
 1

Scalable Fabric: A Flexible Representation for Task Management 

George Robertson, Eric Horvitz, Mary Czerwinski, Dugald Hutchings, 
 Patrick Baudisch, Brian Meyers, Daniel Robbins, and Greg Smith 

 Microsoft Research  
{ggr; horvitz; marycz; baudisch; brianme; dcr; gregsmi}@microsoft.com; 

hutch@cc.gatech.edu 

 

Abstract 

Our studies have shown that as displays become larger, 
users leave more windows open for easy multitasking. A 
larger number of windows, however, may increase the 
time that users spend arranging and switching between 
tasks. We present Scalable Fabric, a task management 
system designed to address problems with the prolifera-
tion of open windows on the PC desktop. Scalable Fab-
ric couples a flexible visual representation with window 
management to provide a focus-plus-context solution to 
desktop complexity. Users interact with windows in a 
central focus region of the display in a normal manner, 
but when a user moves a window into the periphery, it 
shrinks down in size, getting smaller as it nears the edge 
of the display. The Window “minimize” action is rede-
fined to return the window to its preferred location in the 
periphery, allowing windows to remain visible when not 
in use. Windows in the periphery may be grouped to-
gether into named tasks, and task switching is accom-
plished with a single mouse click. The spatial arrange-

ment of tasks leverages human spatial memory to make 
task switching easier. We review the evolution of Scal-
able Fabric over three design iterations, including dis-
cussion of results from two user studies that were per-
formed to compare the experience with Scalable Fabric 
to that of the legacy Microsoft Windows XP TaskBar. 

1. Introduction 
Twenty years ago, Bannon et al. (1983) observed that 
information workers often switch between concurrent 
tasks or activities. In Rooms, Card and Henderson 
(1987) observed that tasks can be supported via the man-
agement of “working sets” of windows, in much the same 
way operating systems manage working sets in memory. 
Card and Henderson identified desirable properties of 
task management systems, including: fast task switching, 
fast task resumption, and easy reacquisition of the cogni-
tive context associated with a task.  

Over the two decades since the early work of Bannon 
et al., numerous virtual desktop managers have been built 
and each has exhibited some of these properties. Task 

Figure 1. Scalable Fabric showing the representation of three tasks as clusters of windows, and 
a single window being dragged from the focus area into the periphery. 



 2

management systems typically provide some efficient 
way of switching from one set of windows and applica-
tions to another set, as a basic form of task switching.  

Although workers may switch among tasks in a self-
guided manner, a significant portion of task switching is 
caused by external interruptions (Czerwinski, Horvitz, 
and Wilhite, 2004). Czerwinski, Cutrell, and Horvitz 
(Cutrell, 2001; Czerwinski, 2000; Czerwinski, 2000b) 
have sought to understand the influence of interruptions 
on task switching for information workers in order to 
design user interface tools that can assist users to recover 
from interruptions.  

We have also been motivated to re-examine task 
switching and task management design opportunities in 
the face of the growing popularity of larger display and 
multiple monitor configurations. In an informal study at 
our organization, we found that when users shift to larger 
display surfaces, they leave more applications running 
and associated windows open. For example, we observed 
that single display users tend to keep an average or 4 
windows open at once, while dual monitor users keep 12 
and triple monitor users keep 18 windows open on aver-
age (N=16 users). Although a larger study is required for 
verification of these results, this significant trend sug-
gests that there is an opportunity for design innovation 
with windows and task management to make handling 
larger numbers of concurrent windows, potentially clus-
tered by task,  a fundamentally more natural and effec-
tive experience. 

We have developed a windows management method-
ology to exploit this opportunity. Scalable Fabric is a 
system designed to assist users manage tasks on the 
Windows desktop, allocating screen real estate in accor-
dance with a user’s attention, using a focus-plus-context 
display. The periphery of the screen is used to hold 
scaled down live windows rather than hiding them with 
traditional windows minimization. In order to facilitate 
task switching, Scalable Fabric allows users to group 
collections of windows that are used together. We shall 
refer to groups of Windows that are used together as 
tasks.  We realize that this notion is not isomorphic with 
all conceptions of computer-centric “tasks”, but in our 
conversations with end users after studies of this topic, 
this notion appears to resonate easily with their descrip-
tion of their own computer work.  

In the remainder of the paper, we will first discuss re-
lated research. Then we will describe details of the Scal-
able Fabric methodology.  We present the results of a 
comparative user study of Scalable Fabric and the Win-
dows TaskBar, and a longitudinal field study of Scalable 
Fabric. Finally, we discuss project directions and oppor-
tunities for future research. 

2. Related work on task management 
The most popular software system for task management 
is the virtual desktop manager. One of the earliest de-
signs exploring a virtual desktop manager was Smalltalk 

Project Views (Goldberg, 1983). Rooms (Card, 1987; 
Henderson, 1987) is probably the most well-known of 
these kinds of systems. A number of virtual desktop 
managers are currently available, and are described in 
(XDesk, 2003). We have not been able to find evidence 
that these systems have been evaluated in a formal man-
ner. Thus it is difficult to ascertain how easy they are to 
use or how well they integrate into real-world settings. 

In addition to virtual desktop managers, a number of 
novel solutions have been proposed, including extending 
the user’s desktop with additional low-resolution screen 
space (Baudisch, 2001), employing 3D environments as 
pursued by the TaskGallery (Robertson, 2000) effort, 
providing a zoomable space as in Pad++ (Bederson, 
1994), and the use of time as the main axis and organiz-
ing principle (Rekimoto, 1999). Also, tiled window man-
agers (Bly, 1986; Teitelman, 1986) have been created to 
address some of these same issues, as well as systems 
that involve the invocation of bumping processes among 
windows, to allow a window at focus to push others away 
(Bell, 2000; Kandogan, 1997). 

