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Abstract

Distributed content-based publish-subscribe middleware
is emerging as a promising answer to the demands of mod-
ern distributed computing. Nevertheless, currently avail-
able systems usually do not provide reliability guarantees,
which hampers their use in dynamic and unreliable scenar-
ios, notably including mobile ones. In this paper, we evalu-
ate the effectiveness of an approach based on epidemic al-
gorithms. Three algorithms we originally proposed in [5]
are thoroughly compared and evaluated through simulation
in a challenging unreliable setting. The results show that
our use of epidemic algorithms improves significantly event
delivery, is scalable, and introduces only limited overhead.

1. Introduction
Publish-subscribe middleware is emerging as a promis-

ing tool to tackle the demands of modern distributed com-
puting. In particular, distributed content-based systems [3,
4,7,15,17] provide high levels of scalability, flexibility, and
expressiveness by exploiting a distributed architecture for
event dispatching, and by using a content-based scheme for
matching events and subscriptions.

Our research in this field is motivated by the desire to
exploit the good properties of distributed content-based pu-
blish-subscribe in scenarios where the topology of the dis-
patching infrastructure is continuously under reconfigura-
tion, e.g., mobile computing and peer-to-peer applications.
This goal demands the solution of several problems. In [11]
we tackled the efficient reconfiguration of subscription in-
formation, required to restore event routing. The topic of
this paper, instead, is the complementary problem of recov-
ering events lost during reconfiguration and, in general, im-
proving reliability. In [5] we described three solutions based
on epidemic algorithms [2, 8]. Here, we complete and vali-
date this initial proposal by thoroughly evaluating its effec-
tiveness in challenging unreliable scenarios.

The contribution put forth by this paper is relevant under
many respects. Our algorithms, whose effectiveness and ef-
ficiency we quantitatively demonstrate in this paper, provide

a viable solution for recovering events lost during reconfig-
uration. Moreover, they do not rely on any assumption about
the source of event loss, therefore they enjoy general appli-
cability towards improving reliability in content-based pu-
blish-subscribe systems. Finally, epidemic algorithms have
been applied to a number of domains but, with the excep-
tion of [9], never tocontent-basedpublish-subscribe sys-
tems. By devising original solutions in this domain, we ex-
plore new uses for this technique.

The paper is structured as follows. Section 2 is a concise
overview of content-based publish-subscribe systems. Sec-
tion 3 describes the epidemic algorithms we originally pro-
posed in [5] for achieving reliability in content-based publi-
sh-subscribe systems. An extensive evaluation of these al-
gorithms, based on simulation, is the subject of Section 4
and the core contribution of this paper. Finally, Section 5
places our work in the context of related research efforts,
and Section 6 ends the paper with brief concluding remarks.

2. Content-Based Publish-Subscribe
A large number of publish-subscribe middleware ex-

ist, which differ along several dimensions1. Two are usu-
ally considered fundamental: the architecture of the event
dispatcher and the expressiveness of the subscription lan-
guage. The former can be either centralized or distributed.
The latter draws a line betweensubject-basedsystems,
where subscriptions identify classes of events belonging to a
given channel or subject, andcontent-basedsystems, where
subscriptions contain expressions (calledevent patterns),
which enable sophisticated matching on the event content.

In this paper, we consider distributed content-based sys-
tems. A set ofdispatching servers2, as shown in Figure 1,
are connected in an overlay network and cooperate in col-
lecting subscriptions coming from clients and in routing
events, with the goal of reducing the network load and in-
creasing scalability. Systems exploiting a distributed archi-

1 For more detailed comparisons see [4,7,13].
2 Hereafter, we refer to adispatching serversimply asdispatcher, al-

though the latter represents the whole distributed component in charge
of dispatching events instead of a specific server.



Figure 1. A dispatching network with subscriptions laid

down according to a subscription forwarding scheme.

tecture can be further classified according to the intercon-
nection topology of dispatchers, and the strategy for routing
subscriptions and events. In this work we consider a sub-
scription forwarding scheme [4] on an unrooted tree topol-
ogy, as this choice covers the majority of existing systems.

