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Abstract
This paper presents a simple yet practical 3-D model-

ing method for recovering surface shape and reflectance
from a set of images. We attach a point light source to a
hand-held camera to add a photometric constraint to the
multi-view stereo problem. Using the photometric con-
straint, we simultaneously solve for shape, surface normal,
and reflectance. Unlike prior approaches, we formulate the
problem using realistic assumptions of a near light source,
non-Lambertian surfaces, perspective camera model, and
the presence of ambient lighting. The effectiveness of the
proposed method is verified using simulated and real-world
scenes.

1. Introduction
Three-dimensional (3-D) shape acquisition and recon-

struction is a challenging problem with many important ap-

plications in archeology, medicine, and in the film and video

game industries. Numerous systems exist for 3-D scanning

using methods such as multi-view stereo, structured light,

and photometric stereo; however, the use of 3-D modeling

is limited by the need for large, expensive, and costly hard-

ware setups that require extensive calibration procedures.

As a result, 3-D modeling is often neither a practical nor

accessible option for many applications. In this paper, we

present a simple, low-cost method for object shape and re-

flectance acquisition using a hand-held camera with an at-

tached point light source.

When an object is filmed with our camera setup its

appearance changes both geometrically and photometri-

cally. These changes provide clues to the shape of an ob-

ject; however, their simultaneous variation prohibits the

use of traditional methods for 3-D reconstruction. Stan-

dard multi-view stereo and photometric stereo assumptions

fail when considered independently; however, when consid-

ered jointly their complimentary information enables high-

quality shape reconstruction.

The particular concept of jointly using multi-view and

photometric clues for shape acquisition is not new to this
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work and has become somewhat popular in recent years [23,

13, 11]; however, these previous works have several lim-

itations that keep them from being used in practice: the

need for fixed or known camera and light positions, a dark

room, an orthographic camera model, and a Lambertian re-

flectance model. It is often difficult to fit all these con-

straints in real world situations, e.g., to adhere to an ortho-

graphic camera and distant point light source model, one

has to film the object at a distance from the camera and

light, which makes hand-held acquisition impossible. Fur-

thermore, most real-world objects are not Lambertian. Our

work improves upon previous work by removing all of these

constraints.

The primary contributions of this paper are: (1) an auto-

calibrated, hand-held multi-view/photometric stereo cam-

era, (2) a reconstruction algorithm that handles a perspec-

tive camera, near light configuration, ambient illumination,

and specular objects, and (3) a reconstruction algorithm that

performs simultaneous estimation of depth and surface nor-

mal. The rest of this paper proceeds as follows: in the next

section, we will discuss the previous work in this area. In

Sections 2 and 3, we discuss our algorithm. We present

results in Section 4 followed by a discussion and our con-

clusions.

1.1. Previous work

Shape reconstruction has a long, storied history in com-

puter vision, and, unfortunately, cannot be fully addressed

within the scope of this paper. At a high-level, typical ap-

proaches use either multi-view information or photometric

information separately. Multi-view stereo methods often re-

quire elaborate setups [24, 19] and, while they can excel at

recovering large-scale structures, they often fail to capture

high-frequency details [16]. Photometric stereo setups can

be more modest, but they still require known or calibrated

light positions [15] and often have inaccuracies in the low-

frequencies components of the shape reconstruction [16].

Recent work has merged the benefit of these to meth-

ods using either two separate datasets [16, 22] or jointly

using one dataset. Maki et al. [14] use a linear subspace

constraint with several known correspondences to estimate

light source directions up to an arbitrary invertible lin-
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Figure 1. Our prototype implementation of the hand-held photo-

metric stereo camera.

ear transform, but they do not recover surface normals.

Simakov et al. [20] merge multi-view stereo and photomet-

ric constraints by assuming that the relative motion between

the object and the illumination source is known. While

this motion is recoverable in certain situations, there can

be ambiguities. Additionally, their process can only re-

cover normals up to an ambiguity along a plane. In contrast,

our method automatically finds correspondences to recover

camera parameters, with a known relative light position, and

solves depth and normals without any remaining ambiguity.

More recently, Birkbeck et al. [2] and Hernández et al. [10]

show impressive surface reconstruction results by exploit-

ing silhouette and shading cues using a turntable setup.