We have pursued prototypes of temporal and spatial 
visualizations of users’ daily computing configurations. 
These designs use lightweight, temporal cues, such as the 
state of a user’s desktop at different times (Malone, 
1983). We have also sought to provide support for task-
based visualizations and switching, in a similar vein to 
the work of Henderson & Card (1987), Kaptelinin 
(2002), Macintyre et al. (2001) and Robertson et al. 
(2000). 

In distinction to the prior work, we have explored de-
signs for virtual desktop organizers that do not replace 
the entire PC desktop with a new metaphor, but rather 
occupy the same conceptual and physical space that is 
already devoted to window management in the Windows 
OS – namely, the area in the periphery of the display 
surface. Using these prototypes, we have been perform-
ing longitudinal studies on the benefits of temporal and 
visual cues for enhancing memory about knowledge-
based tasks, in order to facilitate task switching. We seek 
to understand the potential benefits from the use of these 
systems, and to iterate their design. For example, the 
Windows XP TaskBar provides “grouping by applica-
tion” to address the problem of running out of bar space, 
e.g., all Word windows are grouped together, and all 
Internet Explorer windows are grouped together. Group-
ing by application, rather than by task, can create user 
confusion, as specific windows executing the same appli-
cation may be conceptually unrelated to each other, and 
cross-application windows may be used together on one 
user activity (Czerwinski, 2003). 

We also address the challenge of accessibility of win-
dows belonging to different tasks. While virtual desktop 
managers typically impose strict separation between 
tasks, we allow users to simultaneously display any sub-
set of windows, even if they should be assigned to differ-
ent tasks. Rooms’ placements mechanism allows a win-
dow to appear in multiple virtual desktops, but this re-



 3

quires forethought to set up. The approach in Scalable 
Fabric is more dynamic and requires no forethought. 

In related work, GroupBar (Smith, 2003) addresses 
these latter issues by evolving the Windows TaskBar to 
support task groups of windows on a bar, using the same 
minimized window representation used by TaskBar. 

Although GroupBar has most of the properties we 
were seeking in a task management system, the design 
does not effectively leverage human spatial and visual 
recognition memory. We know from user studies on the 
Data Mountain (Robertson, 1998) and Task Gallery 
(Robertson, 2000) that spatial memory works in a virtual 
environment similarly to the way it works in the physical 
world, and that user task performance is enhanced, par-
ticularly when the task involves retrieving items placed 
spatially. GroupBar makes limited use of spatial memory 
by allowing users to create multiple bars. Limitations 
stem from the bar design, which is linear, list-based, and 
does not expose much virtual space in which to place 
tasks.  

Scalable Fabric makes use of the periphery of the dis-
play for spatial layout of tasks, in addition to leveraging 
users’ efficient visual recognition memory for images 
(Czerwinski, 1999).  Scalable Fabric allows users to 
leave windows and clusters of windows open and visible 
at all times via a process of scaling down and moving the 
windows and clusters to the periphery. This idea was 
partially inspired by observations we made with Data 
Mountain; items toward the back of the Data Mountain 
take much less space, but are still readily recognizable. It 
was also inspired by the scaling at the edges of the dis-
play in Flatland (Mynatt, 1999) and by ZoomScapes’ 
location based scaling mechanism (Guimbretiere, 2001). 
While ZoomScapes is not a task management system, its 
management of sheets and groups of sheets is similar to 
Scalable Fabric’s management of windows and tasks. We 
shall review the differences in design in the next section. 

3. Scalable Fabric basics 
In Scalable Fabric, the user defines a central focus 

area on the display surface by moving periphery bound-
ary markers to desired locations. In Figure 1, these 
boundary markers are visible, but users usually hide the 
boundary markers unless they are changing the size or 
shape of the focus area, in which case the markers serve 
as resize handles. Within the focus area, windows behave 
as they normally do in the Windows desktop. The pe-
riphery contains windows and collections of windows (or 
tasks) that are not currently in use, but may be put to use 
at any moment. Windows in the periphery are smaller so 
that more tasks can be held there when the user is focus-
ing on something else. With this metaphor, we believe 
users will rarely need to close or minimize windows in 
the traditional sense. Users will want to take advantage 
of extra screen real estate, especially on larger displays, 
to allow the peripheral windows to always be visible. 

When a user moves a window into the periphery, it 
shrinks monotonically with distance from the focus-
periphery boundary, getting smaller as it nears the edge 
of the screen. When the user clicks on a window in the 
periphery, it returns to its last focus position; this is the 
new “restore” behavior, and is accomplished with a one 
second animation of the window moving from one loca-
tion to the other. When the user “minimizes” a window 
in the focus area, e.g., by clicking the window’s ‘mini-
mize’ button, it returns to its last peripheral position. 

When a window is moved around in the periphery, 
other windows temporarily move out of the way. This is 
the same occlusion avoidance behavior employed in the  
Data Mountain (Robertson, 1998), and it makes it impos-
sible to obscure one peripheral window with another. 

Scalable Fabric uses natural metaphors and gestures 
that allow users to define, access, and switch among 
tasks. To define tasks, windows in the periphery are 
grouped into clusters associated with a colored banner 
showing which cluster they are in. Moving a window 
near a cluster marker makes it part of that cluster. When 
clusters are moved around, they avoid each other similar 
to the way windows avoid one another. The whole point 
of this behavior is to make it easy for users to construct 
task clusters by dragging and dropping windows onto 
groups of windows. 