In this approach, subscriptions are delivered to every dis-
patcher along a single unrooted tree overlay network con-
necting all the dispatchers, and are used to establish the
routes followed by published events. When a client issues a
subscription, a message containing the corresponding event
pattern is sent to the dispatcher the client is attached to.
There, the event pattern is inserted in a subscription ta-
ble, together with the identifier of the subscriber. The sub-
scription is then propagated by the dispatcher—which now
behaves as a subscriber w.r.t. the rest of the dispatching
network—to all of its neighboring dispatchers on the over-
lay network. These, in turn, record the subscription and re-
propagate it towards all of their neighbors, except for the
one that sent it. This scheme is usually optimized by avoid-
ing subscription forwarding of the same event pattern in
the same direction. The propagation of a subscription effec-
tively sets up a route for events, through the reverse path
from the publisher to the subscriber. Requests to unsub-
scribe from an event pattern are handled and propagated
similarly to subscriptions, although at each hop entries in
the subscription table are removed rather than inserted.

Hereafter, we ignore clients and focus only on dispatch-
ers. Accordingly, with some stretch of terminology we say
that a dispatcher is a subscriber if at least one of its clients
is. Figure 1 shows a system where two dispatchers are sub-
scribed to a “black” pattern, and one to a “gray” pattern.
Arrows denote the routes laid down according to these sub-
scriptions, and reflect the content of each dispatcher’s sub-
scription table. Solid lines are links of the tree overlay net-
work. As a consequence of subscription forwarding, the
routes for the two subscriptions are laid down on this sin-
gle tree. This choice is typical of content-based systems and
is motivated by the fact that a single event may match mul-
tiple patterns. Routing on multiple trees, typical of subject-
based systems, would lead to inefficient event duplication.

3. Introducing Reliability

Existing distributed content-based publish-subscri-
be systems rarely address reliability through dedicated

mechanisms. This section describes three epidemic algo-
rithms we developed to overcome this limitation.

3.1. Epidemic Algorithms

The idea behind epidemic (orgossip) algorithms [2, 8]
is for each process to communicate periodically its partial
knowledge about the system “state” to a random subset of
other processes, thus contributing to build a shared view of
the system state. The mode of communication can exploit a
push or pull style. In apushstyle, each process gossips peri-
odically to disseminate its view of the system. Instead, in a
pull style each process solicits the transmission of informa-
tion from other processes. Usually a push style of communi-
cation uses gossip messages containing apositivedigest of
the system state to be disseminated, while a pull approach
exploitsnegativedigests, and gossip messages hence con-
tain the portion of the state that is known to be missing.

Independently from the scheme adopted, epidemic al-
gorithms enjoy many desirable properties, thanks to their
probabilistic and decentralized nature. They impose a con-
stant, equally distributed load on the processes in the sys-
tem, and are very resilient to changes in the system config-
uration, including topological ones. Moreover, these prop-
erties are preserved as the size of the system increases. Fi-
nally, they are usually very simple to implement and rather
inexpensive to run. Therefore, epidemic algorithms appear
as good candidates for the dynamic distributed scenarios we
target, although their exploitation for recovering lost events
in content-based publish-subscribe system is not straight-
forward, as discussed in remainder of this section.

3.2. Our Approach

In our solutions, the state to be reconciled through gossip
is the set of events appeared in the system. Missing events
are recovered through one or more “gossip rounds” during
which other dispatchers, potentially holding a copy of the
event, are contacted. This apparently simple task is greatly
complicated by the nature of content-based publish-subscri-
be systems. Unlike subject-based publish-subscribe and IP
multicast, events are not associated at the source to a sub-
ject or group determining their routing. Moreover, an event
may match multiple subscriptions, instead of a single group.
These characteristics make it difficult to identify the subset
of dispatchers that may hold missing events, and prevent a
direct use of solutions already developed for the aforemen-
tioned domains. This section presents three epidemic al-
gorithms designed for content-based publish-subscribe sys-
tems. Presentation is kept concise, as the emphasis of this
paper is on the algorithms’ evaluation. The interested reader
can find more details, including a formalization, in [5].

