
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

MatrixExplorer: a Dual-Representation System to Explore
Social Networks

Nathalie Henry and Jean-Daniel Fekete

Abstract— MatrixExplorer is a network visualization system that uses two representations: node-link diagrams and matrices. Its
design comes from a list of requirements formalized after several interviews and a participatory design session conducted with
social science researchers. Although matrices are commonly used in social networks analysis, very few systems support the
matrix-based representations to visualize and analyze networks.

MatrixExplorer provides several novel features to support the exploration of social networks with a matrix-based representation, in
addition to the standard interactive filtering and clustering functions. It provides tools to reorder (layout) matrices, to annotate and
compare findings across different layouts and find consensus among several clusterings. MatrixExplorer also supports Node-link
diagram views which are familiar to most users and remain a convenient way to publish or communicate exploration results.
Matrix and node-link representations are kept synchronized at all stages of the exploration process.

Index Terms— social networks visualization, node-link diagrams, matrix-based representations, exploratory process, matrix
ordering, interactive clustering, consensus.

Fig. 1. MatrixExplorer showing two synchronized representations of the same network: matrix on the left and node-link on the right.

1 INTRODUCTION
Information visualization has been used to support social network

analysis since the 1930s. Social scientists use visual representations
both to explore datasets and to communicate their results. Some
information visualization systems focus on exploration, taking
advantage of features of the human perceptual system to discern
visual patterns in the data. Others help researchers draw social
networks, usually in the form of node-link diagrams to represent
trees and graphs. Although adjacency matrices have played an
important role in social networks analysis since the 1940s [16], few

social scientists use their visual representations to communicate their
findings.

This article presents MatrixExplorer (Figure 1), which offers both
node-link and matrix representations to help sociologists and
historians explore and communicate social networks. The node-link
diagrams provide intuitive representations for relatively small
networks, and, when adequately visualized, remain a powerful means
of communication. MatrixExplorer also provides tools for
reorganizing, clustering and filtering graphs using a matrix
representation. These matrices are always readable, even for large
and dense graphs, and thus support exploration throughout the
analysis process. MatrixExplorer offers several novel features to
help explore complex social networks, using the most suitable
representation at any time.

This paper is organized as follows: we first present related work
and describe the requirements for a visual exploration system that we
defined together with social sciences researchers. We then describe
MatrixExplorer and detail its major features for matrix-based
representations. We conclude with discussion and future work.

• Nathalie Henry is with INRIA Futurs/LRI and University of Sydney,

E-Mail: Nathalie.henry@lri.fr.
• Jean-Daniel Fekete is INRIA Futurs/LRI,

E-Mail: jean-daniel.fekete@inria.fr.
Manuscript received 31 March 2006; accepted 1 August 2006; posted online 6
November 2006.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

2 RELATED WORK
Social networks are structures made of actors (generally humans)

linked by relations. For example, these relations may be phone calls
or kinship. Social networks are mostly trees or graphs; therefore
social network visualization is closely related to graph visualization.
A large amount of work has been done in the field of graph
visualization; [22] presents a survey and the book of Battista et al.
[4] is a good introduction. Several applications are dedicated to end
users’ visualization of social networks such as ContactMap [30],
Vizster [20] or FlickrGraph. In this article, we focus on tools for
professional social science researchers.

2.1 Social Networks Analysis and Visualization
A large number of systems exist1 to visualize and analyze social

networks and graphs in general. We can broadly define two
categories: programming-based and menu-based systems.

Programming systems are highly tunable and provide a wide
range of algorithms for visualization and analysis. Among the most
used are JUNG [31] and GraphViz [17]. These systems contain most
of the effective and efficient algorithms to draw trees or graphs.
However, they are generic and – since they do not provide any
particular support for social network exploration and analysis – they
should be specialized using some kind of programming, far beyond
the skills of social science researchers.

With menu-based systems, users can choose various algorithms
from the file loading to the rendering, including the clustering or
partitioning. They provide a basic interface but do not require
programming knowledge. These systems contain dozens of
algorithms and statistical measures; they answer almost all questions
about social networks. The only problem is to know how to ask
them. Expert users can parameterize each algorithm and end up with
an effective visualization of their networks. For novice users
however, the exploration boils down to a long trial and error process.
The most popular free systems of this category include Pajek [10],
UCINet [6], Tulip[3] and, for non-free systems: VisuaLinks [35] and
Analyst’s Notebook [24]. Pajek is certainly the most used in social
sciences analysis. In practice, we observed one Pajek specialist –
member of our participatory design group. He advised other
researchers and gave them “recipes” in the form of a list of
instructions to display their networks effectively.

Menu-based systems are not intuitive enough to be used for a
primary exploration of networks since they are designed to support
fine analysis conducted by an expert, not to support the discovery
process.