To create a new task, the user simply moves a window 
near another that is not in a task. The new task is then 
created implicitly. The user can return later and rename 
the task. Until the task is named, it is ephemeral. That is, 
if the last but one window is moved out of an ephemeral 
task, the task will be un-created (i.e., the task marker will 
disappear). 

Natural gestures are also provided to allow users to 
access and toggle among tasks efficiently. When a user 
clicks on a task marker, the entire task is selected, restor-
ing its windows to their focus positions. If the user clicks 
on a task marker when all of its windows are currently in 
the focus area, each window returns to its peripheral po-
sition. If one task is selected and the user clicks on a dif-
ferent task marker, a task switch occurs, i.e., all windows 
of the current task move to their peripheral positions, and 
the windows comprising the task being selected in the 
periphery move to their previous configuration in the 
focus area. 

The user’s choice of focus area location and size is in-
fluenced by the configuration and capabilities of the 
physical displays. For example, on a triple-monitor dis-
play, some users may prefer to define the central monitor 
as the focus area, with no upper or lower peripheral re-
gions and the side monitors as the side peripheral re-
gions. 

The information in the periphery may be occasionally 
obscured by open windows (e.g., a maximized window). 
This can be resolved with two mechanisms. First, any 
interaction that involves the periphery must make all the 
periphery windows and task markers visible. Second, 
there must be some way to make the periphery visible on 



 4

demand. The solution we have adopted is similar to the 
TaskBar auto-hide mechanism. Any time the user bumps 
the cursor into any screen edge, the periphery auto-
reveals itself. If the user interacts with any window not in 
the periphery, the periphery will drop to the bottom of 
the window z-order.  

Scalable Fabric is a focus-plus-context display in the 
sense that it smoothly integrates user focus of attention 
with the context of other work (i.e., competing or poten-
tially related tasks) displayed in the user’s periphery. 

For moving and scaling windows and groups of win-
dows in Scalable Fabric, we considered findings from 
ZoomScapes (Guimbretiere, 2001). As windows are rec-
tangles rather than points, it is important to identify the 
point about which scaling occurs.  Like ZoomScapes, 
Scalable Fabric uses the cursor location (i.e., the drag 
point) as the scale point.  We experimented with several 
different alternatives, and concur with the earlier work 
that the cursor position is the most useful scale point. 

When moving a group, simply scaling the windows in 
the group is not sufficient. Zoomscapes scales the dis-
tance between the center of the sheets and the cursor 
dragging point.  In Scalable Fabric, we found a more 
pleasing effect could be generated by scaling the dis-
tances from the window centers to the center of the 
group.  That is, as the group gets smaller, the windows 
move closer together. 

When a window moves across the scaling boundary, 
an abrupt change in scale is disconcerting.  Zoomscapes 
solves this by have a bridge zone where a sharp ramp in 
scaling is applied.  Scalable Fabric uses a different ap-
proach, and applies a half-second transition animation to 
the new scale.  This appears to be more graceful than the 
ramp-zone approach. 

4. Design and implementation issues 
We have pursued a process of iterative design for re-

fining and testing versions of Scalable Fabric. To date, 
we have created three implementations of the system.  
We shall now describe the design and implementation 
issues encountered with each iteration.  

4.1. Initial design: image-based prototype 
The first version of Scalable Fabric was a prototype 

that worked with images of windows, which allowed us 
to refine the visual design and interaction behaviors. This 
version was implemented in C++ and Direct3D.  By 
building in a 3D environment, we had maximum flexibil-
ity in design experimentation.  Figure 1 is a screenshot of 
the first design prototype with the addition of an indica-
tion of what it is like to drag a window from the focus 
area to the periphery. 

Figure 2 shows a close-up of a task.  Notice that the 
windows have a colored banner that matches the color of 
the task marker, and have transparent drop shadows.  
When the user hovers over a window, a yellow border is 

drawn around the window and a tooltip shows the full 
window title.  The task marker is a 3D image of a place 
marker with the name of the task on the tag in the clip. 
Early testing with the prototype showed that users could 
not guess what the marker object was. 

 

 
Figure 2. Close-up of task (initial prototype). 

In the first prototype, window occlusion avoidance 
used the same algorithm that had been used by the Data 
Mountain (Robertson, 1998).  A window being dragged 
would push other windows out of the way, but they 
would return to their former position when the moving 
window went past them. For task group avoidance, we 
used a simpler algorithm that caused groups to push each 
other out of the way with no return to former position. 

Informal studies were conducted to collect usability 
issues to drive the second design iteration. 

4.2. Second design: live windows 
The second design worked with real windows on the 

Windows Desktop.  This version was implemented in C# 
and the .Net Framework. Because the version was built 
on top of an existing window manager rather than replac-
ing one, it has some limitations both in behavior and per-
formance.  For example, the first prototype preserved 
window Z-order both in the focus and in the periphery.  
Using the window manager of Microsoft Windows 
makes preserving window Z-order extremely difficult, if 
not impossible,  This is an example of a problem that 
could easily be resolved if Scalable Fabric was built as a 
replacement for the window manager instead of on top of 
the window manager.   

In the second design, when a window is moved into 
the periphery, it is replaced with a scaled surrogate win-
dow and the “real” window is hidden.  This had a side 
effect of removing windows in the periphery from the 
TaskBar, which met with mixed reactions from users.   



 5

Figure 3 shows a close-up of a task in this implemen-
tation.  Notice that periphery window text is somewhat 
hard to read.  This implementation did not apply anti-
aliasing to the images, which made them hard to read and 
caused temporal aliasing when windows were dragged.  
Another problem arose from the method employed in the 
second design for capturing the content of windows. The 
window state in this version was captured by copying 
bitmaps from the desktop image.  This means that win-
dows in the periphery were not updated after they had 
been moved to the periphery. Also, if a window was only 
partially visible, only the visible part was available, leav-
ing a black region in part of the peripheral window.   