The solutions we describe share a common structure.
Each dispatcher periodically starts a new round of gossip.
When playing thisgossiperrole, a dispatcher builds a gos-
sip message and sends it along the dispatching tree. The



content of the gossip message and its routing along the tree
vary according to the algorithm at hand. The sending of a
missing event takes place using a direct link, i.e., out-of-
band w.r.t. the normal publish-subscribe operations. Hence,
we assume the existence of a unicast transport layer and that
each dispatcher caches the events received.
Push.The first algorithm we developed uses proactive gos-
sip push with positive digests. At each gossip round, the
gossiper chooses randomly a patternp from its subscrip-
tion table, constructs a digest of the identifiers3 of all the
cached events matchingp, builds a gossip message contain-
ing the digest, and labels it withp. The message is then
propagated along the dispatching tree as if it were a nor-
mal event message matchingp. The only difference w.r.t.
event routing is that, to limit overhead, the gossip message
is forwarded only to a random subset of the neighbors sub-
scribed top, according to the probabilityPfwd . To increase
the chance of eventually finding all the dispatchers inter-
ested in the cached events, and thus speed up convergence,
p is selected by considering the whole subscription table in-
stead of only the subscriptions issued locally to the gossiper.

When a dispatcher receives a gossip message labelled
with p, it checks if it is subscribed to this pattern and if all
the identifiers contained in the digest correspond to events
it already received. The identifiers of the missed events are
included in a request message sent to the gossiper, which
replies by sending a copy of the events. Both messages are
exchanged by exploiting the out-of-band channel.
Pull. In some situations a proactive push approach may con-
verge slowly or result in unnecessary traffic, and therefore a
reactive pull with negative digests may be preferable. Nev-
ertheless, this requires the ability to detect lost messages. In
subject-based systems, this is easily achieved by using a se-
quence number per source and per subject. In content-based
systems this task is complicated by the absence of a notion
of subject and by the fact that each dispatcher receives only
those events whose content matches the patterns it is sub-
scribed to. As detailed in [5], this problem can be solved
by tagging each event with enough information to enable
loss detection. In this scheme the event identifier contains
the event source, information about all the patterns matched
by the event and, for each pattern, a sequence number in-
cremented at the source each time an event is published for
that pattern. This information is associated to each event
at its source—an opportunity enabled by subscription for-
warding, where subscriptions are known to all dispatchers.
Event loss is detected when a dispatcher receives an event
matching a patternp whose sequence number, associated to
p in the event identifier, is greater than the one expected for
p from that event source.

3 The pair given by the source identifier and a monotonically increasing
sequence number associated to the source is sufficient.

In [5] we defined two algorithms that rely on this kind
of detection but use different routing strategies: the first one
steers gossip messages towards the event subscribers, while
the other steers them towards the event publisher.

• Subscriber-Based Pull.In this scheme, when a dis-
patcher detects a lost event it inserts the correspond-
ing information (i.e., source, matched pattern, and se-
quence number associated to pattern and source) in a
buffer Lost . When the next gossip round begins the
dispatcher, now a gossiper, chooses a patternp among
the ones associated to subscriptions issued locally, se-
lects the events inLost related withp, and inserts the
corresponding information in a digest attached to a
new gossip message. Unlike with push, subscriptions
are not drawn from the whole subscription table, since
here the goal is to retrieve events relevant to the gos-
siper rather than disseminating information about re-
ceived events. Finally, the gossip message is labelled
with p and routed in a way similar to the push solu-
tion. A dispatcher receiving the gossip message checks
its cache against events requested by the gossiper and,
if any are found, sends them back to it. Note how, in
this case, the dispatcher need not be a subscriber for
the patternp specified by the gossiper. The dispatcher
could have received the gossip message because it sits
on a route towards a subscriber forp, and could have
received (and cached) some of the events missed by the
gossiper because they match also a patternp′ 6= p the
dispatcher is subscribed to.

• Publisher-Based Pull.Our second pull scheme re-
quires that published events are cached not only by
the dispatchers that received them but also by the
source, and that the address of each dispatcher encoun-
tered on the route towards a subscriber is appended
to the event message. The algorithm behaves similarly
to the previous one, but it routes gossip messages to-
wards publishers instead of subscribers. WhileLost
contains the same information as before, a new buffer
Routes is needed to store the route towards a given
publisher (e.g., based on the route information stored
in the event most recently received from it). Moreover,
gossip messages are distinguished based on the event
source rather than the pattern, and augmented with the
information necessary to be routed back to the pub-
lisher, as found inRoutes. As the topology of the dis-
patching network may change, there is no guarantee
that the route inRoutes is the same originally followed
by the missing event. However, it is likely that the two
share some portion or, in the worst case, the publisher.