Our work is similar in spirit to that of Pollefeys et
al. [18] who perform 3-D modeling with a perspective cam-

era model, but use standard multi-view clues and no photo-

metric clues, thus they do not recover normals as we do. Our

work also is closely related to the work by Zhang et al. [23],

Lim et al. [13], and Joshi and Kriegman [11]. Zhang et
al. present an optical flow technique that handles illumi-

nations changes, which requires numerous images from a

dense video sequence. Lim et al. start with very sparse

initial estimate of the shape computed from the 3-D loca-

tions for a sparse set of features and refine this shape using

iterative procedure. Joshi and Kriegman extend a sparse

multi-view stereo algorithm with a cost-function that uses a

rank-constraint to fit the photometric variations. Our work

shares some similarity with Joshi and Kriegman’s approach

for simultaneous estimation of depth and normals. In con-

trast with these three previous works, we use a known, near

light position and can handle using a perspective camera

and non-Lambertian objects.

2. Proposed method
Our method uses a simple configuration, i.e., one LED

point light source attached to a camera. Fig. 1 shows a pro-

totype of the hand-held photometric stereo camera. This

configuration has two major advantages. First, it gives a

photometric constraint that allows us to efficiently deter-

mine surface normals. Second, it enables a completely

hand-held system that is free from heavy rigs.

Fig. 2 illustrates the flow of the proposed method. After

calibrating camera intrinsics and vignetting (step 1), we take

images of a scene from different view points using the cam-

era with the LED light always turned on. Given such input

images, our method first determines camera extrinsics and

light source position in steps 2 and 3. In step 4, our method

performs simultaneous estimation of shape, normals, albe-

dos, and ambient lighting. We use an efficient discrete op-

timization to make the problem tractable. Step 5 refines the

estimated surface shape by a simple optimization method.

We first describe the photometric stereo formulation for our

configuration in Section 2.1, and then describe the algorith-

mic details of our two major stages (steps 4 and 5) in Sec-

tions 2.2 and 2.3.

2.1. Near-light photometric stereo

This section formulates the photometric stereo for Lam-

bertian objects under a near-light source with ambient illu-

mination. Our method handles specular reflection and shad-

ows as outliers that deviates from this formulation.

Suppose s is a light position vector that is known and

fixed in the camera coordinate. Let us consider a point x
on the scene surface with a surface normal n in the world

coordinate. In the i-th image, the light vector li from the

surface point x to the light source is written as

li = s− (Rix + ti), (1)

where Ri and ti are, respectively, the rotation matrix and

translation vector from the world coordinate to the camera

coordinate. With the near light source assumption, inten-

sity observation oi is computed with accounting the inverse-

square law as

oi = Eρ
li · (Rin)
|li|3

+ a, (2)

where E is the light source intensity at a unit distance, ρ is

surface albedo, and a is the magnitude of ambient illumina-

tion. Defining a scaled normal vector b = ρn, normalized

pixel intensity o′i = oi/E, and normalized ambient effect

a′ = a/E, Eq. (2) becomes

o′i =
li · (Rib)
|li|3

+ a′ =
(RT

i li) · b
|li|3

+ a′. (3)

Given the rotation matrix Ri, translation vector ti, and

position vector x, we can easily compute the light vector li
from Eq. (1). Once we know the light vector li, we can esti-

mate the scaled normal vector b on each surface point with

photometric stereo. According to Eq. (3), we can compute

n, ρ, and a′ from at least 4 observations as⎡
⎢⎢⎣

o′1
o′2
o′3
o′4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

l′T1 1
l′T2 1
l′T3 1
l′T4 1

⎤
⎥⎥⎥⎦
[

b
a′

]
, (4)
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1. Calibrate the Camera (Section 3.1)

Calibrate camera intrinsics and estimate vignetting.

2. Estimate Camera Projection Matrices (Section 3.2)

Using Structure from Motion/Bundle adjustment, re-

cover the camera projection matrices for each frame.

3. Estimate light source position (Section 3.2)

Resolve the scale ambiguity by using our photo consis-

tency on feature points from the structure from motion

process.

4. Compute Dense Depth and Normal Map (Sec-

tion 2.2)

Find the dense depth map and normals by minimiz-

ing our near light-source, multi-view photometric con-

straint using a graph cut.