Notice that the task marker was redesigned to appear 
as a flag on a pole.  Although this was better received by 
users, a significant number of users still were not able to 
identify what the task marker was.  

 

 
Figure 3. Close-up of task (second design). 

Window avoidance behavior in the second design was 
similar to that of the first prototype, except that windows 
are of arbitrary sizes and shapes, and were scaled with a 
preservation of aspect ratios.  The algorithm had to be 
redesigned to ensure that some minimum area of any 
window remained visible.  Task group avoidance re-
mained the same. However, during the first user study, it 
became clear that having groups push other groups out of 
the way could invoke problems for some users.  

Persistence of window state poses a number of serious 
challenges.  Perhaps the most serious challenge is win-
dow-configuration persistence. There is no reliable way 
to determine how to restore an arbitrary application to 
the same state in Windows, because internal application 
state (e.g., which files are open) is not accessible.  Rather 
than solve this problem, the second version of Scalable 
Fabric only saves window position, size, and title.  When 
Scalable Fabric is restarted, if an open window of the 
same title is discovered, it will be restored to the last 

state it was rendered within Scalable Fabric.  If the win-
dow is not present, Scalable Fabric does not try to start 
an application and restore its running state. 

The second version of Scalable Fabric also allowed 
for restoring and changing state for multiple monitors 
and changing display resolutions. Scalable Fabric does 
this by preserving window size and position information 
as percentages of display size.  When display resolution 
changes, windows and tasks are moved to the appropriate 
location. 

In Section 5, we shall present the results of a com-
parative user study of the second version of Scalable 
Fabric. The study revealed several usability issues which 
drove the third design. Before moving on to user studies 
of versions of Scalable Fabric, we will review the third 
version of the system. 

4.3. Third design 
The third version of Scalable Fabric was developed as 

a set of refinements on the second design.  We solved 
several of the most obvious problems by using the Win-
dows PrintWindow function instead of copying bitmaps 
from the desktop image.  Although this process is some-
what slower, it provides a full image regardless of how 
much of the window had been visible.  Also, “real” win-
dows are no longer hidden, but rather moved off-screen.  
This solved a number of problems with applications that 
made assumptions about hidden windows. For example, 
we found that Internet Explorer sometimes destroyed 
hidden windows assuming they were from pop-up ads.  
But no longer hiding the windows meant that they re-
mained on the TaskBar when in the periphery – and 
some users did not like this change.  In the third version, 
windows in the peripheral tasks are updated periodically. 

 

 
Figure 4. Close-up of task (third design). 



 6

Figure 4 shows a close-up of the redesigned appear-
ance of windows and task markers, with the cursor hov-
ering over one window to show its title tooltip.  Win-
dows are now anti-aliased for more readability, which 
also prevents them from flickering while being moved.  
A shaded gradient was added over the window and drop-
shadows were added under the window to make the win-
dows more distinguishable.  The task marker was simpli-
fied to a two-stage marker.  Most of the time the task 
marker appears as displayed in Figure 4.  However, if the 
user hovers over the marker or moves a window into the 
task group, a box appears as rendered in Figure 5. 

 

 
Figure 5. Task highlighting during hover. 

Window occlusion avoidance was not changed in the 
third version of Scalable Fabric.  However, we modified 
task group avoidance to address a problem identified by 
testing.  In the new design, the moved task automatically 
avoids tasks that it encounters rather than pushing them 
out of the way (i.e., it moves around them).  Users appear 
to prefer this approach. 

 
ALT-TAB ALTERNATIVE 

The Windows OS provides users with keyboard 
commands that enable them to switch among windows. 
We found that a number of users desired some analog to 
these commands to allow for keyboard access to tasks 
and windows within tasks.  In Windows, Alt-Tab is the 
standard keyboard shortcut for switching between win-
dows.  It displays a list of windows which the user can 
sequence through by repeatedly hitting Tab, and then 
releasing Alt to active the selected window. Until the 
third iteration, Scalable Fabric had not included key-
board navigation facilities, limiting users to interacting 
with peripheral windows via mouse interaction.   

We implemented three keyboard navigation mecha-
nisms to explore this design space and then conducted 
informal testing on them.  In the following, we describe 

the most successful of these three alternatives, which we 
integrated into the third iteration of Scalable Fabric.  

To start a selection, the user holds the Win key and 
taps any arrow.  The peripheral object furthest in the 
selected direction (for example, if the left arrow key is 
pressed, the leftmost object) is selected.  From there, the 
arrow keys move to the closest object in that direction.  
We define closest as “the object located less than 45 de-
grees from the selected direction which also has the 
shortest Euclidean distance” (see Figure 6).  Once inside 
a group, the user can hit enter to select the entire group, 
or use the arrow keys (without the windows key de-
pressed) to select through individual windows.  An addi-
tional feature is switching to the previous selected group 
by pressing Win+G, which is akin to Alt-Tab for focal 
windows as one tap of this combination results in select-
ing the previously activated window. In addition Alt-Tab 
allows users to cycle through focal windows. 

The advantage of this style of navigation is that we al-
low users to use their spatial memory to access objects.  
The potential disadvantage is that more keystrokes may 
be needed to access an object than would be required 
with the standard Alt-Tab mechanism.   

 

 

Figure 6: The black dot is the currently selected 
object.  The gray dots represent the next object 
to be selected when the corresponding arrow 
key is pressed, and the white dots represent 

other objects.  The lines through the black dot 
represent the 45 degree lines. 