4. Evaluation
As mentioned in Section 1, our initial and driving moti-

vation for tackling reliability was to cope with event loss in-



Parameter Default Value

number of dispatchers N = 100
maximum number of patterns per dispatcher πmax = 2
publish rate 50 publish/s

link error rate ε = 0.1
interval between topological reconfigurations ρ = +∞
buffer size β = 1500
gossip interval T = 0.03s

Figure 2. Simulation parameters and their default values.

duced by the dynamic reconfiguration of the dispatching in-
frastructure, e.g., due to mobility. Nevertheless, thus farwe
did not make any hypothesis about the cause of event loss.
Hence, our algorithms enjoy general applicability, and in
principle can improve reliability in any situation where an
event loss may occur. Consequently, in this section we eval-
uate the performance of our algorithms by considering both
the scenario where events are lost because of changes in the
topology of the overlay network and the more common sce-
nario of a stable topology with lossy links.

Besides considering each algorithm in isolation, we also
evaluate the performance of the combination of the two
pull approaches, as it enables a significant performance im-
provement. Moreover, to evaluate the effectiveness of our
strategies to route gossip messages, we also compare them
against a pull approach where such routing is entirely ran-
dom. Simulations of a similar random push approach are
omitted as their performance is extremely poor.

Section 4.1 describes the simulation setting, while Sec-
tion 4.1 illustrates the results. Simulations consider two
very different unreliable scenarios: one where links are
lossy and the percentage of events lost is thendirectly de-
termined by the link error rate, and one where event loss is
indirectly determined by a topological reconfiguration tak-
ing place in the overlay network. Most simulations focus
on the former scenario, as it is more general and its effects
more easily isolated and controlled.

4.1. Simulation Setting

In absence of reference scenarios for comparing con-
tent-based publish-subscribe systems, we defined our own
by choosing what we believe are reasonable and significant
values. The simulation parameters are discussed below and
summarized, with their default values, in Figure 2.
Modeling content-based publish-subscribe.For this set of
parameters, we built upon the simulation parameters used in
previous work by some of the authors [11].

• Events, subscriptions, and matching.Events are rep-
resented as randomly-generated sequences of 3 char-
acters (out of a total of 70), while event patterns are
represented as a single character. An event matches
a pattern if it contains the corresponding character.

Each dispatcher can subscribe to at mostπmax differ-
ent event patterns.

• Publish rate.Dispatchers continuously publish events
on a network with stable subscription information, i.e.,
no (un)subscriptions are being issued. As a default, we
choose a high publishing load scenario with about 50
publish/s per dispatcher. In some of the simulations we
also consider a low publishing load scenario of about
5 publish/s per dispatcher.

• Overlay network topology.Each dispatcher is con-
nected with at most other four in the dispatching tree.
Clients are not modeled, as their activity ultimately af-
fects only the dispatcher they are attached to.

Modeling the sources of event loss.The relevant parame-
ters differ according to the unreliable scenario considered.

• Channel reliability.We assume that each link connect-
ing two dispatchers in the overlay network behaves as a
10 Mbit/s Ethernet link. For the lossy link scenario, we
simulated scenarios with an error rateε = 0.1 (lead-
ing to 45% of events lost) andε = 0.05 (leading to a
25% loss). In the case of topological reconfiguration,
the links are instead assumed to be fully reliable.

• Frequency of reconfiguration.For the scenario with
topological reconfigurations we relied on the algorithm
and simulations described in [11], where the inter-
ested reader can find more details. A reconfiguration
in this setting is the breakage of a link, followed by
its replacement with another that maintains the tree
connected. We assume that the overlay network is re-
paired in 0.1s. The intervalρ separates two reconfig-
urations. We simulated non-overlapping reconfigura-
tions (ρ = 0.2s) where a link is replaced by another
before a new link breaks, as well as overlapping ones
(ρ = 0.03s). Clearly, the former cause less disruption
and hence less event loss.

Gossip parameters.Gossiping is ruled by the following:

• Buffer size.We adopt a simple FIFO buffering strategy
where each dispatcher caches only the events for which
it is either the publisher or a subscriber. The buffer has
a size ofβ elements.

• Gossip interval.The frequency of gossiping is con-
trolled by the gossip intervalT between two gossip
rounds.

• Combining pull approaches.As mentioned, we com-
bined the two pull approaches to improve performance.
Which approach is used at a given moment is deter-
mined by the probabilityPsrc .

