
POLITECNICO DI MILANO

V Facoltà di Ingegneria
Corso di Laurea in Ingegneria Informatica
Dipartimento di Elettronica e Informazione

EPIDEMIC ALGORITHMS FOR RELIABILITY

IN MOBILE CONTENT-BASED ROUTING

Relatore: Prof. Gian Pietro PICCO
Correlatore: Prof. Gianpaolo CUGOLA

Paolo COSTA Matr. 630935
Matteo MIGLIAVACCA Matr. 632026

Anno Accademico 2001-2002

Acknowledgments

We would like to thank our advisors Prof. Gian Pietro Picco and Prof. Gian-
paolo Cugola for trusting, encouraging, and supporting us all throughout our
thesis work. Through advice and lively discussions, they have contributed
a lot to the development of this work. We also want to thank Prof. Carlo
Ghezzi for arousing our interest in Software Engineering during his lectures
and for his support in many occasions.

We developed our research at the Software Engineering Laboratory of
Politecnico di Milano. In this environment we had the opportunity to meet
people that in so many ways contributed to this work. In addition to the
ones we already mentioned, we would like to express our gratitude to Davide
Balzarotti, Claudio Casoli, Mirco Cesarini, Davide Frey, Vincenzo Martena,
Roberto Tedesco, Luca Zanolin and many others.

We are especially grateful to our class mates for their friendship and sup-
port throughout our university career. In particular, we would like to thank
Andrea D’Angelo, Claudio Defferara, Daniele Dellafiore, Lorenzo Della Ve-
dova, Paolo Falzoni, Matteo Giaconia, Stefano Guazzi, Marco Lambri, Luca
Ludovico, Davide Merlani, Giuseppe Milani, Fabio Misani, Mauro Misino,
Daniela Montoli, Matteo Morelli, Filippo Moriggia, Mauro Mosca, Fabio Ne-
groni, Liliana Nenov, Gianluca Palermo, Sara Pasqui, Stefano Perfetti and
Luigi Petruccelli.

Milano, December 2002

Contents

1 Introduction 4
1.1 Contribution of the Thesis . 7
1.2 Structure of the Thesis . 8

2 Publish-Subscribe Middleware 10
2.1 Publish-Subscribe Paradigm 10
2.2 Publish-Subscribe Systems Overview 12

2.2.1 Subscription Language 12
2.2.2 Architecture of the Event Dispatcher 12
2.2.3 Subscription Forwarding Scheme 13

3 Epidemic Algorithms 17
3.1 Basic Concepts . 18
3.2 Properties . 19

3.2.1 Epidemics Flavors . 20
3.2.2 Epidemic guarantees 22

3.3 Classification . 23
3.3.1 Message Exchange (Push versus Pull) 24
3.3.2 Positive versus Negative Digest 26
3.3.3 Proactivity versus Reactivity 27
3.3.4 Membership View . 27
3.3.5 Member Selection . 30

3.4 Applications Areas . 32
3.4.1 Replicated DataBase Maintenance 32
3.4.2 Failure Detection . 37
3.4.3 Resource Location . 40
3.4.4 Multicast . 43
3.4.5 Routing in Ad Hoc Networks 46

CONTENTS 3

4 Gossip and Content-Based 50
4.1 Challenges . 51
4.2 A simple (but Inefficient) Solution 53

5 Gossip Algorithms for Reliability 55
5.1 Push . 56
5.2 Pull . 59
5.3 Source . 63

6 Simulation Results 67
6.1 Simulation Setting . 67
6.2 Event Delivery . 70

6.2.1 Error Rate . 71
6.2.2 Tree Reconfiguration 71
6.2.3 Buffer size . 73
6.2.4 Pattern . 76
6.2.5 System size . 78

6.3 Overhead . 79

7 Discussion 82
7.1 Performance Considerations 82
7.2 Overhead Considerations . 84
7.3 Enhancements and Open Issues 85

8 Related Work 87

9 Conclusions and Future Work 90

Bibliography 92

List of Figures 99

Chapter 1

Introduction

In recent years, scenarios characterized by an extreme degree of dynamicity

and reconfiguration have attracted the attention of the research community.

For instance, in mobile computing, devices can come and go continuously,

e.g.,because they are free to move since connected through wireless links or

because they are employed by a user, and hence plugged in and out of the in-

frastructure according to his/her movements. The situation is emphasized in

pervasive computing whereby a component can often be replaced by another

providing equivalent services, e.g., because a location change determined a

different context populated by a different set of components, or because the

component is no longer operational and is replaced by a new one.

Another kind of reconfiguration can be found in peer to peer computing,

whereby the physical network, in contrast to mobile settings, is fixed but

bears at its top a logical network known as overlay network. Reconfigura-

tion occurs at logical level and is triggered by peers joining and leaving the

Chapter 1 INTRODUCTION 5

network.

In these reconfigurable scenarios, communication and coordination of

components is often a challenging task, given the unreliability of the en-

vironment, including the communication network.

In this scenario, the ability to decouple the internal behavior of a sin-

gle device, application, or service, from the rest of the system becomes of

paramount importance. Decoupling enables a component to work with little

or no dependency on the current availability of other components.

Recently, the publish-subscribe communication paradigm has become pop-

ular precisely because of its decoupling characteristics. This paradigm re-

volves around the notion of event. Components interested in the occurrence

of a given class of events subscribe expressing their interest. Components

observing an event publish it1 to the rest of the system. The decoupling is

obtained through the fact that publishers and subscribers do not know each

other: publish-subscribe operations, and in particular the delivery of an event

to all the subscribers, are mediated by a component, the event dispatcher,

whose architecture can be either centralized or distributed.

A number of publish-subscribe systems have been proposed to date. In

this thesis we focus on systems that seek increased scalability and flexibility

by exploiting a distributed event dispatcher, and empower the programmer

with maximum expressiveness by using a content-based scheme for determin-

ing the match between an event and a subscription. Examples of systems of

this sort can be found in [5, 39, 36, 4, 10]. The typical scenarios we target ,

1More precisely they publish an event notification.

Chapter 1 INTRODUCTION 6

with a large number of components that need to communicate in a dynamic

environment justify this choice in preference to more conservative, less flex-

ible, and less scalable solutions, adopting a centralized event dispatcher or

less expressive subscription schemes.

This said, we may observe that while the publish-subscribe model appears

very well-suited for the needs of those scenarios, the current state of the art

in publish-subscribe systems is such that exploitation of publish-subscribe in

this scenario is essentially hampered. Two are the main limitations:

1. the lack of mechanisms to deal with topological reconfiguration of the

distributed dispatcher;

2. the lack of reliability, in terms of guaranteed event delivery in presence

of “unreliable” environments characterized by wireless links, mobile

devices, and so on.

Little or no published work tackles these two problems. Clearly, the

two issues are intimately intertwined, in that topological reconfiguration of

the dispatcher, e.g., induced by mobility or peer disconnections, is likely to

disrupt the operation of the publish-subscribe system, and lead to the loss

of events.

Previous works of the software engineering research group at Politecnico

di Milano examined solutions for the first problem [11, 12, 30]. In this thesis,

we focus instead on the second one. The ultimate goal of our research is to

be complemented with the results obtained for reconfiguration so as to lead

to the implementation of a new-generation distributed content-based publi-

Chapter 1 INTRODUCTION 7

sh-subscribe system capable of tolerating arbitrary reconfiguration and yet

minimizing the number of events lost.

The approach we investigate in this thesis uses epidemics algorithms for

recovering lost events. Epidemics algorithms [1, 23, 15] are a new breed

of distributed algorithms that find inspiration in the theory of epidemics.

They aim at providing a lightweight, scalable, and robust means of reliably

disseminating information to a group of recipients, by providing guarantees

only in probabilistic terms. Given their characteristics, epidemics algorithms

are amenable to being used in highly dynamic and unreliable scenarios like

those we target in this thesis.

1.1 Contribution of the Thesis

In this thesis, for the first time, a solution is presented to address reliability

in such dynamic environments. The work consists of two parts:

Design of algorithms to achieve probabilistic reliability in distributed content-

based publish subscribe systems. Our algorithms, adopt two different

approaches push and pull, to recover events and suit different scenarios.

The design of recovery mechanisms exploiting a synergy between epi-

demic technique and content-based publish subscribe has never been

tackled before and requires the solution of several challenging issues.

Validation and Evaluation through simulation, of the aforementioned al-

gorithms. We define our simulations as having the goal of verifying the

Chapter 1 INTRODUCTION 8

performance in reasonable scenarios and more critical ones and of eval-

uating their behavior against the change of environment and algorithm

parameters. We also measure the overhead introduced in the network

as the system size grows.

For an in-depth understanding of the mechanisms underlying epidemic al-

gorithms and to acquire the necessary foundations to design our algorithms,

we identified key aspects of epidemic techniques by analyzing published works

exploiting them and built up an, albeit partial, classification. Since, to our

knowledge, none of the existing works in literature presents a systematic

review of epidemic algorithms, this classification can be regarded as a con-

tribution per se.