5. Compute Final Surface (Section 2.3)

Recover the final surface by fusing the recovered dense

depth map and normal field.

Figure 2. Our shape reconstruction algorithm.

where we define the near light vector l′i = RT
i li/|li|3. By

solving the linear system, we can estimate n, ρ, and a′.
The above derivation shows how to recover normals us-

ing near-light source photometric stereo once image corre-

spondence is known; however, for our setup where we want

to leverage multi-view clues, correspondence is unknown

and must be estimated. Estimating the unknown correspon-

dence is one of the key concerns of this work and is dis-

cussed in the next section.

2.2. Simultaneous estimation of depth and normal

Our method simultaneously estimates depth, normal,

surface albedo, and ambient lighting. To do this we estimate

correspondence to get position information and use photo-

metric clues to get normals – these two are fused to get the

final depth. To compute correspondence, we run a stereo

algorithm, where we replace the traditional match function

that uses brightness constancy with one that uses the photo-

metric clues, normal consistency, and surface smoothness.

We formulate the problem in a discrete optimization frame-

work.

Let us first assume the camera positions and light posi-

tion are known – the estimation of these parameters is dis-

cussed in detail in Section 3.2. Suppose that we have m im-

ages taken from different view points with our camera. We

recover correspondence by performing plane-sweep stereo.

For each depth in the plane-sweep, we warp the set of im-

ages from different view points to align to one reference

view. In this reference camera coordinate frame, the depth

planes are assumed in the z direction parallel to the xy plane

at a regular interval Δz .

Specifically, we warp each image to the reference camera

coordinate for depth zj = z0 + jΔz using a 2-D projective

transform Hij as

pw = Hijpo, (5)

where pw and po represent the warped pixel location and

the original pixel location, respectively, described by p =
[u v 1]T in the image coordinate system. Then we per-

form an optimization over this set of warped images to find

the optimal per-pixel depth zj that gives the best agree-

ment among the registered pixels (given pixel p in the ref-

erence view and corresponding pixels in the warped images

Iij(p) (i = 1, 2, . . . , m)). This is done according to three

criteria: photo consistency, a surface normal constraint, and

a smoothness measure.

Photo consistency. Our photo consistency measure is de-

fined to account for varying lighting, since the light source

is attached to the moving camera. To explicitly handle

shadows, specular reflections, and occlusions, we use a

RANSAC [8] approach to obtain the initial guess of surface

normal np, surface albedo ρp, and ambient ap using the

near-light photometric stereo assumption described in Sec-

tion 2.1. The vector form of surface albedo ρp and ambient

ap contain elements of three color channels. Using the ini-

tial guess, the photo consistency g is checked with each of

other m− 4 images at a given pixel p as

gi(np,ρp,ap) =
∑

c={R,G,B}
|Ic

i (p)− Ecρc
pl

′ · np − ac
p|. (6)

We also compute the number of images that satisfy the

photo consistency N as

N = |{i | gi(np,ρp,ap) < τ}|, (7)

where τ is a threshold for photo consistency. The RANSAC

process above computation is repeated to find the best es-

timates of np, ρp, and ap that maximizes N at each p and

depth label j. Finally, the photo consistency cost Ep is eval-

uated as

Ep(p, j) = η
1
N

∑
i∈N

gi(np,ρp,ap)−N, (8)

where η is a scaling constant. The first term in the cost func-

tion assesses the overall photo consistency, and the second

term evaluates the reliability of the photo consistency, i.e.,

when it is supported by many views (number of N ), it is

more reliable. These two criteria are combined together us-

ing a scaling constant term η. In our implementation, we

fixed η as η = 1/τ .
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Surface normal constraint. Preferred depth estimates

are those which are consistent with the surface normal es-

timates. We use a surface normal cost function En(p, j)
to enforce this criterion. Let j′ be the depth label of the

neighboring pixel p′ that is located nearest in 3-D coordi-

nates to the plane specified by the site (p, j) and its sur-

face normal. Sometimes, the site (p′, j′) does not have a

valid surface normal due to unsuccessful fitting of a sur-

face normal by RANSAC. In that case, we take the next

nearest site as (p′, j′). Once the appropriate j′ is found

within |j − j′| < Tj , a vector d
(p′,j′)
(p,j) that connects (p, j)

and (p′, j′) in the 3-D coordinate is defined on the assumed

plane. We then compute the agreement of the surface nor-

mal at (p′, j′) with the depth estimate by evaluating if these

two vectors are perpendicular to each other. The surface

normal cost function is defined as

En(p, j)=

{∑
p′(|j − j′|+ 1)np′j′ · d(p′,j′)