Simulation tool. Our simulations are developed using OM-
NeT++ [18], an open source discrete event simulation tool.
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(a) Scenario with lossy links,ε = 0.05 (left) andε = 0.1 (right).
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Figure 3. Event delivery.

4.2. Event Delivery

In this section we evaluate the effectiveness of our ap-
proach in improving event delivery. The left-hand side of
Figure 3(a) compares the performance of the various solu-
tions in the case of a stable system with lossy links, whose
error rate4 is ε = 0.05. The performance metric we choose
is the delivery rate, i.e., the ratio between the number of
events correctly received by a dispatcher and those that
would be received in a fully reliable scenario. The deliv-
ery rate in the chart is averaged, and shown in percentage.
Simulation time is on thex-axis.

In this scenario, our baseline is the delivery rate obtained
without any form of recovery, which is around 75%. The
chart shows how neither of the pull solutions alone is suf-
ficient to achieve a satisfactory delivery rate. This can be
easily understood by focusing on the special case where
only one dispatcher is subscribed for a given pattern. A
subscriber-based approach is not very effective, because
there are no other dispatchers to gossip with—a publisher-
based is more convenient in this case. Nevertheless, in a sit-
uation with many dispatchers subscribed to the same pattern
a publisher-based approach is less appealing, since gossip
involves a much smaller fraction of the dispatchers. There-

4 Hereafter, we assume that parameters whose value is not explicitly
mentioned in the text are set to their default value, defined in Figure 2.

fore, the two variants essentially complement each other
and, as shown by the simulations, perform best when com-
bined, by enabling a delivery rate close to 98%. Analogous
performance is achieved by the push algorithm.

This behavior and the associated benefits can be better
appreciated in the more challenging scenario considered in
the right-hand side of Figure 3(a), whereε = 0.1 yields a
baseline delivery rate of 55%. Again, neither of the pull ap-
proaches alone is enough, but together they boost the de-
livery rate up to 90%, similar to what achieved by the push
algorithm. Hence, in this scenariothe recovery phase per-
formed with our algorithms is responsible for the delivery
of almost half of the events being dispatched in the system.

The effect of our algorithms is evident when topologi-
cal reconfigurations occur. While in the scenario with lossy
links errors are by and large uniformly spread, in the case
of topological reconfigurations (over fully reliable links)
they are concentrated around the time when the reconfig-
uration occurs. In the left-hand side of Figure 3(b) recon-
figurations occur everyρ = 0.2s, leading to a sequence of
non-overlapping reconfigurations, i.e., the system stabilizes
with correct routes before a new link breaks. Depending on
where disruption occurred, the delivery rate may drop as
low as 70%. All of our algorithms have a beneficial effect,
by reducing the fraction of events lost. Nevertheless, push
and combined pull “level” the delivery rate in proximity of
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Figure 4. Effect of buffer size (top) and gossip interval

(bottom) on delivery.

100%, by removing all the negative spikes corresponding to
event loss. The right-hand side of Figure 3(b) shows instead
a scenario where reconfigurations occur everyρ = 0.03s
and are therefore overlapping. This is a very challenging
scenario, that can be regarded as an approximation of the
case where a non-leaf dispatcher is detached from the net-
work and multiple links are broken at once. Baseline deliv-
ery rate may drop as low as 60%. Again, our best algorithms
cut all the negative spikes, and never fall below a 95% de-
livery rate. Hence, they introduce a high degree of robust-
ness in the system, by masking to a great extent the pertur-
bations caused by topological reconfiguration.

In the remainder of the section we focus on scenarios
characterized by lossy links, since they represent the most
general case. In particular, we set the error rate to the value
of ε = 0.1 to better appreciate the variations in performance
determined by changes in the other parameter values.

4.3. Gossip Interval and Buffer Size

The key parameters of our epidemic algorithms are the
gossip intervalT , determining how frequently dispatchers
communicate for the sake of recovery, and the sizeβ of
the buffers where events are cached. Figure 4 shows how
changes in these parameters affect event delivery. In the top
chart,β ranges from 500 to 4000 buffered events, which in
our scenario translates into a time of persistence of an event
in the buffer ranging between1.3s and9.2s, against an over-