1.2 Structure of the Thesis

The thesis is structured as follows. Chapter 2 provides the reader with the

necessary background information related with content-based publish-sub-

scribe systems. Chapter 3 presents epidemic algorithms with a classification

of their relevant aspects and an overview of application areas. Chapter 4

analyzes the challenges posed by the application of epidemic algorithms in

the specific context of content-based communication. Chapter 5 presents our

main contribution, constituted by a number of algorithms that are designed

to provide reliability in content-based publish-subscribe systems. Chapter 6

reports the simulation results evaluating our algorithms. Chapter 8 compares

our approach against related work. Finally, Chapter 9 ends the thesis with

Chapter 1 INTRODUCTION 9

brief concluding remarks.

Chapter 2

Publish-Subscribe Middleware

2.1 Publish-Subscribe Paradigm

The recent demand in distributed systems has created the need for more

flexible communication models and systems, reflecting the dynamic and de-

coupled nature of the applications.

The publish/subscribe interaction scheme has recently received increasing

attention because it well-adapts to the loosely coupled nature of distributed

communication in large scale applications over the Internet.

The publish/subscribe paradigm provides subscribers with the ability to

express their interest in an event or pattern of events, in order to be notified

of any event fired by a publisher, matching their interest.

An event is asynchronously notified to all subscribers that registered in-

terest in that given event.

Applications exploiting publish-subscribe middleware are organized as a

Chapter 2 PUBLISH-SUBSCRIBE MIDDLEWARE 11

collection of autonomous components, the clients, which interact by publish-

ing events and by subscribing to the classes of events they are interested

in. A component of the architecture, the event dispatcher, is responsible for

collecting subscriptions and forwarding events to subscribers.

The communication and coordination model that results from this schema

is inherently asynchronous ; multi-point, because events are sent to all the

interested components; anonymous, because the publisher need not know

the identity of subscribers, and vice versa; implicit, because the set of event

recipients is determined by the subscriptions, rather than being explicitly

chosen by the sender; and stateless, because events do not persist in the

system, rather they are sent only to those components that have subscribed

before the event is published.

These characteristics result in a strong decoupling between event publish-

ers and subscribers, which greatly reduces the effort required to modify the

application architecture at run-time to cope with different kinds of changes

in the external environment.

Given the potential of this paradigm, the last few years have seen the

development of a large number of publish-subscribe middleware, which differ

along several dimensions1. Two are usually considered fundamental: the

expressivity of the subscription language and the architecture of the event

dispatcher.

1For more detailed comparisons see [5, 10, 35].

Chapter 2 PUBLISH-SUBSCRIBE MIDDLEWARE 12

2.2 Publish-Subscribe Systems Overview

2.2.1 Subscription Language

The expressivity of the subscription language draws a line between subject-

based systems, where subscriptions identify only classes of events belonging

to a given channel or subject, and content-based systems, where subscriptions

contain expressions (called event patterns) that allow sophisticated matching

on the event content.

A content-based approach enhances the underlying publish-subscribe mid-

dleware with unprecedented levels of flexibility, which in turn simplify sig-

nificantly the programmer’s task.

2.2.2 Architecture of the Event Dispatcher

The architecture of the event dispatcher can be either centralized or dis-

tributed. In this paper, we focus on publish-subscribe middleware with a

distributed event dispatcher. In such middleware (see Figure 2.3) a set of in-

terconnected dispatching servers2 cooperate in collecting subscriptions com-

ing from clients and in routing events, with the goals of reducing network

load and increasing scalability.

The systems exploiting a distributed dispatcher can be further classified

2Unless otherwise stated, in the following we will refer to dispatching servers simply

as dispatchers, although the latter term refers more precisely to the whole distributed

component in charge of dispatching events, rather than to a specific server that is part of

it.

Chapter 2 PUBLISH-SUBSCRIBE MIDDLEWARE 13

according to the interconnection topology of dispatching servers, and the

strategy exploited to route subscriptions and events. In this work we consider

a subscription forwarding scheme on a undirected acyclic graph topology, as

this choice covers the majority of existing systems.

2.2.3 Subscription Forwarding Scheme

In a subscription forwarding scheme [5], subscriptions are delivered to every

dispatcher, along a single undirected acyclic graph connecting all dispatchers,

and are used to establish the routes that are followed by published events.

When a client issues a subscription, a message containing the event pattern

is sent to the dispatcher the client is attached to. There, the event pattern

representing the subscription is inserted in a subscription table, together with

the identifier of the subscriber. Then, the subscription is propagated by the

dispatcher, which now behaves as a subscriber with respect to the rest of the

dispatching graph, to all of its neighboring dispatchers. In turn, these record

the subscription and re-propagate it towards all their neighboring dispatch-

ers, except for the one that sent it. This scheme is typically optimized by

avoiding propagation of subscriptions to the same event pattern in the same

direction3. The propagation of a subscription effectively sets up a route for

events, through the reverse path from the publisher to the subscriber. Re-

quests to unsubscribe from a given event pattern are handled and propagated

3Other optimizations are possible, e.g., by defining a notion of “coverage” among sub-

scriptions, or by aggregating them, like in [5]. immediate impact on the content of this

considered further.

Chapter 2 PUBLISH-SUBSCRIBE MIDDLEWARE 14

Per dispatcher information:

- list of neighboring dispatchers

- subscription table, stored as a pair (dispatcher, pattern)

Process a subscription for a pattern p received from a neighboring

dispatcher d

subscriptionReceived(d, sub(p))

if d is not subscribed to pattern p then

subscribe d to p in the local subscription table

if this is the first subscription received for p then

send sub(p) to all neighbors except d

else if this is the second subscription received for p then

send sub(p) to first subscriber

end if

end if

Process an unsubscription to a pattern p received from a neighboring

dispatcher d

unsubscriptionReceived(d,unsub(p))

if d is subscribed to p then

remove the entry (d, p) from the local subscription table

forwardUnsubFrom(d, p)

end if

Figure 2.1: Actions for subscription and event processing using a subscription

forwarding scheme (I).

analogously to subscriptions, although at each hop entries in the subscription

table are removed rather than inserted.

An informal description of the subscription forwarding strategy we use is

provided in Figures 2.1 and 2.2, including actions for subscription manage-

ment (subscriptionReceived, unsubscriptionReceived) and the action for event

Chapter 2 PUBLISH-SUBSCRIBE MIDDLEWARE 15

Process event from a neighboring dispatcher or a client

eventReceived(d, event)

send event to all the dispatchers (except d) found subscribed to

a matching pattern in the subscription table

Auxiliary macro for forwarding to the neighboring dispatchers an

unsubscription for pattern p coming from node d

forwardUnsubFrom(d, p) ≡

if there are no more dispatchers subscribed to p then

send unsub(p) to all neighboring dispatchers except d

else if there is only one dispatcher d subscribed to p then

send unsub(p) to d

end if

Figure 2.2: Actions for subscription and event processing using a subscription

forwarding scheme (II).

forwarding (eventReceived). Action execution is assumed to be atomic, and

message passing among components is assumed to be asynchronous and

bounded. Here and in the rest of the paper, we ignore the presence of clients

and focus on dispatchers, not only to simplify the treatment, but also because

in the domains we target there is often no distinction between the two.

Figure 2.3 shows a dispatching graph where a dispatcher (the dark one) is

subscribed4 to a certain event pattern. The arrows represent the routes laid

down according to this subscription, and reflect the content of the subscrip-

tion tables of each dispatcher. Note how the graphs corresponding to routes

4More precisely, only clients can be subscribers. With some stretch of terminology,

here and in the following we will say that a dispatcher is a subscriber if it has at least one

client that is a subscriber.

Chapter 2 PUBLISH-SUBSCRIBE MIDDLEWARE 16

A

C

B

D

E

F

X
S

Figure 2.3: A undirected acyclic graph with subscriptions laid down accord-

ing to a subscription forwarding scheme.

for the two separate subscriptions all insist on the same graph constituting

the dispatching network. To avoid cluttering the figure, subscriptions are

shown only for a single event pattern.

Chapter 3

Epidemic Algorithms

Epidemic algorithms are a new kind of distributed algorithms inspired by

theory of epidemics. They have recently become popular as a solution to

address scalable and reliable multicast dissemination(e.g., [1, 23, 15]). In

these algorithms communication is achieved by trying to “infect” as many

nodes as possible, with a measure of success defined only in probabilistic

terms.

Although epidemic algorithms were originally developed to deal efficiently

within the consistency management of replicated databases [13], they have

been applied to date to a number of relevant problems, including dissemina-

tion of news through NNTP and multicast in ad hoc mobile networks [7, 24].