4.4. User response 
Approximately 150 people have used Scalable Fab-

ric over the last 8 months.  The response has generally 
been quite favorable, with many users continuing to use 
it.  However, several performance and behavior problems 
have led some people to stop using it after an evaluation 
period.  Some of these problems can be addressed with 



 7

changes to the current implementation, but others will 
require rewriting Scalable Fabric as a replacement for the 
legacy window manager in order to get better control.  

5. Initial laboratory user study 
We now turn to user studies of Scalable Fabric. We 

shall start with results from a laboratory investigation of 
the second iteration of Scalable Fabric.  We undertook 
this study to collect basic feedback on the overall con-
cept and to seek guidance on future design refinements. 
In the laboratory investigation, we created 3 tasks con-
sisting of between 2 and 3 documents each, matching 
what we saw on average from our informal observations 
from an earlier diary study (Czerwinski, Horvitz, & Wil-
hite, 2004). The tasks consisted of a “Spreadsheet”, a 
“Joke” and an “Image” task. The Spreadsheet task re-
quired participants to go to selected cells in an Excel 
spreadsheet as indicated by a Word document, copy the 
contents of the cell at that location (a 9 digit random 
number), and paste it both in the Word document and in 
another Excel spreadsheet. The Joke task required users 
to identify typographical errors in a list of jokes in a 
Word document, copy them and paste them and the page 
number on which they occurred in an Excel spreadsheet. 
The Image task required participants to modify images in 
PowerPoint and in Paint based on instructions in a Word 
document. Two isomorphic sets of each of these tasks 
were devised so that they were of approximately equal 
difficulty (e.g., the random numbers in the Excel spread-
sheet were rearranged, as were the selected cells, both 
Joke documents consisted of 2300 characters and had 23 
typographical errors but were different jokes, and the 
instructions for how to modify each image simply asked 
the user to use different simple shapes or colors).  

5.1. Method 
Eighteen participants (half female), all multiple monitor 
users and very experienced MS Office users as identified 
by a validated screener, were recruited for this study. 
Participants were 34 years old, on average, had used the 
computer for an average of 14 years, and said they task 
switched among 6 tasks daily, on average. 

Participants were given instructions about the overall 
study procedure and then allowed to read a brief over-
view of how each tool, the TaskBar or Scalable Fabric, 
worked before proceeding. All participants were very 
familiar with the TaskBar and knew of most of its fea-
tures, even if they didn’t choose to use them. In order to 
ensure that they learned how to use Scalable Fabric, us-
ers were guided through the grouping and layout of the 
documents that formed each of the three tasks for the 
study. In the TaskBar, participants could arrange the 
items in the TaskBar by application (as supported in the 
software) but not by task. However, we did allow them to 
lay out and size their task windows in a way that was best 
suited to each task before beginning. The TaskBar was 

laid out vertically along the left-most bezel of the left-
most monitor (a triple-monitor display setup was used for 
the study). While running Scalable Fabric, the TaskBar 
was laid out horizontally and put on “auto-hide,” so that 
users never saw it and they were instructed to solely in-
teract with Scalable Fabric.  Finally, the “agglomeration 
by application” mechanism in the TaskBar was turned on 
so that window tiles of like applications were juxtaposed, 
but they did not collapse into a single tile menu of all 
application windows.  We did this to the benefit of the 
TaskBar, as previous studies (Czerwinski, 2003) had 
shown that this feature impedes performance when a 
large number of windows are left open. 

In order to ensure that participants had to task switch 
between tasks, the experimenter interrupted them at set 
places in their tasks. Five task switches were required in 
order to carry out all three tasks to completion, the first 
three of these were guided by experimenter interruptions 
between the Spreadsheet task and the Joke task when 
participants were approximately ¼ of the way through 
each, and then again at approximately ¾ of the way 
through the first task (Spreadsheet). After the first 3 in-
terruptions, participants were told to finish the Joke task 
that they were in, go back and finish the Spreadsheet 
task, and then switch to the Image task and carry it 
through to completion. A twenty minute deadline proce-
dure was used for each of the three tasks to keep the ses-
sion length under two hours.  All participants completed 
their tasks before the deadline. 

The study was run on two identical, late model Com-
paq Evo machines with triple flat panel LCD monitors 
running at 3840 x 1024 resolution. Late model MS key-
boards and the IntelliMouse were used for input. Win-
dows and Office XP™ comprised the base OS and appli-
cations used in the study. The order of software tool used 
and task set were counterbalanced across participants. 
Participants were run in pairs each session.  

Dependent measures collected included task time, 
subjective satisfaction responses to a questionnaire pre-
sented after using each tool, and overall tool preference. 
Task times were recorded using a countdown program on 
the participants’ machines. A log of users’ activities in 
terms of window management and group interaction was 
collected; analysis of that data is ongoing. 

5.2. Results 
A t-test of the task times revealed no significant task ad-
vantage for Scalable Fabric, t(17)=-.03, p=0.5, one-
tailed. Scalable Fabric’s average task time was 13.28 
minutes, while the average for the TaskBar was 13.25. 
The task time data including one standard error of the 
mean in each direction are presented in Figure 7. 



 8

Task Times

0

5

10

15

20

TaskBar       Scalable Fabric

A
ve

ra
ge

 T
as

k 
Ti

m
e 

(S
ec

s)

 

Figure 7: Average task times +/- one standard 
error for TaskBar and Scalable Fabric. 

 
Survey Question 

(1=Disagree, 5=Agree) 
TaskBar Scalable 

Fabric 

Task switching was easy to 
perform using the… 

2.95 4.26 
 

It was hard to go back and 
forth between my various win-
dows and applications us-
ing….. 

3.32 1.84 
 

I was satisfied with the func-
tionality of the …. 

2.68 3.78 
 

The TaskBar/Scalable Fabric 
is an attractive innovation for 
Windows. 