all simulation run time of25s. It is evident how subscriber-
based pull alone cannot improve beyond a given limit. The
reason for this behavior is the same we discussed earlier,
i.e., the scarcity of dispatchers with the same pattern. The
publisher-based and random pull approaches perform bet-
ter than subscriber-based pull, but nevertheless exhibit a
much slower convergence to 100% delivery. Again, push
and the combined pull approach exhibit the best perfor-
mance. Interestingly, combined pull has better performance
than push with small buffers, while push approaches much
faster 100% delivery as the buffer increases. This is easily
explained by observing that the push approach relies more
heavily on the persistence of events in the buffer. In fact,
as known from the literature on epidemic algorithms [8],
push has a bigger recovery latency than pull. Moreover, in
our push approach each gossip round involves only one of
the potentially many patterns matching an event. Therefore,
event recovery may involve several gossip rounds. Instead,
the pull approach gossips more precise information about
the lost event, and hence exhibits a smaller latency.

It is worth noting at this point that since buffer capac-
ity is a key factor in determining the performance of our
algorithms, in all the simulations presented in this section
we were very careful in setting the value ofβ, to mini-
mize bias. In particular, we increased linearly the buffer size
together with the system scale. This is a rather conserva-
tive choice, since it is shown in the literature that buffer re-
quirements grow asO(fN log N), beingf the publish fre-
quency. Moreover, we are currently investigating if and how
some of the published results (e.g., [10]) that enable a sig-
nificant buffer optimization are applicable in our context.

The chart at the bottom of Figure 4 shows instead how
event delivery is affected by the gossip interval. The con-
siderations that can be drawn are similar to those we made
about the buffer size. The interplay between the two param-
eters is shown in Figure 5, where we plot againstT the
event delivery obtained with the combined pull approach,
and varyβ with increments of 1000 elements, starting with
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a buffer of 500. (Simulations of push show a similar behav-
ior, and hence omitted.) The chart evidences a number of in-
teresting phenomena. First, increments in the buffer size do
not bear any significant impact after a given threshold. This
is particularly evident whenT is very small. Moreover, it
can be seen how the sensitivity of our algorithms, and in par-
ticular of the combined pull approach considered in the fig-
ure, to changes inT is greater whenβ is smaller. This is ev-
ident from our previous discussion: when the buffer is big,
less frequent gossip rounds are compensated by a longer
persistence of events in the buffer.

4.4. Scalability

The charts presented thus far are based on an overlay net-
work of N = 100 dispatchers. An open question is how
an increase ofN affects event delivery. The answer is in
Figure 6. In each run we increasedN and, to compensate
for the increased scale, we also increasedβ accordingly, so
that a given event persists in the buffer for a constant time
(of about 4s). The simulation results show that our solu-
tions exhibit good scalability w.r.t. the number of dispatch-
ers. This is not surprising, as this is a characteristic of epi-
demic algorithms and a motivation for our approach. Again,
the best performance in terms of delivery is achieved by
push and the combined pull approaches. The two pull so-
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lutions are more sensitive to scale when applied alone, with
the publisher-based one being the best one whenN is small.
The graph shows also that push becomes more convenient
as the system size increases. Since the total number of pos-
sible patterns is kept constant in the chart, the introduction
of new dispatchers increases the probability that a given pat-
tern is gossiped, and hence an event recovered.

The system size, however, is not the only parameter char-
acterizing scalability. In a content-based system, the distri-
bution of patterns is another key factor, which we evaluate
by intervening on the maximum numberπmax of patterns a
dispatcher can be subscribed to. The effect of this parame-
ter in terms of scalability can be grasped by looking at Fig-
ure 7, whereπmax is plotted against the average number of
subscribers that receive a single event. It can be seen how
πmax = 5 is already sufficient to reach about 20% of dis-
patchers; this percentage raises to 80% withπmax = 30, es-
sentially making communication more akin to a broadcast
rather than a content-based one5.

The impact ofπmax on the delivery rate is then ana-

5 All of our simulations assume that an event can match at most 3 pat-
terns. In a content-based system this is a quite conservative assump-
tion, since the need for a single tree is motivated precisely by the fact
that a single event is likely to match several patterns. A higher match-
ing rate would make the curve in Figure 7 even steeper; additional sim-
ulations we ran show how this noticeably improves further the perfor-
mance of our algorithms.
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Figure 9. Overhead introduced by gossip: in absolute terms (left) and relative to the events in the system (right).