When applied to information dissemination, epidemics techniques are

sometimes known as gossip techniques and this for obvious reasons; in this

thesis the two terms will be treated as synonyms1.

1We prefer gossip when the topic is relevant to computer science field and revert to

epidemic terminology when the issue addressed can be better explained with reference to

Chapter 3 EPIDEMIC ALGORITHMS 18

In essence, gossip algorithms trade the strong reliability guarantees, typi-

cal of traditional deterministic approaches, for better scalability, achieved at

the price of weaker guarantees defined only in probabilistic terms.

3.1 Basic Concepts

By and large, the idea underlying this family of algorithms is for each process

to communicate periodically its knowledge about the system “state” to a

random subset of other processes. The state of the system can differ from

system to system: from data base replica to the history of messages appeared

in the system so far. The state tend to global consistency through exchanges

called “gossip rounds”, during which processes update their local states.

A single gossip round consists of the following steps:

1. Process A chooses randomly another process to communicate with,

say B.

2. A sends to B information that allows to determine the presence of in-

consistencies (e.g., the identifiers of the messages, checkpoint hashes etc.).

3. A and B reconcile their state by exchanging information.

The identity of the processes that are contacted at each round is typically

determined in probabilistic terms 2.

the epidemiological literature
2As a consequence, these algorithms are sometimes referred to also as probabilistic

algorithms.

Chapter 3 EPIDEMIC ALGORITHMS 19

An aspect in which gossips algorithms differ is how many nodes are con-

tacted at each round. This is usually a fixed parameter called fanout: a

high fanout means contacting a bigger fraction of the processes, and hence

increased reliability, but at the expense of increased overhead, and hence re-

duced scalability. In a sense, this parameter represents the knob that can be

adjusted to obtain the desired tradeoff between reliability and scalability.

A peculiar case is obtained when a process contacts every node it knows

of. This is actually a technique known as flooding, and can be considered

as a degenerate form of gossip. Gossiping is especially preferable to flooding

when in the presence of a clique or a well connected graph in which gossip

has basically the same reliability as flooding with a fraction of the over-

head. Some works in fact exploit gossip as an optimization of the flooding

technique[21, 23].

3.2 Properties

The distinctive features of gossip algorithms are that their operations are very

decentralized and driven by probabilistic decisions. Decentralization derives

from the fact that the burden of information transmission is not placed in a

single point of the network, be it the origin or some other well-known process,

rather it is shared among multiple processes, and hence decentralized.

Moreover not only this class of algorithms is distributed but is also very

fault tolerant at both global and local level:

• the system on the whole can withstand a very high number of faulty

Chapter 3 EPIDEMIC ALGORITHMS 20

nodes and network losses and still exhibit a correct behavior since the

protocol is redundant in itself.

• each a node does not rely on the correct operation of any other specific

node since the protocol behavior is probabilistic.

The probabilistic and decentralized nature of these algorithms gives them

other desirable properties: gossip algorithms for example are very resilient to

changes in the system configuration (e.g., topological changes) since they do

not rely on the existence of one or more known processes. Moreover, these

properties are preserved as the size of the system increases, thus leading to

good scalability. Finally, these algorithms are very simple to implement and

rather inexpensive to run.

From this short discussion, it is evident how gossip algorithms are a good

match for the scenarios defined by mobile computing. Indeed, these scenarios

are characterized by very little determinism themselves, both at application

and system level. And already this approach has proven useful in a mobile

ad-hoc networking scenario [7, 24].

3.2.1 Epidemics Flavors

Epidemic literature usually makes a distinction between two fundamental

kind of models defining a disease spread. The first one is sometimes defined

as “simple epidemics” while the second one is called “complex”.

Simple epidemics subjects are allowed only two states: susceptible and

infective. All individuals start in the former until one of them becomes

Chapter 3 EPIDEMIC ALGORITHMS 21

infective. As soon as a subject is “promoted” to the second state, it starts

to spread the disease on its own and stays in this state for its whole life.

Complex epidemics, on the contrary, allows a third state to be reached

after the infective one: this state is usually called removed (or recovered) and

models that take in to account this possibility are also called SIR models.

If a susceptible or infective individual comes in contact with a removed

one the interaction is fruitless in the sense that neither of the two individuals

taking part in the exchange change their state.

In epidemiology this is useful for modeling situations where, after an

amount of time since infection, the organism recovers from the disease, stops

infecting others and gains immunity to the pathogen.

As the ultimate goal of epidemic techniques as applied to information dis-

semination is to spread the information to every node as quickly as possible,

removed nodes at first, could seem not to be useful at all.

The point here is that removed nodes are not a desirable situation but an

unavoidable one. In many systems each node stores the state of the whole

system (e.g. replicated databases) or, at least, the state of the system for

which each node is the “authority” (e.g. resource location). In this favorable

scenario simple epidemics can be used: an infection is always available for

further spread. In other systems unfortunately the total system state grows

with time: this is the case for transmission systems and since buffers have

finite length after some time inevitably messages must be discarded. Removed

sites could also be used to model other causes for not being infective: for

example in this thesis we used removed nodes to model a typical content-

Chapter 3 EPIDEMIC ALGORITHMS 22

based situation where nodes are not interested in “seeing” an event.

3.2.2 Epidemic guarantees

One of the fundamental results of simple epidemics shows that if one of the

nodes becomes infected eventually all the population does.

This is very important property and can be translated into our domain

stating that when a simple epidemics can be used that is sufficient to guar-

antee Eventual Delivery.

If simple-epidemics cannot be used there could be the possibility that a

certain information (a pathogen in the epidemiological view) could be dis-

carded from the system before every node sees it: this requires special care

to avoid discarding it too early.

Even in scenarios where eventual delivery cannot be guaranteed one im-

portant property, called Bimodal delivery, can still be achieved: in such a

situation, there is a high probability for a message to reach almost all pro-

cesses in a group, a low probability to reach only a very small set of processes

in the group, and a negligible probability to reach some intermediate number

of processes in the group. In essence, the traditional “all or nothing” guar-

antee provided by deterministic protocols is weakened by gossip algorithms

into “almost all or almost none” [1].

To understand intuitively why this happens we can start from the con-

sideration that, in an infinite network, epidemic growth is exponential. The

behavior in a finite network differs from the infinite one after a certain num-

ber of nodes are infected since it’s more likely to contact already infected

Chapter 3 EPIDEMIC ALGORITHMS 23

0

200

400

600

800

1000

0 5 10 15 20

In
fe

ct
ed

 n
od

es

Number of rounds

Figure 3.1: An example of the diffusion of an infection in a finite population.

nodes. A typical infection spread in a finite population is plotted in figure

3.1 with respect to the numbers of rounds.

Now consider what would happen if the spread stops at an arbitrary

instant in time: if we pick this instant with a uniform distribution, since the

slope of disease spread is rather steep, it is very unlikely that we chose one

of the few instants that should provide a non-bimodal delivery.

3.3 Classification

In the following, we present those aspects which, we believe, are the most

meaningful for a classification of epidemic algorithms.

Chapter 3 EPIDEMIC ALGORITHMS 24

3.3.1 Message Exchange (Push versus Pull)

The direction of information exchange is one of the most notable features,

defining a gossip algorithm. The mode of message exchange whereby gossip

senders (aka gossipers) are updated by gossip receivers with messages missing

in the digest gossiped is commonly referred as gossip-pull. On the contrary,

the term gossip-push indicates the dual mode of message exchange whereby

every process in the system periodically gossips a digest of its received mes-

sages; gossip receivers can solicit such messages from the sender if they have

not previously received them. Finally, the term push/pull refers to a mixed

variant whereby two process symmetrically update each other.

Figure 3.2: Gossip recovery examples:in (PUSH) gossiper A pushes out a

missing packet X to B. In (PULL) gossiper C pulls in a missing packet Y
from D

Figure 3.2 illustrates the two forms of gossip initiated retransmission.

Demers et al. in [13] showed that a pull approach converges faster than

Chapter 3 EPIDEMIC ALGORITHMS 25

push, provided that a majority of the participants have the requested mes-

sage. This is easily explained by their simple deterministic model. Let pi be

the probability of a process to remain susceptible for an event received after

the ith gossip round. With a pull strategy, a process remains susceptible after

i + 1 rounds if it was susceptible after round i and it contacted a susceptible

process during round i + 1 (whose probability to remain such was again pi).

Thus, we obtain the recurrence

pi+1 = (pi)
2 (3.1)

which converges very rapidly to 0 when pi is small. For push, a process re-

mains susceptible to a given event after round i+1 round if it was susceptible

after round i and no infective process chose to contact it in round i+1. Thus,

the analogous recurrence relation for the push alternative is

pi+1 = pi

(
1− 1

n

)n(1−pi)

(3.2)

where n is the size of the group. (3.2) also converges to 0 but much less rapidly

(see figure3.3 , since for every small pi (and large n) it is approximately

pi+1 = pie
−1 (3.3)

The difference in the speed of convergence can be understood intuitively

by considering a scenario where a multicast reaches all the receivers but

one. In this case, the pull strategy allows a receiver to immediately recover

the missing message instead of waiting to be pushed, thus improving packet

delivery latency.