GUESS [1] is a recent system oriented towards exploration. It
contains visualization, statistical and analytics features as well as a
script language. It only supports node-link representations but
provides a relatively simple programming environment. It remains
unclear whether social science researchers will invest time to learn
the syntax and reach and adequate level of understanding. The same
question arises for statistical packages where GUI-based system tend
to attract more social science researchers than language-based
packages like R [25], but both co-exist

2.2 Matrix-Based Representations
Bertin in “Semiology of graphics” [5] introduced visual matrices

to represent networks. Ghoniem et al. [18] showed that matrices
outperform node-link diagrams for large graphs or dense graphs in
several low-level reading tasks, except path finding. Bertin showed
that matrices can be used to exhibit high-level structures by finding
good permutations of their rows and columns. Thus, he qualified
matrices as “reorderable”. Reordering rows and columns of an
adjacency matrix is similar to computing the layout for a node-link
diagram: finding a layout that reveals some structure in the data.
Related works can be divided into two categories: automatic and
interactive systems.

1 A list is maintained at http://www.insna.org/INSNA/soft_inf.html

2.2.1 Automatic Ordering
Automatically reordering rows and columns of matrices is a well-
known problem with a wide range of related works across various
fields such as mathematics, biology and architecture. When
considering adjacency matrices, the range is even broader because it
is then related to linear algebra, graph seriation, as well as a long list
of classical combinatorial optimization problems.
Matrix ordering algorithms try to optimize an objective function
useful for some network related operation. Diaz et al. describes
some of the most generic objective functions in [11]: Bandwidth,
Minimum Linear Arrangement (MinLA), Cutwidth, Modified Cut,
Vertex Separation, Sum Cut, Profile, Edge Bisection and Vertex
Bisection. These algorithms find a linear order of the vertices of a
graph that optimizes either a function of the edge length (the distance
between the two vertices), or of the number of crossings of the
edges. Exact solutions to these functions are all NP-complete but
some have good polynomial time approximations. Among these
functions, some have been used for matrix visualization. Reducing
the bandwith is related to diagonalizing the matrix, a goal expressed
by Bertin. It consists in finding an order that minimizes the
maximum edge length. No polynomial time approximation exists for
the exact algorithm so Siirtola and Mäkinen devised a set of
heuristics [33] to find an approximate solution. The MinLA problem
consists in finding an order minimizing the sum of all edge lengths.
Simulated annealing [26] and spectral-sequencing algorithms [2]
have been proposed to solve this problem. Koren and Harel [27]
proposed a linear-time heuristic which is still the state-of-the-art.
The MinLA problem has been investigated by Koren and Harel as a
way to improve 2D graph layouts by separating the axes [28], among
several other methods. They show results for 2D layouts, but not for
matrices. A systematic analysis of the other objective functions
applied to visual matrix ordering is yet to be made.
Reordering binary matrices for image compression, DNA sequencing
and archeological dating have been successfully solved using
spectral methods [2]. The optimal order is computed from the
Laplacian matrix of the underlying graph and by using the row order
of its eigenvector with the smallest non-zero eigenvalue. This result
is related to spectral methods for node-link graph layout that also
uses the eigenvectors with the smallest non-zero eigenvalues of the
same graph. Whereas spectral methods are popular in 2D graph
layout, to our knowledge, they have not been applied to matrix
layout yet.
All the previous methods are usually defined for adjacency (binary)
matrices. However, most of them can easily be generalized to
weighted graphs.
The second category of algorithms aims at organizing the matrix in
blocks. Automatic methods to compute block ordering emerged
early [19]; [8] presents a panel of related works also named matrix
partitioning or block clustering. Most of these methods are issued
from the bioinformatics field. Bioinformatics researchers use matrix
ordering algorithms to organize microarray data (heat maps
presenting gene expressions per experimental conditions) in order to
identify similar genes. In the field of social networks analysis,
researchers aim at finding groups of similar actors and defining their
roles; this is called positional analysis and identified in [23] as a
main interest. Blockmodeling [13] intends to achieve this objective
by decomposing the matrix in blocks of different shapes, using either
clustering methods or equivalence relations defined on the graph.
These methods focus on abstracting the matrix into higher level
blocks, ignoring the details, whereas Bertin’s claim is that the Matrix
is useful because it shows both the details and the overall structure
when correctly ordered.
Early work by Chauchat and Risson [7] has also investigated three
classification methods to reorder Bertin’s matrices: automatic
classification, factorial analysis and hierarchical analysis. They have
been used as a starting point by Bertin to manually reorder large
matrices.

HENRY ET AL.: MATRIXEXPLORER: A DUAL-REPRESENTATION SYSTEM TO EXPLORE SOCIAL NETWORKS

2.2.2 Automatic Ordering
Interactive tools such as InfoZoom [34] or TableLens [32] focus

on table data and propose interactive methods to reorder one
dimension of the table according to one attribute (one column).
Users can then quickly identify correlated columns. However, the
method is biased towards one dimension so users are unlikely to
discover correlated rows. Moreover, reordering a matrix according
to several attributes using only 1D sorting is long and tedious, as the
user has to think backwards. To sort a matrix according to the
names, then dates, then category, the user has to order first by
category, then by dates and finally, by names.

In the field of graph drawing, some work has been conducted
towards human-guided algorithms [12]. However, to our
knowledge, no system supports assisted matrix reordering.

