dataset used
in the Infovis’04 Contest available at http://www.cs.umd.edu/hcil/iv04contest/. We manually removed a couple of remaining
duplicated authors. Colors on axes of matrices represent the number of citations of each author. Color intensity within the matrices represents
the strength of each collaboration.