lyzed in Figure 8, under different publishing loads. The top
chart shows how, under a low publish rate of 5 publish/s,
the delivery rate of push and combined pull is basically un-
affected by increases inπmax , with the former perform-
ing slightly better than the latter. Subscribed-based pull im-
proves a little since more dispatchers are now caching an
event. The bottom chart, derived under the usual high pub-
lish rate of 50 publish/s, shows a more interesting behavior.
For a small number of subscriptions per dispatcher, about
πmax < 6, combined pull improves delivery, while push
makes it worse. This is explained by observing that push
evolves by gossiping about a pattern at a time: the higher the
number of patterns, the higher the number of gossip rounds
required to recover an event, and the higher the likelihood
that the event is actually discarded from all the caches be-
fore being recovered—especially under a high publish load.
Instead, in a pull approach the increase in the number of
subscribers is beneficial, since it increases the probability
to contact a dispatcher that actually cached the event. For
πmax > 10 performance decreases significantly for all so-
lutions. This is reasonable since both charts in Figure 8 were
derived with a buffer sizeβ = 4000. Since the number of
subscriptions per dispatcher increases, each subscriber re-
ceives more events: this value ofβ is more than enough for
a low publishing load, but it is insufficient to keep up with a
high publishing load—hence the decrease in performance.

4.5. Overhead

After we verified that our solutions significantly improve
event delivery even when the system scale increases, the

next question is about the overhead they introduce. Figure 9
contains the results of our evaluation. It considers the sys-
tem sizeN and the numberπmax of subscriptions per dis-
patcher as a measure of scalability, as in Section 4.4. The
overhead is presented in two ways: as the number of gos-
sip messages sent by each dispatcher, to evaluate the over-
head on the single dispatcher, and as the ratio between the
gossip and event messages dispatched in the overall sys-
tem, to evaluate the impact of gossip on the overall band-
width available to event dispatching.

The left-hand side of Figure 9(a) shows that the number
of gossip messages sent by each dispatcher asN grows in-
creases with the scale of the system, but well below a linear
trend. This very desirable behavior is a direct consequence
of the decentralized nature of gossip algorithms: the local
effort of a dispatcher, in term of gossip messages sent, is in-
dependent from the system size. Hence, the growth of gos-
sip traffic is proportional to the number of hops made by
each gossip message, which in our case increases logarith-
mically. The right-hand side of Figure 9(a) shows instead
that the traffic caused by event forwarding rises faster than
the one caused by gossip—under the assumption of continu-
ous publishing. Again, this is a desirable property of our al-
gorithms that leads to high scalability. It can be explained by
noting that while event forwarding essentially implements
a multicast scheme that must reach all the recipients, gos-
sip involves only a fraction of them. Moreover, the propa-
gation of a single message is often “short-circuited” by the
first dispatcher holding the requested message.

Figure 9(b) shows the impact ofπmax on overhead. For
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Figure 10. Overhead under a high (top) and low (bottom)

publishing load.

a single dispatcher, overhead is only marginally affected,
as shown in the left-hand side. It decreases a little for in-
creasing values ofπmax , which can be explained by observ-
ing that an increase in the number of patterns increases the
number of dispatchers at which an event gets cached, and
hence the likelihood of retrieving the event close to the gos-
siper. Instead, the ratio of gossip messages and event mes-
sages in the system decreases significantly with the increase
of πmax , which is a desirable property. The reason can be
grasped by looking back at Figure 7. An increase inπmax

determines an increase in the number of receivers, therefore
the number of events dispatched in the system rises much
faster than the number of gossip messages, especially in the
scenario with high publishing load we considered.

It is worth pointing out some additional issues related
with overhead. First, one could argue that the overhead vs.
system scale ratio might look quite high. In Figure 9 it
ranges from about 28% forN = 40, down to about 20%
for N = 200. However, we remind the reader that our sim-
ulation scenarios are extremely challenging, as the system
load is very high and so is the chance of losing an event.
Given this tough setting and the remarkable improvement in
event delivery, the overhead in Figure 9 does not seem un-
reasonable. In any case, the tradeoffs between overhead and
event delivery are essentially determined by the application
and networking scenario at hand, and can be tuned appro-
priately by intervening on the gossip interval and buffer size
whose impact we described in Section 4.3.