3 EXPLORATORY ANALYSIS REQUIREMENTS
We used participatory design techniques describes by Mackay

[29] to understand the needs of social science researchers. After
several interviews, we organized a participatory design session with
professional social science researchers, selected for their frequent use
of social network analysis tools. The participants included: a
sociologist, a psychologist, a social network analysis specialist, two
historians and five computer science researchers in the fields of HCI
and Information Visualization. We focused on three specific
questions:
1. How would you like to create a social network?
2. How would you like to edit a created social network?
3. How would you like to explore an unknown social network?

The session was organized in four stages. First, we presented
participants the state-of-the-art tools in the domain of social network
analysis and a broad range of novel HCI and InfoVis techniques for
interacting with graphs and data. We explicitly avoided guiding
them towards specific design techniques or tools. In the second
stage, they split into small groups and generated ideas in a
brainstorming session, which were then ranked. In the third stage,
participants captured their ideas by creating paper prototypes (Figure
2) and then filming what it would be like to interact with them2. In
the last stage, we reviewed the ideas altogether and gathered the
common and important ones. Summarizing the working sessions,
we ended up with a list of requirements for social networks
exploratory analysis.

Fig. 2. Video Brainstorming showing a historian describing her ideas
about using matrix-based representations to compare two networks.

2 See http://insitu.lri.fr/~nhenry/matrixExplorer/brainstorming/

3.1 Requirements
R1 - Multiple representations: Participants used both node-link
diagrams and matrix-based representations. Although node-link
diagrams are familiar and effective to communicate (for relatively
small or filtered-clustered graphs), they acknowledged that matrix-
based representations were fast to display and easier to manipulate
for large or dense graphs.

R2 - Connected components: Real graphs contain several connected
components. Handling several connected components and being
able to navigate within each of them, or compare them, is necessary
for a system dealing with real datasets.

R3 - Overview: Overview is a challenge for large graphs. However,
overviews are crucial for the exploratory process. They are used
both as starting points for the exploration and as stable maps during
the navigation. Overviews help users to build a mental map of their
network. Participants asked for an overview of each visualization at
all stages of the exploration.

R4 - Dataset general information: the type of graph, number of
vertices, edges and, for each the number of attributes, their labels and
types, should be displayed initially and be easy to access at any
moment.

R5 - Attributes: Taking attributes into account makes the difference
between graph drawing and information visualization. Participants
were not interested in displaying a unique graph; they wanted to
build several representations according to the different attributes of
the edges and vertices. The structure of the graph may be different
depending on the chosen attributes. Comparing these structures,
understanding why they are similar or how they are different was
their main concern. They need an information visualization system
which helps them to choose visual variables for each attribute and
create multiple views of their dataset. Consulting details for each
vertex or edge was also a primary interest and therefore, details
should always be visible or quickly accessible.

R6 - Analytical information: Visualizing and interacting with the
data does not exclude statistical and analytical features. Participants
wanted to get at least the basic network analysis data, such as
number of actors, relations, density, diameter, five most connected
actors, degree distribution. They also asked for computed attributes
on demand, such as centrality measures.

R7 - Interaction vs. parameter tuning: Most of the participants were
familiar with graph drawing and clustering algorithms. However,
their understanding was limited and they were unable to finely tune
the parameters for these algorithms. Thus, they asked for more
interaction with the graph and less, or predefined, parameters. They
also noticed that manipulating and reorganizing the network
interactively facilitated understanding and memorization.

R8 - Layout: Computing the layout of a graph is necessary to find
insights. It means computing coordinates for vertices in node-link
diagrams or computing a permutation of rows and columns for
matrices. In both cases, participants acknowledged that several
layouts were required to understand a graph.
Participants asked for both automatic and manual (interactive)
solutions. Automatic algorithms rarely provide satisfactory results
but save users time and effort. Interaction let the user improve the
resulting layout. Moreover, participants quoted that not being able to
interact to drag a node or move a row or columns of a matrix was
frustrating.

R9 - Filtering: For large networks, filtering is a requirement which
allows fine analysis of the network and its sub-parts. However,
filtering data may confuse users and lead them astray, especially if it

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

alters the data structure. Therefore, participants asked that the
system remind them that filtered data still exists.

R10 - Clusters: In social networks analysis, cluster detection or
community detection is very important and required for exploration.
A large panel of automatic methods exists to cluster networks. Users
may also detect them manually. As for the graph layout, participants
wanted to combine interaction with automatic algorithms. They
expressed the need to handle several clusterings for a network and to
annotate their clusters (giving each a name and a description).

R11 - Outliers: Social researchers are interested in outliers. For
example, they try to understand why an actor has a different
connection pattern or why two actors do not communicate within the
same cluster. A system should not only filter outliers as dataset
noise but support their discovery.

R12 - Consensus: Participants deal most of the time with multivariate
data, i.e. several kind of relationships and attributes for actors. Thus
they compute several clusterings depending on the attributes chosen
and the visual representations. Participants asked for tools to
identify a consensus among the clusters or differences.