Chapter 3 EPIDEMIC ALGORITHMS 26

0

0.02

0.04

0.06

0.08

0.1

0 2 4 6 8 10

pull
push

Figure 3.3: The convergence of push and pull approach

3.3.2 Positive versus Negative Digest

Another dimension along which gossip algorithms differ is the scheme used

for disseminating the information about the process state, which can exploit

either positive or negative gossip digests. In the former scheme, each gossip

message sent by a process contains the state of communication as it perceives

it, e.g., the content of the process’ event history. Hence, the gossip message

lists all the events that the process has received lately. In a negative gossip

scheme, instead, the gossip message contains the events that the process

has missed. Note that listing missing messages will usually be smaller than

describing the entire buffer, especially under high send rates.

Chapter 3 EPIDEMIC ALGORITHMS 27

While in principle the style of communication, push vs. pull, and the

information dissemination scheme, positive vs. negative, are orthogonal, in

practice pull/negative and push/positive are the most meaningful and those

typically exploited. In presence of a pull strategy, a negative scheme can

be naturally used to react to a missing message by “pulling” it from other

processes, while the positive scheme is best employed to proactively push a

process’ state to the rest of the system.

3.3.3 Proactivity versus Reactivity

This last remark highlights a key difference between the two solutions we

are considering, and one that impacts their performance and applicability.

The pull/negative strategy is intrinsically reactive, in that it is triggered

only when a process realizes it has lost a message event; otherwise, no action

is necessary. Instead, push/positive must be implemented according to a

proactive scheme, where gossip takes place periodically. Typically, the high

degree of reactivity provided by the first approach is preferable, in that it

reduces the overall latency experienced by a message. Nevertheless, in some

scenarios, e.g., those characterized by a low rate of communication, a process

may not realize it has missed a message until the next one is received. In

these scenarios, the other approach may be preferable.

3.3.4 Membership View

A key element in designing a gossip algorithm is the amount of information

on the system at disposal of the peer since it defines the set of available peers

Chapter 3 EPIDEMIC ALGORITHMS 28

to gossip with. We can distinguish in:

• Global

• Local

• Hierarchical

• Partial Randomized

• Anonymous

Global

Each peer has an (almost) complete knowledge of all other nodes. This is

the simplest mechanism because it allows the peer to gossip with the whole

system. However this could represent a great obstacle to the scalability of the

system, because the memory requirement on each peer can grow indiscrimi-

nately. Nevertheless in some specific application, such as failure detection[33],

it is inherent in the goal of the application to have a global view.

Local

Each peer has knowledge only of its neighbors. This strategy allows to save

memory but may limit the speed of the infection because a peer can not

infect far nodes.

In some scenarios, however, this can be the only view available: in a ad

hoc network it is too expensive to keep trace of the whole system.

Chapter 3 EPIDEMIC ALGORITHMS 29

Hierarchical

Each peer has a precise view of its immediate neighbors, while its knowledge

becomes less exhaustive at increasing distance. This approach can be very

useful, for instance, in Resource Location[42] whereby a tree-based structure

is used to represent the system: the leaves contain directly measured infor-

mation (precise view) whereas internal nodes are generated by aggregating

information of children.

Partial randomized

The view of every individual member consists in a uniform random process

list.

The advantage of partial view, introduced for the first time by Eugester et

al. in [15], is to improve the scalability of the system. In fact, as with global

view, a peer can contact both neighbors and far nodes (and this improves

the speed of spread) but the memory requirements are significantly lower.

To ensure a uniform distribution of membership knowledge, every gossip

message piggybacks a set of peer identifiers to update views.

Anonymous

Peers do not have to know a priori the members they are gossiping with.

Though a peer has neither global nor local view, it can gossip with other

members because its gossip messages are routed by the underlying structure,

e.g. a multicast tree[7].

This view well-adapts to those scenarios, such as low density rapid-

Chapter 3 EPIDEMIC ALGORITHMS 30

changing ad hoc networks, where changes in system topology occur very

frequently making it very expensive to keep an up to date view of the sys-

tem.

3.3.5 Member Selection

Member selection defines the policy in the selection of a member to gossip

with. It is worth to underlining that member view bears as a completely

orthogonal dimension, although some couples are more meaningful and hence

more used than others.

We can differentiate between:

• Uniform

• Distance-based

• Hierarchical

• Connection-based

Uniform

Peers are selected from the view according to a uniform distribution. This is

the simplest way of selection and nevertheless it is often used because ensures

good performance in that a peer can infect uniformly all the peers in its view.

However, as a drawback, this strategy could overload routers because it

does not take into account any topological information.

Chapter 3 EPIDEMIC ALGORITHMS 31

Distance based

Near peers are chosen with higher probability than distant ones. This reduces

traffic based on proximity, however gossiping with a distant peer is extremely

important because it improves the spread of the epidemy.

Furthermore, in a multicast scenario, where gossip algorithms are em-

ployed as recovery mechanism, it is of paramount importance to reach dis-

tant nodes because message loss could affect an entire locality. For instance

in [7], the messages are steered on the tree with higher probability towards

nearest nodes and each member has a certain probability to respond to the

message thus stopping its propagation.

Hierarchical

Most gossip exchanges are in the local domain and the gossip exchange rate

decreases with the distance between any peers in the tree. Although this

strategy seems to well-adapt to a hierarchical view, often it is used in con-

junction with other views. In [33] all of peers share a global view but they

adopt a hierarchical member selection in order not to overload the bridges

between physical networks.

Connection-based

A peer selects with higher probability less connected peers. Note that, in

contrast to Hierarchical selection, this technique is adopted not to reduce

traffic but to improve reliability in a bad-connected graph. This allows nodes

scarcely connected to the rest of the system to be contacted as well as the

Chapter 3 EPIDEMIC ALGORITHMS 32

other nodes.

In [23], the connection based selection is achieved by the introduction of

the notion of weight. Weight represents the minimum number of edges that

must be removed for the peer to become disconnected from its neighbors. A

peer floods to neighbors with small weights and gossips with the others.

3.4 Applications Areas

In this section we provide an overview of the many contributions produced

by epidemic algorithms application in different IT contexts.

3.4.1 Replicated DataBase Maintenance

“Epidemic Algorithms for replicated Database Maintenance” [13] by De-

mers et al. is the first works applying epidemics theory to the computer

science field. The goal is maintaining consistency between several copies of

a database replicated at several sites.

The paper at first presents two method for maintaining data base con-

sistency already employed by the Grapevine project [2]: the first, simple,

deterministic method used to propagate updates is “direct mail” as exem-

plified in figure 3.4: every node experiencing a change in its local database

state tries to notify it to every other site. As “direct mail” could fail to

contact every site a second mechanism called “anti-entropy”(fig. 3.5) is used

to maintain consistency between copies. It is run during offpeak hours and

Chapter 3 EPIDEMIC ALGORITHMS 33

Symbol legend:

- s ∈ S a site hosting a replica of the database.

- s.ValueOf ∈ (v ∈ V, t ∈ T) a time varying partial function specifying the timestamp

and the value of the key (without loss of generality we suppose a single key in the database)

Invoked at a site s when an update occurs.

DirectMail ()

for all s′ ∈ S do

PostMail[to : s′,msg : (“Update”, s.ValueOf)]

end for

Invoked at a site upon receipt of an update message.

HandleMail (“Update”,(v, t))

if s.ValueOf.t < t then

s.ValueOf← (v, t)

end if

Figure 3.4: Direct mail algorithm.

Chapter 3 EPIDEMIC ALGORITHMS 34

Symbol legend:

- s ∈ S a site hosting a replica of the database.

- s.ValueOf ∈ (v ∈ V, t ∈ T) a time varying partial function specifying the timestamp

and the value of the key (without loss of generality we suppose a single key in the database)

Invoked at a site at periodic intervals.

AntiEntropy ()

for some s′ ∈ S do

ResolveDifference[s,s′]

end for

ResolveDifference in a pull variant.

ResolveDifference (s, s′)

if s.ValueOf.t < s′.ValueOf.t then

s.ValueOf← s′.ValueOf

end if

ResolveDifference in a push variant.

ResolveDifference (s, s′)

if s.ValueOf.t > s′.ValueOf.t then

s′.ValueOf← s.ValueOf

end if

ResolveDifference in a pull-push variant.

ResolveDifference (s, s′)

if s.ValueOf.t < s′.ValueOf.t then

s.ValueOf← s′.ValueOf

else if s.ValueOf.t > s′.ValueOf.t then

s′.ValueOf← s.ValueOf

end if

Figure 3.5: Anti-entropy algorithm.