3.16 4.47 

Table 1: Average satisfaction ratings for the 
TaskBar and Scalable Fabric. All ratings were 
significantly in favor of Scalable Fabric at the 

p<.05 level. 

With regard to the overall satisfaction with the soft-
ware, participants preferred Scalable Fabric over the 
TaskBar.  Paired t-tests were used to analyze the ratings 
and all differences were significant (p<.05), using the 
Bonferroni correction for multiple tests. 

Despite these positive ratings, there were several us-
ability issues identified with this initial version of Scal-
able Fabric.  First, because of its novelty, some users still 
minimized single windows to switch entire tasks (multi-
window by definition) even after they were instructed to 
use the markers.  Hence, the markers themselves needed 
better “grab-ability” and visibility.  Users mentioned that 
they sometimes did not understand what the markers 
were meant to represent, as well.  In addition, the drag-
ging of windows into the periphery was not as smooth as 
users would have liked, and sometimes the window scal-
ing into the periphery did not work immediately, causing 
users to hesitate or try again.  Finally, most of our par-

ticipants wanted an Alt-Tab--style navigation mechanism 
to work in Scalable Fabric, both for moving between 
groups and also within a group.   

As for the TaskBar, the users typically resized it to be 
very wide so that they could read more of the titles, but 
still often complained that the “tile” naming on the 
TaskBar was inconsistent.  For example, some Excel 
spreadsheet tiles had the name of the spreadsheet as the 
text label with a small Excel icon next to it, while others 
had a large Excel icon and simply read “Microsoft Ex-
cel”.  Users did not understand this distinction.   

5.3. Discussion 
Although the lab study suggested to us that Scalable Fab-
ric was easily learned and considered valuable by the 
participants, usability issues were apparent and needed to 
be addressed.  Without this redesign, it is unlikely that 
we will observe performance improvements over the 
familiar TaskBar mechanism.  Still, we were encouraged 
that the novel metaphor of Scalable Fabric was not sig-
nificantly slower than the TaskBar in terms of average 
task performance.   Users commented that the tasks and 
interruptions forcing the switches were similar to what 
they experienced in the real world, so we feel we suc-
ceeded in simulating an information worker’s daily task 
juggling at an abstract level. The study provides initial 
evidence that software tools like Scalable Fabric can 
provide user assistance as users manage multiple, com-
plex tasks. 

After making the required design changes (see section 
4.3), we ran a second study evaluating Scalable Fabric, 
but this time we chose to do the examination in situ, over 
a 3 week period, with users’ real tasks. 

6. Longitudinal field study 
In order to gather further information about how people 
actually use virtual desktop managers, and to begin to 
understand in a more detailed manner how Scalable Fab-
ric might be used in real situations, we performed a lon-
gitudinal field study on a small number of subjects over a 
reasonably long time period. 

6.1. Method 
Thirteen participants, aged between 20 and 60 and all 
male, were recruited to participate in the study. The par-
ticipants volunteered from an internal alias of individuals 
interested in learning more about Scalable Fabric.  Some 
of these participants had seen the first version of Scalable 
Fabric, but none of them had used the system since the 
redesigns had taken place.  All participants were techno-
logically savvy, so this sample should be considered with 
caution when considering how to generalize our initial 
findings from the study. 

A field study methodology was utilized in order to ex-
amine the usefulness and usability of Scalable Fabric 
compared to the existing TaskBar. We used an in situ 



 9

method to study the use of Scalable Fabric in order to 
establish how important the new Scalable Fabric features 
were using the participants’ own work information and 
habits. If, after approximately one to three weeks of use, 
participants were satisfied using the task grouping fea-
tures of Scalable Fabric, this would provide evidence of 
the system’s usefulness. 

The participants were emailed an introductory email, 
alerting them to the availability of the new version of 
Scalable Fabric for download, and that we would like 
them to participate in a survey at the end of trying to use 
the system for 3 weeks.  After the 3 week time period, we 
issued the survey. 

6.2. Results 
Once it was installed, all users were able to easily 

learn how to use the grouping features in Scalable Fab-
ric. We only received one email after sending out the 
installation instructions and FAQ, and this was a user 
who did not understand he needed to drag windows into 
groups in the periphery (i.e., had not read the instruc-
tions). In addition, users were able to easily integrate 
Scalable Fabric into their existing work practices, as evi-
denced by their comments and grouping habits. This is 
what we had hoped to observe, and it was our main de-
sign goal.  

After using Scalable Fabric for about three weeks, 
thirteen volunteers completed a user satisfaction survey 
and entered details about how they used the system.  All 
but one of the respondents had used Scalable Fabric for 
longer than one day.  Unfortunately, the responses were 
anonymous and it was impossible to track the lone user 
who had not used the system very long and remove his 
data.  However, all of the users who reported using the 
system for some length of time did so for more than two 
days, as can be seen in Figure 8, and 3 participants were 
still using the system after 3 weeks.  Responses to the 
survey questions are shown in Figures 8 through 12. 

Length of Time using Scalable Fabric

<1 day

1-7 days

1-2 weeks

2-3 weeks

Still using SF

0

5

10

15

20

25

30

35

Pe
rc

en
t o

f R
es

po
nd

en
ts

 
Figure 8. Length of time using Scalable Fabric. 