R13 - Aggregation: Participants agreed that aggregating networks
based on the clusters or communities was a useful feature to reduce
the network size and help present results. However, they were
concerned by the loss of information when dealing with aggregated
networks and insisted in being able to get back to the full data when
exploring the aggregated networks.

4 MATRIXEXPLORER
MatrixExplorer is a first attempt to fulfil social sciences researchers’
requirements for an exploratory system. In this section, we describe
MatrixExplorer’s main features.

4.1 Coupling node-link diagrams and matrices
MatrixExplorer is based on two representations: matrix-based and

node-link diagrams meeting the first requirement of our users (R1).
Node-link and matrix visualizations are synchronized in order to let
the user work with both representations, switching smoothly from
one to the other.

Multiple visualizations are synchronized by selection and
filtering. Basically, if a user selects a set of actors in the matrix, this
same set will be selected in all other visualizations (selection) and
data filtered in one visualization will disappear from all others
(filtering). Selection improves the transition from one representation
to the other and constitutes the core of the coupling. Filtering
preserves the coherence of the visualizations by presenting the same
data, even if the attributes visualized are different.

In addition, visualizations can be synchronized by any visual
attribute, simply by interactively setting the same attribute for the
same visual variable. Thus, the user still has the possibility to not
synchronize the visualizations in order to compare two attributes.
With our system, users explore their networks using both
representations, accomplishing tasks more easily with one
representation or the other and visualizing the effect of a selection, or
filtering, on all visualizations and their overviews.

Figure 3 shows a dual-representation of a co-authoring network
and the correspondence of visual patterns in matrix and node-link
representations. The process to obtain both representations follows:
the user first automatically ordered the matrix, identified clusters
(communities) and attributed colors to identify them. He then
switched to a node-link diagram, displaying the community colors
and laying the network out manually in order to better visualize how
communities are linked and organized. Finally, moving back and
forth between both representations, he identified the global structure
of the network.

Fig. 3. Visual patterns in Matrix and Node-link representations of
social networks. A represents an actor connecting several
communities, B a community and C a clique (complete sub-graph).

4.2 Overviews

4.2.1 Datasets and workspace overview
MatrixExplorer proposes a quick overview of the user workspace.
This overview includes for each dataset: general information on the
graph and a visual overview of the related visualizations created by
the user (Figure 4). This visualization covers requirements R4
(dataset general information) and R6 (analytical information) as well
as R3 (Overview).

Fig. 4. Workspace Overview. In this session, the user created 4
distinct visualizations (from left to right): matrix-based representation,
node-link diagram of the full network, connected component
visualization, and finally, matrix-based representation of one selected
connected component.

Information appearing for each graph is: name, directed or not,
number of vertices, number of edges, number of connected
components, number of vertex attributes and their labels, the number
of edge attributes and their labels, global density of the graph,
minimum and maximum degree, and in/out degree if the graph is
directed. We defined this list with social-science researchers, who
specifically pointed out the lack of information about the attributed
of vertices and edges (R4 and R6).

The different visualizations related to a dataset are shown below
this information, as thumbnails. With the workspace overview, the
user has a reminder of existing visualizations, as exploring a social
network can generate many windows and can show/hide
visualizations in one click.

HENRY ET AL.: MATRIXEXPLORER: A DUAL-REPRESENTATION SYSTEM TO EXPLORE SOCIAL NETWORKS

4.2.2 Connected components overview
The connected component visualization plays a special role in

graph exploration. First, it is always a readable overview of the
graph, quickly showing its macro-structure. Secondly, it is a starting
point of the exploration as it filters matrices and node-link
visualizations according to the current selected connected
component. Social sciences researchers expressed this need in
almost all interviews (R2).

Fig. 5. Connected components visualization.

We choose to visually organize connected components as a
compact rectangle in order to build a mental map of the macro-
structure of the graphs (Figure 5). In this figure, the visual variables
(rectangle size and color) are simply mapped to the number of
vertices of the components (their size) and sorted by decreasing size
from top left to bottom right. One click on a rectangle representing a
connected component filters the synchronized visualizations. The
user may map the visual variables to other attributes (using the
control panel shown on the right); change the layout, or even the
desired representation.

4.2.3 Visualizations overviews
In MatrixExplorer, an overview is provided for each

visualization, meeting the requirement R3. The primary goal of an
overview is to provide an overall picture of the visualization and thus
help users identify the structure of the network and build a mental
map.

In addition, we observed that users also use overviews as context
reminders. While working on a matrix-based representation, they
keep an eye on the node-link overview, to verify which part of the
full graph they are working on. Moreover, they can directly observe
the impact of their manipulations on the node-link diagram.

Finally, overviews are also navigation tools. A rectangle
represents the current visualization’s view. The user can grab it and
move it to display a different part of the graph.

4.3 Visual variables
Assigning visual variables for each network attribute (R5) is a

key to create effective visualizations. The InfoVis toolkit [15]
provides the framework to interactively map attributes to visual
variables for both node-link and matrix-based representations. Users
are able to control the visualizations of actors choosing shape, size,
color, texture and label and the relations (links) by choosing shape,
length, color, thickness and label.