Chapter 3 EPIDEMIC ALGORITHMS 35

Per dispatcher information:

- s ∈ S a site hosting a replica of the database.

- s.ValueOf ∈ (v ∈ V, t ∈ T) a time varying partial function specifying the timestamp

and the value of the key (without loss of generality we suppose a single key in the database)

- Tint interval between RumorMongering rounds

- RedundanceFactor a constant specifying the tradeoff between network traffic and reliability

Invoked at a site s when an update occurs. (push)

RumorMongering ()

k ← RedundanceFactor

while not stopCondition do

choose s ∈ S

alreadyKnown = SendMessage[to : s′,msg : (“Update”, s.ValueOf)]

if blind OR (feedback AND alreadyKnown) then

if counter then

k ← k − 1

if k = 0 then

stopCondition← TRUE

end if

else

with probability 1/k: stopCondition← TRUE

end if

end if

sleep(Tint)

end while

Figure 3.6: Rumor Mongering algorithm.

Chapter 3 EPIDEMIC ALGORITHMS 36

basically consists of each site choosing a number of sites to synchronize to,

then comparing its database with theirs to resolve differences.

In [13] it is noted that “anti-entropy” is indeed a simple epidemics : up-

dates are never discarded from the system as the local copy of the database

contains the whole state of the system as perceived by the local site. Thus

anti-entropy guarantees that every update eventually becomes known at all

sites.

Then a second epidemic algorithm is presented as an alternative to trivial

direct-mail. It consists of a complex epidemic technique called “Rumor mon-

gering”: whenever a site observes a change in a value of the database, either

because modified locally or because notified, it treats it as an hot rumor thus

shared during the following rumor mongering rounds, until a stop condition

is met. In the algorithms four possible stop conditions are explored: they

can be viewed as the possible combinations of two values on two orthogonal

aspects: either blind or feedback and either counter vs coin. If a feedback

condition is adopted the site makes a decision to spread the update further or

not whenever the other site has already seen it, while with a blind condition,

it makes a decision every time it spreads the update. If a counter condition

is used a site stops the spread after a constant number of “decisions”, if a

coin condition is used it does so on the basis of a fixed probability.

Among the other parameters explored in this work there is for example

the direction of the information flow either pull, push, or both.

Another issue in such a synchronization method is how to handle deletion

of keys from the database as a deletion will not spread to other sites, the

Chapter 3 EPIDEMIC ALGORITHMS 37

opposite would happen instead: updates form other sites will recreate the

deleted key.

The issue is resolved through the use of “death certificates” which contain

a key and a timestamp. While they are sent over the network they remove

every copy of the same key with an older timestamp. Then the question of

how to delete death certificates arises, a simple solution could be to keep this

certificates for a fixed amount of time (e.g. 30 days) to be sure that every site

has seen the certificate. To further increase this threshold a death certificate

could be retained at some sites in a “dormant” state. In a way analogous

to an immune reaction if a dormant death certificates comes in contact with

an update older than its timestamp it is “awakened” ad spread again in the

network.

3.4.2 Failure Detection

In [33] van Renesse et al. gossip is employed to develop a Failure Detection

Service that does scale well and provides timely detection.

In their protocol every member gossips to figure out who else is still

gossiping. Each member maintains a list in which a row is made up of:

• the symbolic name of each member

• its IP address

• an heartbeat counter to be used for failure detection

• the last time that its corresponding heartbeat counter has increased

Chapter 3 EPIDEMIC ALGORITHMS 38

Furthermore every member has an its own heartbeat counter. Every

Tgossip seconds, each member increments its own heartbeat counter, chooses

randomly a member from the list and sends its own list of non-failed members.

When a member receives such a gossip message, it merges the list received

with its own list, and keeps the maximum heartbeat counter for each member.

Occasionally a member broadcasts its list in order to be located initially and

also to recover from network partitions.

If the heartbeat counter has not increased for more than Tfail seconds,

then the member is considered failed. Tfail has to be set appropriately so

that the probability of mistake is very low.

After a member detects a faulty member, it cannot immediately remove

the relative row. This is in consequence of the fact that not all members will

realize the crash at the same time and thus a member A may still receive an

older heartbeat about a member B that it has considered faulty. If A should

have already removed B row, it would consider B as a new member, joining

the group.

Therefore, the failure detector does not remove a member from its mem-

bership list until after Tcleanup seconds (Tcleanup > Tfail). Tcleanup should be

tuned so that row removals of a failed member start only after all members

agree on its failure.

Note that this protocol only detects hosts that become entirely unreach-

able. It does not detect link failures between hosts.

To allow the protocol to scale well over the Internet, members can detect

the bound of Internet domains and subnets, and thus avoid overloading the

Chapter 3 EPIDEMIC ALGORITHMS 39

bridges between physical networks. With this goal in mind the algorithms

adopt a hierarchical member selection: gossips are mostly done within sub-

nets, with few gossips going between subnets, and even fewer between do-

mains. Within subnets, the above protocol is employed with no changes,

whereas for gossips that cross subnets and domain, a modified version is

needed. In particular, this modified protocol varies the probability of gossip

so that for every round, on average one member per subnet will gossip to

another subnet, and one member per domain will gossip to another domain.

So the cross subnet bandwidth in a given domain will depend only on the

number of subnets in that domain.

To achieve that, every member tosses a weighted coin every time it gos-

sips. One out of n times, where n is the size of the subnet, it picks at random

another subnet in its domain, and within that subnet, a random peer to gos-

sip with. The member then tosses another weighted coin with probability

1
n×m

where m is the number of subnets in its domain, it picks a random do-

main, then a random subnet within that domain and finally a random peer

within that subnet to gossip with.

This mechanism allows a significant reduction in the amount of gossip

messages flowing over the Internet routers.

Chapter 3 EPIDEMIC ALGORITHMS 40

3.4.3 Resource Location

In [42], the author presents Captain Cook 3, a gossip-based resource location

protocol for the Internet. Such a protocol has a tree-based hierarchical view of

all the collected information. The leaves in the tree contain directly measured

resource information, while internal nodes are generated using condensation

functions that aggregate information in child nodes.

Differently from traditional resource location service, Captain Cook does

not require the presence of centralized servers. Instead, every machine on

the network contributes in maintaining the entire service.

Monitoring information is stored in one or more trees. Each leaf node

represents a particular machine, whereas an interior node is generated by a

so-called condensation function which produces a Management Information

Base (MIB) for a collection of child nodes, representing a domain of par-

ticipating machines. For each child domain, there is a row containing such

information as average load on the machines in the domain, or the presence

of a particular resource, as shown in figure 3.7.

The tree is distributed over the participating machine with MIB auto-

matically replicated on several machines. Gossip messages are employed to

guarantee that updates eventually propagate to the whole tree.

Each row is timestamped with the clock time of its last update. Periodi-

cally, each machines chooses a random row in its local tables and using the

Contacts information stored in that row sends a gossip message. The gossip

3The name reminds the famed explorer who mapped the world before being clubbed

to death.

Chapter 3 EPIDEMIC ALGORITHMS 41

Figure 3.7: This figure shows part of two level tree used by Captain Cook

message contains a list of (MIB ID, timestamp) pair for each row stored at

the gossiper.

The receiving machine compares this list to the one it has stored locally

and using the timestamp4 it can decide which of the MIBs it has are more

up-to-date than the gossiper’s. It then returns an update to the gossiper, by

means of a push-pull message exchange.

If the machines happens to pick itself as a contact, it repeats the process

for the parent domain and so on. This strategy ensures that most gossip

exchanges occur in the local domains, and that gossip exchange rate decreases

exponentially with the distance between any two participating machines in

the tree.

To address the frequent changes in membership, typical in large dis-

tributed application where machines join and leave at very high rate, a mem-

4The author supposes that machines have loosely synchronized clock.

Chapter 3 EPIDEMIC ALGORITHMS 42

bership mechanism is proposed.

First of all, it is worth underlining that in Captain Cook, keeping track

of membership is easier than in failure detection, because the granularity

of information degrades with the distance in the tree. That is, participants

know the membership in their local domain, but typically only how many

members there are in the other domain.

The mechanism of failure detection in Captain Cook is rather simple.

A “clock” value is added to each row in the MIB table. Machines update

this value in their local table each time they send a gossip message. For

internal nodes, the “Clock” value is computed by taking the median time in

the input table. When a participant notices that a clock value is slow by a

predetermined value Tfail, it removes the row from the table.

As final remark, the present work is one of the few exploiting epidemic

algorithms to address security issues. Actually, gossip is interesting from the

perspective of security. On one hand, it is hard for an adversary to stop

the flow of updates to provoke denial-of-service. On the other, it is easy

to introduce and spread invalid update of existing MIBs or generate bogus

MIBs. Note that the goal of the authors is to ensure the integrity of data,

not to guarantee confidentiality.