Participants indicated that the initial assignment of 
windows to tasks in the periphery was somewhat difficult 
and time consuming.  On a scale of 1=very difficult to 

5=very easy, participants rated this initial organizational 
task an average of 2.07.  The distribution of ratings can 
be seen in Figure 9.  In addition, we queried users about 
the length of time it took to set up their systems, and 
whether or not they agreed that the amount of time spent 
was appropriate.  On average, users leaned slightly to-
wards not approving of this time expenditure, average 
rating=2.4 (1=strongly disagree, 5=strongly agree). 
These findings are shown in Figure 10.  In fact, when 
asked if Scalable Fabric made managing windows and 
task switching easier, participants disagreed slightly, with 
a rating of 2.8, on average.  Perhaps this was because all 
of the users still felt the need to utilize the TaskBar at 
least some of the time (5 continued to use the TaskBar, 
while 7 reported using it sometimes).  The goal of Scal-
able Fabric was for the task clusters themselves to be 
used for task switching.  If users were still needing to use 
the TaskBar for the Start menu, or the system tray, etc., 
this may have diminished the value of having the tasks 
laid out in the periphery. 

Ease of Initial SF Arrangement

Very Difficult

Difficult

Neutral

Easy
Very Easy

0

1

2

3

4

5

6

To
ta

l #
 o

f R
es

po
ns

es

 
Figure 9. Ease of initial arrangement. 

 

Time for Initial Setup was Appropriate?

Strongly...

Disagree

Neutral

Agree
Strongly...

0

1

2

3

4

5

To
ta

l #
 o

f R
es

po
ns

es

 
Figure 10. Time for initial setup was appropriate 
– from “strongly disagree” to “strongly agree”. 

 
Half of the users reported an average of 1-2 windows 

per task, and half reported 3-5 windows per task, as can 



 10

be shown in Figure 11.  The median response was for 1 
or 2 windows to comprise a task in the periphery.    In 
addition, users reported moving windows between tasks 
infrequently (6 users reported never moving windows 
between tasks and 5 reported they sometimes did this).  
Finally, 8 of the users kept the boundaries of the focus 
area visible, while 4 users reported hiding it. 

 

How Many Windows per Task?

1 or 2 3 to 5 >5
0

1

2

3

4

5

6

7

To
ta

l #
 o

f R
es

po
ns

es

 
Figure 11. How many windows per task? 

Users provided us with some comments about the 
Scalable Fabric concept at this stage in its iterative de-
sign.  One participant stated that he thought the concept 
was great, but cited technical glitches with windows dis-
appearing off the screen (this is a known bug with Visual 
Studio) and with variable sizing in the periphery.  An-
other user remarked that he appreciated keeping win-
dows scaled down and visible in the periphery instead of 
minimized in the TaskBar, but that he didn’t see much 
need for grouping them into related task items.  Three 
users said they’d have continued using Scalable Fabric, 
but the performance was still too slow.  One participant 
mentioned preferring a central, unified place for storage 
as opposed to the desktop periphery.   

SF Made Task Switching Easier

Strongly...

Disagree

Neutral

Agree

Strongly ...

0

1

2

3

4

5

6

To
ta

l #
 o

f R
es

po
ns

es

 
Figure 12. SF made task switching easier – from 

“strongly disagree” to “strongly agree”. 

In all, we received a mixed review of the third design 
iteration of Scalable Fabric.  From the field study, it is 
clear that we will need to enhance system performance 

for windows updating in the periphery, track down the 
Visual Studio bug and possibly consider alternative con-
figurations of the periphery boundaries so that less 
screen real estate need be devoted to them.  Currently 
users can delegate one side of their display to the periph-
ery, but the system does not ship that way by default and 
it may be that users do not discover that they can resize 
the boundaries to suit their preferences. 

6.3. Discussion 
The lab study provided initial evidence that some of 

Scalable Fabric design decisions were deemed valuable 
by users. For a first iteration design, users were able to 
easily figure out how to use Scalable Fabric and were 
using the grouping features for their common tasks. 
Given the lack of ethnographic data available to design-
ers of task management systems, we conducted a second, 
longitudinal study with 13 participants using their real 
systems and tasks. While we did confirm that we had 
solved many of the usability issues identified in the first 
study, this second study revealed new areas for continued 
design iteration.  Specifically, system performance and 
bug fixes have become more important to our end users.  
This is natural at this stage of the design process, and we 
will continue to track down any remaining bugs and re-
fine performance as part of our future work.  

We also learned that users find initial configuration 
taxing.  This finding has stimulated us to pursue machin-
ery for providing new tools for clustering and configura-
tion of tasks (not yet implemented), including approaches 
that provide for regularized handling of specific forms of 
tasks.  For example, there is opportunity to provide de-
faults, as well as a means for encoding a user’s prefer-
ences about prototypical tasks. Let us consider the case 
of providing a canonical configuration for a “messaging 
and scheduling” task, e.g., capturing the services pro-
vided by the Microsoft Outlook application.  Scalable 
Fabric could include a standard geometry for such a task 
as a main “anchor” window, representing an email inbox 
view, and a cascade of open email messages, aligned 
adjacent to the main anchor. Such methods might ease 
the difficulty of setting up windows and tasks. 

7. Conclusions 
Scalable Fabric provides basic task management, us-

ing a focus-plus-context spatial metaphor.  Windows in a 
central focus area behave as usual, while windows in the 
display periphery are scaled down “minimized” win-
dows.  By taking less space, the periphery windows can 
remain open and live.  Task switching is accomplished 
by a single mouse click.  Two user studies have provided 
guidance for several phases of iterative design of Scal-
able Fabric, and have shown that users prefer this ap-
proach to the standard Windows TaskBar. The studies 
have also identified problems that still need to be ad-
dressed. Most of these problems can be attributed to the 



 11

decision to build Scalable Fabric on top of an existing 
window manager rather than building it within or replac-
ing the window manager. A future implementation of 
Scalable Fabric will address these issues. 

8. References 
Baerbak Christensen, H. (1997). A software development envi-

ronment based on a geographic space metaphor. Technical 
report, Univ. of Arhus.  