Moreover, if the assumptions about load and error rate

are made less challenging, the relative performance of the
push and pull approaches changes significantly, as the reac-
tive pull approach triggers communication only when a re-
covery is needed while the proactive push approach gos-
sips continuously, and hence may result in wasted band-
width. This fact is shown in Figure 10, where the total num-
ber of gossip messages sent is plot against the error rate.
The publish rate is 50 publish/s in the top chart, and 5 pub-
lish/s in the bottom one. In the latter case, the pull approach
clearly wastes less bandwidth, especially when communi-
cation is more reliable: from the chart, whenε = 0.01—
corresponding to a baseline delivery rate of 95%—pull’s
overhead is one third of push. The pull approach, in this
case, may skip some gossip rounds due to fact that no event
has been detected as lost in the meantime, while a push ap-
proach must proactively push at each gossip round. To re-
move this potential source of inefficiency of the push algo-
rithm, an adaptive approach could be exploited where the
gossip intervalT is changed dynamically according to the
current state of the system, as suggested in [6].

In general, in our simulations we assumed that the size
of event and gossip messages is the same. Therefore, our re-
sults are only an upper bound for overhead: in reality, gossip
messages are likely to be much shorter than event messages,
bringing the relative overhead below the curves shown.

Finally, in our simulations we did not investigate com-
putational overhead. Qualitatively, the pull-based solutions
require that, when an evente is published by a dispatcher,
the latter performs a match ofe againstall the patterns in
its subscription table. This is more than normally required,
since the matching process needed to route a message to-
wards a neighbor usually stops as soon as the first matching
pattern is found. We are currently investigating optimiza-
tions to limit this overhead. However, we also observe that
only the publisher experiences it: the other dispatchers route
events according to the normal processing.

5. Related Work

Several centralized publish-subscribe systems (e.g., all
JMS [16] compliant ones) provide a reliable service. Also,
several protocols exist for reliable multicast and group com-
munication. Unfortunately, none of these results can be used
for the systems we target here, due to the peculiarity of con-
tent-based routing and of the scenarios we consider.

Few works address reliability in content-based publi-
sh-subscribe systems. In [1], the authors describe a guar-
anteed delivery service for the Gryphon system. Content-
based routing is provided through a collection of spanning
trees, each rooted at one of the publishers. Guaranteed de-
livery exploits an acknowledgment-based scheme requir-
ing stable storage at the publisher. This approach is not
amenable to the dynamic scenarios motivating our work,
where the solutions to deal with a publisher crash (e.g.,



shared and replicated logs) are impractical, and a topolog-
ical change would trigger a high-overhead reconfiguration
of many trees. Hermes [12] provides content-based rout-
ing based on constraints on type attributes and exploits Pas-
try [14] as the transport layer, thus inheriting the ability to
deal with topological changes. Unfortunately, the authors do
not address the recovery of events lost during these changes.

The closest match to our work ishpcast[9]. In this sys-
tem, nodes are organized in a hierarchy where leaves rep-
resent event subscribers and publishers, and intermediate
nodes representdelegates, i.e., nodes chosen to represent
the aggregate interests of their children. Events are dis-
tributed through gossip push starting at the root, and mov-
ing downwards each time a delegate retrieves an event of
interest for its children. The idea of using gossip for rout-
ing and recovery is simple and elegant, but suffers from sev-
eral drawbacks. First, in absence of faults itneverguaran-
tees delivery, and it increases overhead since events are not
routed only to interested nodes and can even be sent more
than once to the same one. Second, it forces the adoption
of a push approach where gossip messages include the en-
tire event content instead of a simple digest, further increas-
ing the network traffic. Finally, the nodes close to the root
experience high traffic, and therefore must keep big event
caches to increase the probability of event delivery.b

6. Conclusions
Modern distributed computing fosters scenarios that are

large scale, unreliable, and highly dynamic. Distributed
content-based publish-subscribe is emerging as an effec-
tive tool to tackle these challenges. However, reliable event
delivery, a fundamental requirement in the new distributed
scenarios, has largely been ignored thus far by researchers.

In this paper, we provided a thorough evaluation of an
approach to reliability based on epidemic algorithms. Sim-
ulations show that our use of epidemic algorithms improves
significantly event delivery, is scalable, and introduces only
limited overhead. Our results do not rely on assumptions
about the source of event loss, and therefore enjoy general
applicability. Our ongoing work aims at complementing the
results described here with those obtained for the reconfigu-
ration of the dispatching infrastructure [11], and conveying
them in a new generation of distributed content-based pu-
blish-subscribe systems able to tolerate topological recon-
figurations and minimize event loss.
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