The basic idea is to replace each MIB ID by a public key certificate. The

private key is given to all machines storing that MIB and they use it to sign

all the updates of the MIB. Upon receipt, every machine checks the integrity

of the update by decrypting it via the public key; if the operation is not

successful it discards the update.

Chapter 3 EPIDEMIC ALGORITHMS 43

In addition to using cryptographic techniques, condensation functions are

designed so that they are invulnerable to a small percentage of incorrect in-

put. For example, rather than the average load, the median load is preferable,

in that it eliminates outliers potentially generated by malicious participants.

3.4.4 Multicast

Multicast dissemination has been the most fertile area where epidemic al-

gorithms have found application. They have been employed to recover lost

message[1], to disseminate messages[23] or as both dissemination and recov-

ery mechanism[15].

Here we present the main works exploiting epidemics technique to address

reliable dissemination.

Bimodal Multicast

With Bimodal Multicast (pbcast [1]), Birman et al. have renewed the inter-

est in gossip-based algorithms. Pbcast relies on two phases. A “classical”

best-effort multicast protocol (e.g. IP Multicast) is used for a first rough

dissemination of messages. A second phase ensures reliability with a certain

probability by using a gossip-based retransmission: every participant in the

system periodically, according to push scheme, gossips a digest of its buffered

messages, and gossip receivers can solicit such messages from the sender it

they have not received them previously.

Every participant sends a gossip message per round and on average it

receives a gossip messages per round. Every participant has a global view of

Chapter 3 EPIDEMIC ALGORITHMS 44

the system and selects a node with an uniform distribution. Actually, in [1]

details on membership maintenance are not dealt with but the author refers

to Captain Cook [42] as a possible way to address membership consistency.

The gossip approach allows pbcast to reach an high degree of scalability,

keeping a stable throughput.

As most gossip algorithms, however, pbcast can guarantee only a bimodal

delivery (see 3.2.2). In order to offer a complete guarantee of delivery, Reliable

Probabilistic Multicast (rpbcast[37]) adds a deterministic third phase to the

pbcast algorithm, in which centralized loggers are contacted if the second

gossip-based phase fails.

Lightweight Probabilistic Broadcast

Lightweight probabilistic broadcast (lpbcast[15]) is a probabilistic broadcast

algorithm developed with the twofold goal of delivering new messages and

recovering lost ones.

Lpbcast adds an inherent notion of memory consumption scalability to

the notion of network consumption scalability primarily targeted by gossip-

based algorithms. In contrast to deterministic approach such as hierarchical

or global view, lpbcast introduces a new probabilistic approach to member-

ship; each participant has a random partial view of the system. This allows

to consume little resources in terms of memory and requires no dedicated

messages for membership management. Its scalability is enforced because a

peer only knows a fixed number of processes, and fault-tolerance is achieved

since each process is known by several processes.

Chapter 3 EPIDEMIC ALGORITHMS 45

Gossips are used to disseminate the payload (i.e. events) and to propagate

digests of received events, but also to propagate membership information.

Every gossip message contains:

Notifications A message piggybacks notification received for the first time

since the last gossip round such that every notification is gossiped at

most once by each dispatcher. Older notifications are stored in a buffer

to satisfy retransmission requests.

Notifications identifiers Each message also carries a digest of the notifi-

cations buffered at the gossiper. The gossip receiver checks whether it

is missing some of those notifications and in case, it sends a retrans-

mission request to the gossiper.

Unsubscriptions A gossip message also piggybacks a subset of unsubscrip-

tions. This type of information enables the graduate removal of mem-

bers which have unsubscribed from local views.

Subscriptions A set of subscriptions is attached to the message to update

local views with new members.

Upon receipt of a gossip message, a peer executes the following operations:

1. The unsubscriptions are handled, by removing corresponding nodes

from the local view.

2. The subscriptions, not yet received, are added to the local view

Chapter 3 EPIDEMIC ALGORITHMS 46

3. Notifications received for the first time are delivered to the application

and become eligible for being forwarded with the next gossip message.

Missing notifications are requested to the gossiper, by comparing notifi-

cation IDs in the gossip message and local list of received notifications.

As last remark,the proposed membership approach is not to limited to

the use with lpbcast algorithm, but can be put to work easily with other

algorithms as is diffusely explained in [18].

3.4.5 Routing in Ad Hoc Networks

Gossip, for its distributed nature and for its high resilience to faults, well-

adapts to highly dynamic environments such as ad hoc networks. In par-

ticular gossip has been proposed to address two different kinds of issues.

The first paper[19] exploits gossip to reduce the overhead of many ad hoc

routing protocols. The second[41] focuses instead on using gossip to enable

message delivery when a network partition exists at the time the message is

originated.

Gossip-Based Ad Hoc Routing

In ad hoc networks, the power supply of individual nodes is limited, wireless

bandwidth is limited, and the channel conditions can greatly vary. Fur-

thermore since nodes are mobile, route changes are very frequent. Many

ad hoc routing protocols have been developed, but most of them are based

on flooding and, despite the optimization, many messages are propagated

unnecessarily.

Chapter 3 EPIDEMIC ALGORITHMS 47

Actually this paper focuses on “Ad-hoc on-demand distance vector rout-

ing” (AODV[29]) but the conclusion holds for other flooding-based algo-

rithms as well. The authors show that adding their gossip protocol to AODV

allows to significantly reduce the amount of route request and improves net-

work performance in terms of end-to-end latency and throughput.

The approach adopted to employ gossip algorithms is different from the

traditional ones. Usually, gossiping proceeds by choosing some set of nodes

at random to gossip with. In this context, instead there is no availability of

stable paths to the nodes and hence such an approach is not suitable at all.

In ad hoc network, if a message is transmitted by a node, due to the

nature of radio communications, the message is received by all the nodes one

hop away from the sender. The authors of the paper take advantage of this

physical-layer broadcasting, by controlling the probability with which this

physical-layer broadcast is sent. In other words they use probability not to

choose which peers to gossip with but to choose whether to gossip or not.

A source sends a route request with probability 1. When a node first

receives a route request, with probability p it broadcasts the request to its

neighbors and with probability 1 − p it discards the request. If the node

receives the same route request again, it is discarded. The authors, through

simulations, show that in such a way it is possible to reduce by about 35%

messages the load of AODV, obtaining the same quality of route discovery.

Chapter 3 EPIDEMIC ALGORITHMS 48

Epidemic Routing for Partially-Connected Ad Hoc Networks

Existing ad hoc routing protocols, while robust to rapidly changing network

topology, assume the presence of a connected path from source to destination.

In [41] techniques are developed to deliver messages in case there is never a

connected path from source to destination.

The basic idea is to distribute application messages to hosts, called car-

riers, within connected portions of ad hoc networking. Epidemic Routing is

based upon these carriers coming in contact with other carriers of another

connected portion of networks through node mobility. Through such a dis-

semination of information, there is an high probability of eventually reaching

the destination. Figure 3.8 depicts the above behavior.

Figure 3.8: An example of message delivery in presence of network partition

In Figure 3.8, a source, S , wishes to send a message to a destination, D
, but no connected path is available from S to D. S transmits its messages

to its two neighbors, A and B, within direct communication range. At some

later time, A comes into direct communication range with D and finally sends

the message to its destination.

Gossiping is used to minimize the number of carriers, needed to deliver

Chapter 3 EPIDEMIC ALGORITHMS 49

the message. When two hosts come into communication range of one another,

the host with the smaller identifier starts a push-pull session to update each

other. The use of a “Bloom filter”[3] is proposed to reduce the overhead

associated to gossip message.

Optimizations are introduced to limit the spread of the message to the

whole network by limiting the number of hops made by messages during the

dissemination phase.

Results show that Epidemic Routing is able to deliver nearly all messages

in scenarios where existing ad hoc routing protocols fail to deliver any mes-

sage, assuming enough per-node buffering to store between 10-25% of the

messages originated in the scenario. Of course, there is an inherent tradeoff

between aggregate resource consumption and message delivery rate/latency.

Chapter 4

Gossip and Content-Based

The application of epidemic algorithms to the case of content-based publish-

subscribe system is not straightforward. Content-based systems pose peculiar

challenges that have not been tackled thus far by the research community,

which at best has concentrated on the simpler subject-based publish-subscri-

be systems. Still, the synergy between the two approaches is worth inves-

tigating, since a content-based approach enhances the underlying publish-

subscribe middleware with unprecedented levels of flexibility, which in turn

simplify significantly the programmer’s task.

In this chapter, we analyze in more detail the problems that make the ex-

ploitation of gossip algorithms more challenging when content-based systems

are at stake.

Chapter 4 GOSSIP AND CONTENT-BASED 51

4.1 Challenges

As already observed in 3.3.5, a key issue in designing a gossip algorithm is

how to determine the processes to gossip with. When gossip is applied to

multicast protocols or subject-based publish-subscribe systems this issue has

a trivial solution based on the notion of group (or subject) these systems

define explicitly. In the case of a push approach a different gossip message

can be produced periodically for each group and sent to the processes of the

same group. Similarly, in the case of a pull approach the most reasonable

solution to retrieve a lost message m is to contact the processes that are part

of the group m belongs to.