Bannon, L., Cypher, A., Greenspan, S., and Monty, M. (1983). 
Evaluation and analysis of user’s activity organization”. In 
Proc. CHI’83 (pp. 54-57). NY: ACM. 

Baudisch, P., Good, N., Stewart, P. (2001). Focus plus context 
screens: combining display technology with visualization 
techniques. In Proc UIST 2001 (pp. 31-40). 

Bederson, B. & Hollan, J. (1994). Pad++: A zooming graphical 
interface for exploring alternative interface physics. In 
Proc. UIST’94 (pp. 17-26). 

Bell, B. and Feiner, S. (2000). Dynamic space management for 
user interfaces. In Proc. UIST’00, (pp. 238-248). 

Bly, S., Rosenberg, J. (1986). A comparison of tiled and over-
lapping windows. In Proc. CHI ’86 (pp. 101-106).  

Bury, K. F., Davies, S. E., and Darnell, M. J. (1985). Window 
management: A review of issues and some results from user 
testing. IBM Human Factors Center Report HFC-53, San 
Jose, CA. 

Card, S.K. & Henderson, A.H. Jr. (1987). A multiple, virtual-
workspace interface to support user task switching. In Proc. 
CHI+GI 1987 (pp. 53-59). NY: ACM. 

Cutrell, E., Czerwinski, M. & Horvitz, E. (2001). Notification, 
Disruption and Memory: Effects of Messaging Interruptions 
on Memory and Performance. In Human-Computer Interac-
tion--Interact '01 (pp. 263-269). IOS Press. 

Czerwinski, M., van Dantzich, M., Robertson, G., & Hoffman, 
H. (1999). The contribution of thumbnail image, mouse-
over text and spatial location memory to web page retrieval 
in 3D. In Proc. Interact 1999 (pp. 163-170), Edinburgh, 
Scotland, IOS Press. 

Czerwinski, M., Cutrell, E. & Horvitz, E. (2000). Instant Mes-
saging and Interruption: Influence of Task Type on Per-
formance. In Proc. OZCHI 2000 (pp. 356-361). Sydney, 
Australia.  

Czerwinski, M., Cutrell, E. & Horvitz, E. (2000b). Instant 
Messaging: Effects of Relevance and Time. Proc. HCI 
2000, Vol. 2, (pp. 71-76). British Computer Society. 

Czerwinski, M. & Horvitz, E. (2002). Memory for Daily Com-
puting Events. In Proc. HCI 2002, (pp. 230-245). 

Czerwinski, M., Horvitz, E. & Wilhite, S. (2004).  A diary 
study of task switching and interruptions.  To appear in 
Proc.  CHI 2004, ACM press. 

Goldberg, A. (1983). Smalltalk-80. NY: Addison-Wesley. 
Grudin, J. (2001). Partitioning digital worlds: focal and periph-

eral awareness in multiple monitor use. In Proc. CHI’01, 
(pp. 458-465).  

Guimbretiere, F., Stone, M., and Winograd, T. (2001). Fluid 
interaction with high-resolution wall-size displays. In 
Proc.UIST’01, (pp. 21-30). NY: ACM. 

Henderson, D. A. Jr., Card, S.K. (1987). Rooms: The use of 
multiple virtual workspaces to reduce space contention in a 
window-based graphical user interface. ACM Transactions 
on Graphics, 5 (3), 211-243.  

Kandogan, E. and Shneiderman, B. (1997). Elastic Win-
dows: evaluation of multi-window operations. In Proc. CHI 
97. (pp. 250-257). NY:ACM. 

Kaptelinin, V. (2002). UMEA: User-monitoring environment 
for activities. In Proc. UIST’02 Companion, (pp. 31-32). 

MacIntyre, B., Mynatt, E., Voida, S., Hansen, K., Tullio, J., 
Corso, G. (2001). Support for multitasking and background 
awareness using interactive peripheral displays. In Proc. 
UIST 2001, (pp. 41-50). 

Malone, T. W. (1983). How do people organize their desks? 
Implications for the design of office automation systems, 
ACM Transactions on Office Information Systems 1 (1), 
99-112. 

Myers, B. (1988). Window interfaces: A taxonomy of window 
manager user interfaces, IEEE Computer Graphics and 
Applications, 8 (5), 65-84.  

Mynatt, E., Igarashi, T., Edwards, W., and LaMarca, A. (1999). 
Flatland: new dimensions in office whiteboards. In Proc. 
CHI’99, (pp. 346-353). 

Rekimoto, J. (1999). Time-machine computing: A time-centric 
approach for the information environment. In Proc UIST’99 
(pp. 45-54).  

Robertson, G., Czerwinski, M., Larson, K., Robbins, D., Thiel, 
D., and van Dantzich, M. (1998). Data Mountain: Using 
spatial memory for document management. In Proc. 
UIST’98 (pp. 153-162). 

Robertson, G. van Dantzich, M., Robbins, D., Czerwinski, M., 
Hinckley, K., Risden, K., Thiel, D., Gorokhovsky, V. 
(2000). The task gallery: a 3D window manager. In Proc 
CHI’00 (pp. 494-501).  

Smith, G., Baudisch, P., Robertson, G., Czerwinski, M., 
Meyers, B., Robbins, D., and Andrews, D. (2003). Group-
Bar: The TaskBar Evolved. In Proc. OZCHI’03. 

Teitelman, W. (1986).Ten years of window system – A retro-
spective view. In Hopgood, F., Duce, D., Fielding, E., Rob-
inson, K., & Williams, A. (Eds.). Methodology of Window 
Management. Berlin: Springer-Verlag. 

XDesk Software (2003), About Virtual Desktop Managers, 
http://www.virtual-desktop.info.

 