(p,j) if |j − j′| < Tj

C0 (= const.) otherwise.
,

(9)

Smoothness constraint. We use a smoothness constraint

on depth to penalize large discontinuities. Suppose p and

p′ are neighboring pixels whose depth labels are j and j′

respectively. The smoothness cost function Es is defined as

Es(j, j′) = |zj − zj′ | = Δz|j − j′|. (10)

Energy function. Finally, the energy function E is de-

fined by combining above three constraints as

E(p, j, j′) = Ep(p, j) + λnEn(p, j) + λsEs(j, j′). (11)

We use a 2-D grid graph cut framework to optimize the

energy function. The 2-D grid corresponds to the pixel grid,

i.e., we define each pixel p as a site and the depth label j
is associated. We use Boykov et al. [5, 12, 4]’s graph cut

implementation to solve the problem. By solving Eq. (11),

we obtain the estimates of depth, surface normal, surface

albedo, and ambient lighting.

2.3. Refinement of surface shape

The depth estimate obtained by the solution method de-

scribed in the previous section is discretized, and therefore

it is not completely accurate due to the quantization error.

To refine the depth estimate, we perform a regularized mini-

mization of a position error, normal constraint, and smooth-

ness penalty, to derive the optimal surface Z. The optimiza-

tion method is based on Nehab et al. [16], and we define

the error function following the work of Joshi and Krieg-

man [11]:

J(Z) = EP + EN + ES . (12)

The position error EP is the sum of squared distances

between the optimized positions Sp and original positions

S′
p in the 3-D coordinate:

EP = λ1

∑
p

||Sp − S′
p||2, (13)

where λ1 is the relative weighting of the position constraint

versus the normal constraint. To evaluate the position error,

depth values are transformed to distances from the center of

the perspective projection:

||Sp − S′
p||2 = μ2

p(zp − z′p)
2, (14)

μ2
p =

(
x

fx

)2

+
(

y

fy

)2

+ 1,

where fx and fy are the camera focal lengths in pixels, and

z′p is the depth value of the original position p′.
The normal error constrains the tangents of the final sur-

face to be perpendicular to the input normals:

EN = (1− λ1)
∑

p

((
np · T x

p

)2 +
(
np · T y

p

)2
)
, (15)

where T x
p and T y

p represent the tangent vectors:

T x
p =

[
− 1

fx

(
x

∂Zp

∂x
+ Zp

)
,− 1

fy
y
∂Zp

∂x
,
∂Zp

∂x

]T

,

T y
p =

[
− 1

fx
x

∂Zp

∂y
,− 1

fy

(
y
∂Zp

∂y
+ Zp

)
,
∂Zp

∂y

]T

.

The smoothness constraint penalizes high second-

derivatives by penalizing the Laplacian of the surface:

ES = λ2

∑
p

∇2Zp. (16)

λ2 is a regularization parameter to control the amount of

smoothing.

Each pixel generates at most 4 equations: one for the

position error, one for the normal error in each of x and

y directions, and one for the smoothness. Therefore, the

minimization can be formulated as a large, sparse over-

constrained system to be solved by least squares:⎡
⎢⎢⎣

λ1I
(1− λ1)N · T x

(1− λ1)N · T y

λ2∇2

⎤
⎥⎥⎦ [Z] =

⎡
⎢⎢⎣

λ1z
0
0
0

⎤
⎥⎥⎦ , (17)

where I is an identity matrix and N · T x and N · T y are

matrices that, when multiplied by the unknown vector Z,

evaluate the normal constraints (1 − λ1)n · T x and (1 −
λ1)n · T y . We solve this system using a conjugate gradient

method for sparse linear least squares problems [17].
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3. Implementation
3.1. Calibration

Before data acquisition, we calibrate the intrinsic param-

eters of the camera and vignetting. We use Camera Cali-

bration Toolbox for Matlab [3] to estimate the camera in-

trinsics. For vignetting correction, we take images under a

uniform illumination environment with a diffuser to create a

vignetting mask. During the data acquisition, we move the

camera system with the LED light on, without changing the

intrinsic parameters of the camera.