Unfortunately, this approach cannot be applied in the case of content-ba-

sed publish-subscribe systems, since they do not rely on any explicit notion

of group to route messages to their recipients. In these systems, routing is

entirely based on the message content: hence, a single message can match

different patterns, and consequently reach different subscribers. Moreover,

in general the entire message content must be matched against a pattern,

while in subject-based schemes only the subject is considered.

As a consequence of these observations, we can identify three key issues

that must be dealt with when applying gossip algorithms to content-based

publish-subscribe:

How to route the gossip messages. As mentioned above, determining how

to route gossip messages, i.e., choosing which other nodes to gossip

with is critical in content-based publish-subscribe. In particular, when

Chapter 4 GOSSIP AND CONTENT-BASED 52

a push strategy is adopted gossip messages include only a (usually pos-

itive) digest of messages, and hence the standard matching mechanism

employed for routing cannot be applied to them to reach potentially

interested nodes. The pull case is different and even more complex

since in this case the gossiper is interested in retrieving lost messages

and, by definition, their content is not available for matching.

How to determine that some event has been lost. To adopt a reactive

approach it is crucial to determine if some message has been lost. This

apparently simple task has not a trivial solution in content-based pu-

blish-subscribe. In fact, differently from subject-based systems, when

content-based routing is applied, a node N1 will not necessarily receive

every message generated by another node N2 under a given subject,

but only those matching N1’s patterns. As a consequence, N1 cannot

employ the easy solution of logging the sequence number of the last

message received for each message source and subject to determine if

some message has been lost, since it has no way to distinguish whether a

message coming from N2 and whose sequence number has been skipped

must be considered as lost or simply not relevant to N1’s patterns.

How to determine which events have been lost. If a negative scheme

must be adopted it is fundamental to determine not only if some mes-

sage has been lost, but also exactly which ones have. Again, in the

case of a content-based system this problem does not allow the easy

solution based on message sequence numbers, that is instead adopted

Chapter 4 GOSSIP AND CONTENT-BASED 53

by multicast or subject-based routing.

4.2 A simple (but Inefficient) Solution

In an effort to keep things as simple as possible, it could seem reasonable

to solve the first of the aforementioned issues by using a “blind” approach,

where the set of nodes to gossip with is drawn randomly from the overall set

of nodes. Unfortunately, this solution exhibits poor performance, both in its

push and pull variants. With a pull approach, the convergence rate, given by

equation (3.1), must be modified to consider the probability r of contacting a

node that is not subscribed to any pattern matching the messages that must

be retrieved:

pi+1 = P(susceptible at i + 1)

= P(contacted node is not infected) ∗ P(susceptible at i)

= (pi + r) ∗ pi

In case of gossip-push, the convergence rate is obtained by modifying the

push equation (3.2) as follows:

pi+1 = P(susceptible at i + 1)

= P(susceptible at i) ∗ P(not chosen by any infective node)

= pi ∗
(

1− 1

N

)N−Npi−Nr

As N grows it becomes:

pi+1 = pi ∗ epi+r−1 = pi ∗ epi−1 ∗ er

Chapter 4 GOSSIP AND CONTENT-BASED 54

These formulas show that a large number of nodes not subscribed to

any pattern matching the messages that have to be retrieved (i.e., a large

r) slow down the convergence considerably thus badly hurting the recovery

of messages with a low number of recipients. Observe that this situation,

i.e., the presence of a low number of recipients for each message, is common

in publish-subscribe systems since it justifies the overhead of more complex

routing schemes instead of the trivial flooding approach [8, 27].

Hence, more sophisticated solutions to the problem of how to route gossip

messages are needed. These are presented in the next chapter, together with

our solutions to the other aforementioned challenges.

Chapter 5

Gossip Algorithms for

Reliability

In the previous chapter we analyzed the specific challenges content-based

routing poses on gossip algorithms. In this section, we focus on deriving a

solution to such challenges. In Section 5.1, we show an algorithm that uses

proactive gossip push with positive digests. Then, in Section 5.2 and 5.3 we

show two algortihms using reactive pull with negative digests.

In all the solutions we present in this section, every dispatcher periodi-

cally initiates a new round of gossip by performing the operations described

by an action startGossipRound, whose behavior is shown in the description

of the algorithm. In such description, however, we omitted the operations

concerning the setting and triggering of the gossip interval T separating two

gossip rounds, as their semantics is trivial.

Chapter 5 GOSSIP ALGORITHMS FOR RELIABILITY 56

Per dispatcher information:

- buffer Cache holding a copy of the last events received

Invoked periodically, e.g., after timeout expiration.

Triggers the start of a new gossip round for a pattern in the subscription table.

startGossipRound ()

choose a pattern p from the subscription table

create digest = ∅

for all event e ∈ Cache do

if matches(e, p) then

insert e.id in digest

end if

end for

create gossipMsg = (self , p, digest)

send gossipMsg towards one or more subscribers for p

Figure 5.1: Push algorithm(I).

5.1 Push

To provide an answer to the questions identified in Chapter 4 in the case

of proactive push with positive digests we observe that, with this strategy,

a gossip message sent by a dispatcher should include information about the

set of events it cached. Moreover, this gossip message should be sent only to

dispatchers subscribed to such events. As we already discussed, in content-

based publish-subscribe systems this set of subscribers cannot be computed

once for all. Nevertheless, we can leverage off of the fact that every dispatcher

that received and cached an event e knows, from its subscription table, all the

patterns matching e. This means that each dispatcher is able to construct a

gossip message which includes a digest of all the cached events matching a

Chapter 5 GOSSIP ALGORITHMS FOR RELIABILITY 57

Per dispatcher information:

- buffer Cache holding a copy of the last events received

Invoked on a dispatcher upon receipt of a gossip message.

handleGossipMsg (gossipMsg)

if self is subscribed to gossipMsg.pattern then

create a new reqMsg = ∅

for all id ∈ gossipMsg.digest do

if ¬isReceived(id) then

insert id in reqMsg

end if

end for

if reqMsg 6= ∅ then

send reqMsg to gossipMsg.initiator

end if

end if

with probability Pforward send gossipMsg towards one or more subscribers for gossipMsg.pattern

Invoked on the gossip initiator when a request for a missing event is received.

handleReqMsg (reqMsg)

for all id ∈ reqMsg do

if ∃e ∈ Cache | e.id = id then

send e to the sender of reqMsg

end if

end for

Figure 5.2: Push algorithm(II).

given pattern p. This gossip message can then be labelled with p and routed

similarly to events matching p.

When startGossipRound is invoked by the dispatcher acting as the gos-

sip initiator (or gossiper), a pattern p is chosen according to some strategy

(e.g., randomly) from the dispatcher’s subscription table and a digest is con-

Chapter 5 GOSSIP ALGORITHMS FOR RELIABILITY 58

structed which includes the (globally unique) identifiers1 of all the cached

events matching p. The gossip message gossipMsg , is then labelled with the

pattern p and propagated along the dispatching graph. Routing of gossipMsg

message outside the gossiper and along the way towards a subscriber is deter-

mined in the usual way, by looking at the subscription table to find neighbors

interested in the pattern p. Nevertheless, it is worth noting that in the case

of gossip, differently from the normal operation of a publish-subscribe sys-

tem, the gossip message is not necessarily duplicated on all the outgoing

routes towards subscribers, like in the case of events. Instead, it is sent only

to a subset of the potential recipients, e.g., using a random subset of the

routes available. The extent of propagation is determined by the probability

Pforward , in order to limit overhead.

Also, note how in a traditional push-based approach every node gossips

only with nodes sharing the same interests. A similar behavior can be ob-

tained in a content-based publish-subscribe system by limiting the choice of

p to the patterns in the subscription table which correspond only to subscrip-

tions sent by the clients attached to dispatcher. Nevertheless, this would be

detrimental, in that it would limit the number of nodes to gossip with and

it would disregard the fact that in such systems a single event may match

several patterns and thus reach different sets of subscribers. For this reason,

in our solution p is drawn by considering the whole subscription table, i.e.,

from all the patterns known to the dispatcher. This increases the chances to

1A straightforward implementation of this identifier can be the source identifier and a

monotonically increasing sequence number associated to the source.

Chapter 5 GOSSIP ALGORITHMS FOR RELIABILITY 59

eventually find all the dispatchers interested in the cached events and, with

respect to the trivial solution sketched in Chapter 4.2, speeds up convergence

and exhibits a lower overhead.