Useful interactions are also provided to favor direct manipulation
(R7) and to improve the readability of the representations: a control
panel lets the user assign each attribute to one or more visual
variables, and dynamic filtering and sorting let the user choose what
vertices are shown and in what order. Moreover, labels are often a
main concern of social sciences researchers (R5). To show labels
legibly on any visualization, The InfoVis Toolkit provides Excentric
labeling and fisheye views.

4.4 Interactive layout
MatrixExplorer provides a number of graph drawing algorithms

for node-link diagrams. They are mostly based on the JUNG and
GraphViz packages. Essential interaction is also implemented such
as moving nodes of the graph by clicking and dragging. In this
section, we focus only on innovative features to manipulate matrix-
based representations. We detail our interactive tools to reorganize
their layouts (R8). We favored interaction and direct manipulation
instead of iteratively adjusting a set of parameters (R7).

4.4.1 Basic interaction
MatrixExplorer provides a set of basic interaction tools essential,

but not sufficient, for ordering large matrices. These tools include
moving one or more rows or columns using drag and drop. They
also include a feature (inspired by spreadsheet calculators) that
allows users to sort rows and columns according to one attribute; for
example, sorting rows according to the vertex names and columns
according to the vertex degrees. Thus, rows can be used to find a
specific vertex, and columns to find most/least connected vertices.
Compared with InfoZoom of TableLens, the two dimensions can be
ordered, and then be used to show the impact of one attribute on
another one. MatrixExplorer also provides a tool to permute rows
and columns circularly, similar to a “pan” tool in a paint program
with the cells leaving on one side and entering on the opposite side.

4.4.2 Automatic ordering
As described in section 2.2.1, ordering algorithms focus either on

ordering visual representations to let blocks emerge or on finding an
optimal linear order for all the vertices of the graph. In
MatrixExplorer, we propose to mix the two perspectives:

Block emerge if vertices directly linked in the graph are placed
next to each other (consecutive ones in the matrix) – we propose to
take into account a larger neighbourhood (distance>1) and to
position vertices with similar connection patterns next to each other.
To do this, we use the matrix of shortest paths (SP matrix) instead of
the adjacency matrix. Our algorithm is:

Compute connected components
For each component
 Compute the SP matrix
Compute a matrix of distances between rows
 Apply the algorithm to find a linear order
 Compute a matrix of distances between columns
 Apply the algorithm to find a linear order
End for.
Connected components are independent blocks in the adjacency

matrix so an order for their rows and columns is computed for each
of them. Computing the SP matrix improves notably the order
quality: it reduces the impact of noise (which is important in real
datasets) and gives more information for low degree vertices (for
which the rows and columns are very sparse). Computing the SP
matrix is quadratic, as is the computation of the distance matrix for
rows and the distance matrix for the columns. This has an important
impact, since we want to use automatic ordering interactively.
Therefore, we chose two fast ordering algorithms from the
bioinformatics field. The first one is based on a hierarchical
clustering, followed by a seriation (HCS) and is described in [14];
the second one is based on the traveling salesman problem (TSP) as
presented in [9]. To solve TSP, we use a fast heuristic described in
[21]. Matrices up to 1000 rows* 1000 columns can be ordered in
seconds. Ordering larger matrices introduces a noticeable delay. So
far, our user did not provide us with networks having a connected
component larger than a thousand actors. However, we are
investigating faster algorithms such as AMADO [7].

Both algorithms are based on a metric – similarity for HCS,
distance for TSP – between the rows (respectively columns) of the
matrix. Usually, this metric is either a Manhattan or Euclidian
distance, or the Pearson correlation coefficient. By default, we
choose a Manhattan distance.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Figure 6 presents a matrix reordered using TSP. The resulting
matrix exhibits clearer blocks (diagonal with dense blocks); users
can identify more clusters (R10) and articulation vertices between
these clusters as dark color crosses here. A well-ordered matrix also
helps identify outliers (R11) such as isolated relations, missing
relation in a community, or actor with special connection patterns.

Fig. 6. Initial order (left) and TSP order (right). Colors represent
clusters found by the user. Clusters are different in the two
representations. Users found more clusters with TSP order. Headers
red indicators (right) represents the distance between adjacent
rows/columns.

4.4.3 Towards assisted ordering
In the second edition of “Semiology of graphics” [5], Bertin

presents the results of three automatic ordering algorithms: automatic
classification, factorial analysis and hierarchical analysis. He argued
that none of these algorithms found a satisfactory matrix layout and
performed some manual permutations to perfect them. We observed
that automatic algorithms rarely provide a satisfying order for a
given matrix and a user’s taste. However, they save a substantial
amount of time and effort and offer an initial layout which is better
than a random one or a simple sort.

MatrixExplorer’s goal is to propose a good initial matrix layout
and to provide interactive tools to improve it, if needed. A “good”
order, according to our participants, is one that reveals dense blocks
and conversely avoids sparse isolated values. Sometimes, the initial
layout – reflecting the data construction or collection method – is
already good, as can be seen in Figure 6. This is the reason why we
chose our TSP automatic algorithm which works by iteratively
improving a given order.