3.2. Structure from motion

From the image sequence, we use the state-of-the-art

structure from motion implementation Bundler [21] to esti-

mate camera extrinsics and 3-D positions of feature points.

Unfortunately, the estimated 3-D positions of feature

points have a scaling ambiguity because of the fundamental

ambiguity of structure from motion. The scale k can affect

the light vector estimation in Eq. (1) as

li = s− k(Rix + ti). (18)

We resolve this ambiguity using our photo consistency mea-

sure on feature points F . The photo consistency cost Ep of

Eq. (8) varies with the scaling parameter k. We find the op-

timal k that minimizes the score of Ep(k) using the feature

points F as

Ep(k) =
∑
p∈F

[
η

1
N

∑
i

gi(np,ρp,ap)−N
]
. (19)

We minimize Ep(k) by simply sweeping the parameter

space of k to obtain the solution.

3.3. Coarse-to-fine implementation

The simultaneous estimation method described in Sec-

tion 2.2 gives good estimates; however, the computational

cost becomes high when the image resolution is large and

also when many depth labels are considered. We adopt a

coarse-to-fine approach to avoid this issue.

First, image pyramids are created for the registered im-

ages after image warping by Eq. (5). At the coarsest level,

the simultaneous estimation method is applied using full

depth labels. In the finer level of the pyramid, we expand

the depth labels from the earlier level and use them as the

initial guess. From this level, we prepare only a small range

of depth labels around the initial guess for each site p. Using

the minimum and maximum depth labels, jmin and jmax, of

the site and its neighboring sites, the new range is defined

as [jmin − 1, jmax + 1]. We also use a finer Δz in the finer

level of the pyramid. We set Δz ← Δz/2 when moving to

the finer level of the pyramid.

Depth [%] Normal [deg.] Albedo

mean med mean med mean med

Baseline 1.73 0.42 10.5 4.27 0.05 0.02
Textureless 3.05 0.46 11.2 4.74 0.05 0.02
Specular 1.77 0.42 10.0 4.63 0.05 0.03

Ambient 2.68 0.47 10.0 4.44 0.05 0.02

Table 1. Quantitative evaluation using synthetic scenes. “mean”

and “med” indicate mean and median errors, respectively.

4. Experiments

We use a Point Grey DragonFly camera (640×480) with

an attached point light source as our prototype system. The

camera can sequentially capture images, and we use this

capability for the ease of data acquisition. During the cap-

turing, the point light source is always turned on.

In this section, we first show quantitative evaluation us-

ing synthetic data in Section 4.1. We use three real-world

scenes that have different properties to verify the applica-

bility of the proposed method in Section 4.2. We further

show comparisons with other state-of-the-art 3-D modeling

methods using the real-world scenes. Throughout the exper-

iments, we use τ = [6.0, 8.0], λn = 7.5 and λs = [1.5, 3.0],
λ1 = [0.01, 0.1], λ2 = [0.5, 1.5], C0 = 5, and initial

Δz = 8.0[mm].

4.1. Simulation results

In the simulation experiments, we render synthetic

scenes by simulating the configuration of our photometric

stereo camera. We created a baseline scene which is tex-

tured, Lambertian, and has no ambient lighting. By chang-

ing the settings so that the objects were (1) textured, (2)

have specular reflectance, and (3) the scene has ambient

lighting, we assess the performance variation in compari-

son with the baseline case.

Table 1 shows the summary of the evaluation. From top

to bottom, the results of the baseline, textureless, specular,

and ambient cases are shown. The errors are evaluated us-

ing the ground truth depth map, normal map, and albedo

map by looking at the mean and median errors. The depth

error is represented by percentage, using [maximum depth

- minimum depth] as 100%. The surface normal error is

evaluated by the angular error in degrees, and albedo error

is computed by taking the average of the absolute differ-

ence in R, G, and B channels, in the normalized value range

[0, 1]. The mean error is sensitive to outliers, while the me-

dian error is not. Looking at the median error, the estima-

tion accuracy is quite stable across the table. The textureless

case produces slightly larger errors, and this indicates that

there still remains ambiguous matchings even with the near

light source configuration. Fig. 3 shows the result on the

simulated scene with specularity.