Once a global layout is computed for the whole matrix, we
propose that users interactively reorder sub-matrices they wish to
explore. There are two options to adapt our automatic ordering
algorithm to sub-matrices: 1) extract the sub-matrix from the initial
SP matrix, or 2) compute the sub-graph corresponding to the sub-
matrix selected by the user and then compute a new SP matrix.

The obvious drawback of computing a new sub-graph is the
additional computations required: extraction of the sub-graph,
computation of connected components and computation of SP matrix
for each component. However, we observed that the number of
vertices selected by the user is usually low, and thus the computation
time is insignificant.

The second drawback has more impact on the user’s
understanding. The SP matrix computed for a given sub-graph
contains notably less information than the initial SP matrix.
Moreover, it may be misleading as the influence of all the unselected
vertices is not taken into account. We implemented both solutions.

Figure 7 shows an example of the two sub-matrix ordering
methods. We observed that results obtained with the first solution
were more interesting as they let more blocks emerge as expected
(SP matrix containing more information). This led us to favor the
first version over the second. Figure 8 shows the sub-matrix

reordered with the first solution, and the corresponding node-link
diagrams.

Fig. 7. In red sub-matrix to reorder. TSP order using the SP sub-
matrix (middle), a new graph SP matrix (right).

Fig. 8. a) Node-Link diagram with an initial layout using the twopi of
GraphViz, b) sub-matrix reordered and colored by cluster interactively
by the user, c) Node-Link diagram with a manual layout.

A main drawback of matrix-based representations is the 1D order
of all vertices, which makes it difficult to represent articulation
vertices between several clusters. However, well-ordered matrices
let the user quickly identify communities and articulation vertices
with a little training. Once communities are identified, the node-link
diagram may be reorganized and clearly present the results. This is a
major advantage of our dual-representation system: explore and
discover with matrices, and present with node-link diagrams.

4.4.4 Locks
MatrixExplorer allows locking a set of rows and columns

together before reordering a matrix. This functionality was not
explicitly requested by our users but was detected during the use of
our prototype. This feature is useful when, for example, a user
identifies a community (set of actors) and wants to find out which
external actors communicate with it. It is a constraint taken into
account during the order computation: a single element is computed,
representing the full set. The order computed takes into account this
single element instead of the whole set. Our algorithm only keeps
the first and last elements of the sequence and fills the distance
between them in the SP matrix with a value of zero, to “glue” them
together. The order is then optimized, as shown earlier, to integrate
the sequence of elements, but these two are kept together. At the
end, we insert the set back between the two elements.

4.4.5 Filtering or forgetting
We have implemented filtering in MatrixExplorer to fulfil the

requirement R9 to reduce the size and complexity of a network and
finely analyze its sub-parts. Users can filter either actors or relations,
according to one or a combination of all existing attributes
(numerical, categorical or computed). In addition, to visualize the
impact of an actor, or a set of relations on the network,
MatrixExplorer provides a feature that “forgets” actors or relations
and visualizes the resulting structure. This tool is slightly different
from filtering: first, the element is still visible although it is made
translucent; second, the changes in the new structure are highlighted
to let the user rapidly identify the impact.

HENRY ET AL.: MATRIXEXPLORER: A DUAL-REPRESENTATION SYSTEM TO EXPLORE SOCIAL NETWORKS

In Figure 9, the user identifies an actor collaborating with a
community as well as a few external actors. He asks MatrixExplorer
to forget all collaborations of this actor with the community by
selecting it and visualizes the result.

Fig. 9. Forgetting a number of collaboration for a key actor. Red
headers indicate rows/columns with different neighbors, green
indicates same neighbors. Other colors indicate communities identified
by the user.

After the operation, the user can clearly see that the bottom right
of the matrix is affected. The matrix is split up into two independent
blocks: two sub-graphs. Thus, the forgotten actor identified is an
articulation vertex (or a cut-point) between these two sub-graphs.
Moreover, as several relations have been “forgotten”, the lower sub-
matrix has been reordered to let new blocks (communities colored in
different nuance of brown) emerge, exhibiting the sub-graph
structure.

4.5 Interactive clustering
The structure of the network changes, depending on the attribute

or relation visualized. For example, two clusters of actors may be
identified while visualizing a kinship relation, but three different
clusters may be identified while visualizing their phone calls.
Therefore, MatrixExplorer supports multiple clusterings (expressed
as R10).

MatrixExplorer proposes two selection modes: click and drag or
lasso. The lasso is used for fuzzy selection. Elements at the border
of the lasso will be made translucent to denote the proportion that
belongs to the selection. We implemented the fuzzy selection in
response to users’ observations. As matrices are very similar to
tables or spreadsheets, users tend to adopt an “exact” or “precise”
behavior when selecting groups. They spend considerable time
determining whether a particular edge is included or not in a cluster.
The lasso relaxes this behavior and exploration becomes more fluid.

Fig. 10. Lasso selection on values visualization mode and resulting
cluster visualization.

We observed that users also created clusters based on edge
attributes – such as isocontours – and not only on blocks. We
provided a tool to quickly switch from the standard visual mode
showing colors based on an edge attribute, to colors based on cluster
indices. These cluster indices are displayed in a transient mode,
similar to vizster X-ray mode [20]. Users switch to this cluster
visualization mode by pressing a key or a mouse button and switch

back to the normal visualization mode by releasing the key or button.
Users may also choose to display one clustering with a particular
visual variable such as color or shape, since each clustering is
implemented by a categorical attribute added to the edges.

4.6 Guiding the user: Finding a consensus

4.6.1 Consensus among layouts
Different layouts often imply different clusterings. It is important

to be able to identify common clusters among layouts: i.e. to find a
consensus when it exists (R12). MatrixExplorer offers this
possibility. The procedure simply consists in identifying clusters as
described in the previous section and ordering the matrix according
to another layout. Clusters either explode in several parts or are
conserved (Figure 11). The same method can be used to compare
clusters of actors for different kind of relations.

In Figure 11, additional information on the clustering is displayed
in the row and column headers. Depending on the algorithm used to
reorder the matrix, this additional information is either a red
histogram showing the distance between adjacent rows (columns)
computed by TSP or the hierarchical clustering tree resulting of HCS
presented as an icicle tree colored according to the similarity of its
elements (blue and green in the Figure).

Fig. 11. Consensus between TSP (left) and HCS (right). We observed
that a consensus exists for A, B and C. However, B is slightly different
and lost some of its elements with HCS.

4.6.2 Consensus among clusterings
To find the differences between two clusterings, users have

several options. To see global differences, users may switch from
one clustering visualization mode to the other (X-ray) or simply
choose a visual variable for one clustering and another for the
second; for example, shape and color. We also provide a tool to
precisely visualize the differences: users select two groups in each
clustering and use the compare tool. Common elements are then
displayed in green, and elements that appear in only one cluster in
red.

5 CONCLUSION AND FUTURE WORK
This article describes MatrixExplorer, a visualization system for

exploring social networks for researchers in the social sciences. The
system uses a dual-representation of social networks, the exploration
process using mainly the matrix-based representation. We describe
novel features designed to improve the usability of the matrix-based
representations and propose a novel algorithm to reorder rows and
columns of adjacency matrices that improve existing ordering
methods designed for bioinformatics tables. We also described
solutions to assist the user with interactive multi-dimensional
reordering, interactive clustering and multiple clustering
comparisons.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

We designed MatrixExplorer with social researchers. We
conducted several interviews and organized a participatory design
session with sociologists, historians and social network analysts to
formalize a list of requirements for a visual exploration system.

Our future work will include the extension of our ordering
algorithm to directed graphs. In this case, the matrix of shortest
paths between all vertices contains infinity values which are not
supported by our current ordering algorithms. We also wish to
improve the interactive clustering feature to support overlapping
clusters and cluster hierarchies entry as well as cluster aggregation
(requirement R13). We are also adding other ordering algorithms.
To choose from these algorithms, we are studying which features
could help users select the appropriate ones.

Finally, more work is still to be done concerning the coupling of
visualizations. It is interesting to be able to synchronize and
desynchronize visualizations (synchronizing on selection, filtering
and datasets). Creating an intuitive interface to visualize and manage
synchronizations without introducing too much complexity is a
challenge.

This work will be available as an extension package of the

InfoVis Toolkit.

ACKNOWLEDGEMENTS
We would like to thanks the participants of the design session for
their feedback and Wendy Mackay for her support.
This work has been partly funded by the French RNRT Autograph
Project.

REFERENCES
[1] Adar, E., GUESS: A Language and Interface for Graph Exploration. in

In Proceedings of ACM CHI 2006 Conference on Human Factors and
Computing Systems, (Montréal, Canada, 2006), ACM Press, to be
published.

[2] Atkins, J.E., Boman, E.G. and Hendrickson, B. A Spectral Algorithm
for Seriation and the Consecutive Ones Problem. SIAM J. Comput., 28
(1). 297-310.

[3] Auber, D. Tulip: A huge graph visualization framework. in Mutzel, P.
and Jünger, M. eds. Graph Drawing Softwares, Springer-Verlag, 2003,
105-126.

[4] Battista, G.D., Eades, P., Tamassia, R. and Tollis, I.G. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall PTR, 1998.

[5] Bertin, J. Sémiologie graphique : Les diagrammes - Les réseaux - Les
cartes. Editions de l'Ecole des Hautes Etudes en Sciences, Paris, France,
1967.

[6] Borgatti, S., Everett, M. and Freeman, L. UCINET V user's guide.
Analytic Technologies, Natick, MA, 1999.

[7] Chauchat, J.-H. and Risson, A., AMADO, a new method and a software
integrating Jacques BERTIN's Graphics and Multidimensional Data
Analysis Methods. in International Conference on VIsualization of
Categorical Data, (Köln, R.F.A, 1995).

[8] Chen, C.-H., Hai-Gwo, H., Wen-Jung, J., Chiun-How, K., Yin-Jing, T.,
Sheng Li, T. and Han-Ming, W., Matrix visualization and information
mining. in Proceedings in Computational Statistics 2004 (Compstat
2004), (Heidelberg, 2004), Physika Verlag, 85-100.