1238



Input images Depth map Normal map Albedo Rendering

Figure 3. Simulation result using the bunny scene. From left to right, input images (reference view in the top-left), the estimated depth

map, normal map, albedo, and a final rendering of the surface are shown. In the depth map, brighter is nearer and darker is further from the

camera. In the normal map, a reference sphere is placed for better visualization. 62 images are used as input.

4.2. Real-world results

We applied our method to various different real-world

scenes. We show three scenes: (1) statue scene (texture-

less, roughly Lambertian), (2) bag scene (textured, glossy

surfaces), and (3) toy scene (various reflectance properties,

complex geometry).

Fig. 4 shows the result of statue scene. To produce the

result, we manually masked out the background portion of

the statue in the reference image. Our method can recover

the surface and normal map as well as surface albedo from

a textureless scene. Fig. 7 and Fig. 8 show the results of the

bag scene and toy scene, respectively. These scenes con-

tain textured surfaces as well as specularities. Our method

can handle these cases as well because of our robust estima-

tion scheme to handle specularities. Our handheld camera

is particularly useful for measuring scenes like the toy scene

that are difficult to move to a controlled setup.

To demonstrate the effectiveness of our photometric con-

straint, we have performed a comparison with a state-of-the-

art multi-view stereo method proposed by Goesele et al. [9]

that does not use a photometric constraint. The input data is

obtained by fixing a camera at each view point and captur-

ing two images with the attached point light source on and

off. The images without the point light source but under

environment lighting are used as input for Goesele et al.’s
method. Fig. 5 shows the rendering of two surfaces recov-

ered by our method and Goesele et al.’s method. Typical

multi-view stereo algorithms can only establish a match in

areas with some features (texture, geometric structure, or

shadows), and this example is particularly difficult for them

as it lacks such features in the most of the areas. On the

other hand, our method works well because of the photo-

metric constraint.

We also compare our method to a result from Joshi and

Kriegman’s method [11]. In their method, far-distant light-

ing and orthographic projection are assumed. We use the

same dataset from their experiment and approximate their

assumptions by diminishing light-fall off term (1/|li|2) in

Eq. (2) and using large focal lengths fx and fy . The side-

by-side comparison is shown in Fig. 6. Our method can

Our method Goesele et al.’s method [9]

Figure 5. Comparison with a multi-view stereo method without a

photometric constraint [9] using the statue scene. 93 images are

used as input for both methods.

Input image JK [11] Our method

Figure 6. Comparison with Joshi and Kriegman’s method (JK) us-

ing the cat scene. Eight images are used as input for both methods.

Note that rendering parameters are different as the original param-

eters are not available.

produce a result with equal quality to their method.

5. Discussion and Future Work

We presented a simple, low-cost method for high-quality

object shape and reflectance acquisition using a hand-held

camera with an attached point light source. Our system is

more practical than those in previous work and can handle
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Input images Depth map Normal map Albedo Rendering

Figure 4. Result of the statue scene. From left to right, input images (reference view in the top-left), the estimated depth map, normal map,

albedo, and a final rendering of the surface are shown. 93 images are used as input.

Input images Depth map Normal map Albedo Rendering

Figure 7. Result of the bag scene. From left to right, input images (reference view in the top-left), the estimated depth map, normal map,

albedo, and a final rendering of the surface are shown. 65 images are used as input.

hand-held filming scenarios with a broad range of objects

under realistic filming conditions. Nevertheless, there are

some limitations and several avenues for future work.

One current limitation is that we only implicitly account

for self-occlusions, shadowing, inter-reflections, and spec-

ularities. Our robust fitting method addresses these prop-

erties by treating them all as outliers from a Lambertian

shading model. While this works well in practice, it is very

likely that explicitly accounting for these factors would im-

prove our results. We are investigating methods that could

be used to explicitly model outlier pixels as self-occlusions,

shadows, and inter-reflections [1, 7, 6] and methods to fit

an appearance model to specularities in the data. Not only

would this help refine the 3-D shape and reflectance model,

it should enable higher quality rendering of scanned objects.

Another direction for future work is to perform a full

3-D reconstruction. Currently, we produce a single hight-

field for a selected reference view. We are very interested

using either a two-stage process of producing and merging

multiple height maps into a 3-D model [9] or performing

our optimization directly in the 3-D space.
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