[9] Climer, S. and Zhang, W., Take a walk and cluster genes: a tsp-based
approach to optimal rearrangement clustering. in Proceedings of the
twenty-first international conference on Machine learning, (Banff,
Alberta, Canada, 2004), ACM Press, 22.

[10] de Nooy, W., Mrvar, A. and Batagelj, V. Exploratory Social Network
Analysis with Pajek. Cambridge University Press, 2005.

[11] Díaz, J., Petit, J. and Serna, M. A survey of graph layout problems.
ACM Comput. Surv., 34 (3). 313-356.

[12] do Nascimento, H.A.D. and Eades, P., User Hints for Directed Graph
Drawing. in Graph Drawing, 9th International Symposium, GD 2001,
(Vienna, Austria, 2001), Springer-Verlag, 205-219.

[13] Doreian, P., Batagelj, V. and Ferligoj, A. Generalized Blockmodeling.
Cambridge University Press, February 2005.

[14] Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. Cluster
Analysis and Display of Genome-Wide Expression Patterns. Proc. Natl.
Acad. Sci. USA, 95. 14863-14868.

[15] Fekete, J.-D., The InfoVis Toolkit. in Proceedings of the IEEE
Symposium on Information Visualization (INFOVIS'04), (2004), IEEE
Computer Society, 167-174.

[16] Forsyth, E. and Katz, L. A matrix approach to the analysis of
sociometric data, Preliminary report. Sociometry, 9. 340-347.

[17] Gansner, E.R. and North, S.C. An open graph visualization system and
its applications to software engineering. Software - Practice and
Experience, 30 (11). 1203-1233.

[18] Ghoniem, M., Fekete, J.-D. and Castagliola, P. On the readability of
graphs using node-link and matrix-based representations: a controlled
experiment and statistical analysis. Information Visualization, 4 (2).
114-135.

[19] Hartigan, J. Direct clustering of a data matrix. Journal of the American
Statistical Association, 67 (337). 123-129.

[20] Heer, J. and Boyd, D. Vizster: Visualizing Online Social Networks. in
Proceedings of the Proceedings of the 2005 IEEE Symposium on
Information Visualization, IEEE Computer Society, 2005, 5.

[21] Helsgaun, K. An Effective Implementation of the Lin-Kernighan
Traveling Salesman Heuristic. European Journal of Operational
Research, 126 (1). 106-130.

[22] Herman, I., Melançon, G. and Marshall, M.S. Graph Visualization and
Navigation in Information Visualization: A Survey IEEE Transactions
on Visualization and Computer Graphics 6 (1). 24-43

[23] Hummon, N. and Carley, K. Social networks as normal science. Soc
Net, 15. 1-18.

[24] i2 Ltd. Analyst's Notebook. http://www.i2.co.uk.
[25] Ihaka, R. and Gentleman, R. R: A Language for Data Analysis and

Graphics. Journal of Computational and Graphical Statistics, 5 (3). 299-
314.

[26] Kirkpatrick, S., Gelatt, J. and Vecchi, M.P. Optimization by Simulated
Annealing. Science, 220. 671-680.

[27] Koren, Y. and Harel, D. A Multi-scale Algorithm for the Linear
Arrangement Problem. in WG '02: Revised Papers from the 28th
International Workshop on Graph-Theoretic Concepts in Computer
Science, Springer-Verlag, London, UK, 2002, 296--309.

[28] Koren, Y. and Harel, D. One-dimensional layout optimization, with
applications to graph drawing by axis separation. Comput. Geom.
Theory Appl., 32 (2). 115-138.

[29] Mackay, W., Using Video to Support Interaction Design. DVD Tutorial.
in Proceedings of ACM conference on Human Factors in Computing
Systems (CHI'02), (Minneapolis, MN, USA, 2002).

[30] Nardi, B.A., Whittaker, S., Isaacs, E., Creech, M., Johnson, J. and
Hainsworth, J. Integrating communication and information through
ContactMap. Commun. ACM, 45 (4). 89-95.

[31] O'Madadhain, J., Fisher, D., White, S. and Boey, Y.-B. The JUNG (Java
Universal Network/Graph) Framework, University of California, Irvine,
California, 2003.

[32] Rao, R. and Card, S.K. The table lens: merging graphical and symbolic
representations in an interactive focus + context visualization for tabular
information in Proceedings of the SIGCHI conference on Human
factors in computing systems: celebrating interdependence ACM Press,
Boston, Massachusetts, United States 1994 318-322

[33] Siirtola, H. and Mäkinen, E. Constructing and reconstructing the
reorderable matrix. Information Visualization, 4 (1). 32-48.

[34] Spenke, M., Beilken, C. and Berlage, T. FOCUS: the interactive table
for product comparison and selection in Proceedings of the 9th annual
ACM symposium on User interface software and technology ACM
Press, Seattle, Washington, United States 1996 41-50

[35] Visual Analytics Inc. VisuaLinks. http://www.visualanalytics.com.