Upon receipt of gossipMsg , a dispatcher is expected to perform the oper-

ations represented by the action handleGossipMsg. These consist of checking

whether the dispatcher is subscribed to the pattern p labelling gossipMsg

and, if so, of verifying whether all the identifiers contained in the digest

correspond to events that have already been received. In our solution, the

details of how this test is performed are glossed over, and encapsulated in

a function isReceived (id), which returns true if the dispatcher received an

event with the given id .

The identifiers of all the missed events, if any, are then included in a

request message reqMsg which is sent back to the gossiper. Upon receipt of

this message, the gossiper selects the events with the corresponding identifier

from the cache, and sends them back to the requester. This third and last

phase concludes the interaction taking place in our push approach.

5.2 Pull

In some situations, as discussed in 3.3.1, a proactive push approach may

converge slowly or results in unnecessary traffic. In these cases, a pull ap-

proach may be preferable.

When a reactive pull with negative digests is used, things become slightly

more complicated, as we discussed in Chapter 4. In fact, in a content-based

Chapter 5 GOSSIP ALGORITHMS FOR RELIABILITY 60

Per dispatcher information:

- buffer LostBuffer holding a triple (source, pattern, sequence number) for each lost event

- buffer Cache holding a copy of the last events received

Invoked periodically, e.g., after timeout expiration.

Triggers the start of a new gossip round for a pattern in the subscription table.

startGossipRound ()

if LostBuffer 6= ∅ then

choose a pattern p from the subscription table (considering only those coming from clients)

create digest = ∅

for all (s, p, c) ∈ LostBuffer do

insert (s, c) in digest

end for

create gossipMsg = (self , p, digest)

send gossipMsg towards one or more subscribers for p

end if

Invoked on a dispatcher upon receipt of a gossip message.

handleGossipMsg (gossipMsg)

for all (s, c) ∈ gossipMsg.digest do

if ∃e ∈ Cache | e satisfies the triple (s, gossipMsg.pattern, c) then

send e to gossipMsg.initiator

end if

end for

if self is not subscribed to gossipMsg.pattern then

send gossipMsg to one or more subscribers for gossipMsg.pattern

else

with probability Pforward send gossipMsg to one or more subscribers for gossipMsg.pattern

end if

Figure 5.3: Pull algorithm.

system dispatchers are not supposed to receive all events, rather only those

matching the subscribed patterns. Hence, holes in sequence numbers are not

enough to determine whether a given event message has been lost or it was

Chapter 5 GOSSIP ALGORITHMS FOR RELIABILITY 61

instead simply not relevant to the dispatcher’s subscriptions.

To solve this issue, we tag events with identifiers that, besides containing

the information about the event source, contain the patterns2 matched by

the event, each associated with a sequence number incremented at the source

each time an event is published for that pattern. For instance, let us consider

an event source named john, which already published four events matching

a hypotethical and simplified pattern green, and other three matching red.

When this event source publishes a new event that matches both patterns, the

identifier associated to the event message is john:green-5:red-4. Patterns

are associated to an event at its source: this is made possible by the fact

that a subscription forwarding strategy is chosen, and hence subscriptions

are known to all dispatchers.

This scheme enables the design of a reactive pull approach, based on

the sequence numbers stored in the event identifier. Whenever a dispatcher

receives an event matching a pattern p, but for which the sequence number

associated to p in the event identifier is greater than the one expected for

that pattern and source, it can detect the loss of an event and trigger the

appropriate actions.

In the solution shown in Figure 5.3, as soon as a lost event is detected it is

immediately inserted in the buffer LostBuffer , by an action that is not shown

explicitly in the figure, in order to keep the algorithm description concise.

The elements of LostBuffer are the triples identifying an event in our en-

coding, i.e., source, pattern, and sequence number associated to the pattern.

2A hash signature of the pattern is actually sufficient.

Chapter 5 GOSSIP ALGORITHMS FOR RELIABILITY 62

The action startGossipRound, that is invoked at regular intervals like in the

push solution, first checks whether there are lost events. If so, a gossip round

is effectively triggered3. In this case, the choice of the pattern p characteriz-

ing this gossip round is limited to the subset of pattern in the subscription

table that have been sent by clients attached to the dispatcher. Note how,

unlike push, we are not using the whole subscription table, since this time

the focus is on retrieving only events that are relevant to the gossiper, and

not on disseminating events to as many dispatchers as possible. The pattern

p is used to select the corresponding lost events from LostBuffer and insert

them in the digest attached to the gossip message gossipMsg , which is then

routed in a way analogous to the push solution.

When a dispatcher receives a gossipMsg , it checks its event cache to see

whether it holds some of the events requested by the gossiper. It does not

matter whether that dispatcher is a subscriber for the pattern p requested by

the gossiper. For instance, following up on our earlier example, let us suppose

that the gossiper is missing the event john:green-5, and that this informa-

tion is included in a gossipMsg . Of course, there is no way for the gossiper to

know that this event has been delivered also to dispatchers subscribed to red.

Instead, a dispatcher that is subscribed to red events and has cached the

event can easily determine that john:red-4 and john:green-5 are indeed

the same event by looking at the event identifier (john:green-5:red-4).

3In principle, a gossip round could be triggered immediately upon detection of a lost

event. Nevertheless, in scenarios characterized by frequent losses it is convenient to delay

the triggering to the next gossip round, so that multiple lost events can potentially be

retrieved during a single round.

Chapter 5 GOSSIP ALGORITHMS FOR RELIABILITY 63

Hence, the dispatcher can retransmit the missed event to the gossiper.

Although events can be retransmitted by any dispatcher that has “seen”

the event, it is very important for a gossip message to be steered towards a

subscriber for the same pattern of the lost event (green in our case). In

fact, subscribers act as “points of accumulation” for events, in that not only

they might have the requested event in the cache, but they also actively try

to recover lost events through gossip. Hence, when a gossipMsg reaches a

subscriber, rather than a middleman dispatcher, the likelihood of recovering

the lost events is much higher.

Clearly, the effectiveness of the pull solution depends on the number of

subscribers for each pattern. The more the subscribers, the more efficient

the recovery process is, since there are more subscribers to exploit, and more

alternative routes to follow during the propagation of gossipMsg thus in-

creasing the probability to recover events from dispatcher not belonging to

the “group” defined by the pattern specified by the gossiper. As a conse-

quence of this observation, the performance of the pull algorithm is likely

to be subject to a drastic reduction in scenarios where instead common in-

terests are very rare and alternative routes scarce. This motivates our third

approach, illustrated in the next section.

5.3 Source

The last solution we present in this paper is illustrated in Figure 5.4,

and employs a source-routing scheme that tries to recover lost events by

Chapter 5 GOSSIP ALGORITHMS FOR RELIABILITY 64

Per dispatcher information:

- buffer LostBuffer holding a tuple (source, pattern, sequence number) for each lost event

- buffer Cache holding a copy of the last events received

- buffer Routes holding a pair (source, route) for each event source

Invoked periodically, e.g., after timeout expiration.

Triggers the start of a new gossip round for a source.

startGossipRound ()

if LostBuffer 6= ∅ then

choose a publisher s

create digest = ∅

for all (s, p, c) ∈ LostBuffer do

insert (p, c) in digest

end for

create gossipMsg = (self , s, digest , r) with r|(s, r) ∈ Routes

send gossipMsg to the first node in gossipMsg.route

end if

Invoked on a dispatcher upon receipt of a gossip message.

handleGossipMsg (gossipMsg)

for all (p, c) ∈ gossipMsg.digest do

if ∃e ∈ Cache | e satisfies the triple (gossipMsg.source, p, c) then

send e to gossipMsg.initiator

end if

end for

if self = gossipMsg.source then

drop gossipMsg

else

send gossipMsg to the next node in gossipMsg.route

end if

Figure 5.4: Source-based algorithm.

walking backwards towards the event source. This solution can be regarded

as dual and complementary to the pull solution we just described, in that

Chapter 5 GOSSIP ALGORITHMS FOR RELIABILITY 65

the gossiping focuses on sources instead of patterns.

We present the source algorithm separately for clarity’s sake but it has

been developed as a fallback for the pull solution. It allows to overcome

the aforementioned drawback of the pull solution ensuring good performance

even in scenarios where the number of subscribers for each pattern is very

low.

At simulation stage usually source and pull solution are coupled into a

single algorithm (where the choice between a pull or a source gossip round

is made in probability) but occasionally they are evaluated separately to

remark each contribution.

In this solution, we assume that every published event is cached at the

source, and possibly at dispatchers located on routes towards the subscribers

for that event. Moreover, the address of each dispatcher encountered by the

event during its travel towards a subscribers is recorded in the event message,

thus constructing a route from the source to the subscriber. Lost events are

handled in the same way as in the pull solution and inserted in LostBuffer ,

based on the same identifier scheme. In addition, a new buffer Routes is

necessary to store the route towards a given source, e.g., based on the route

information stored in the most recent event received from that source.

When a new gossip round is triggered, an event source is chosen among

those known. The actions startGossipRound and handleGossipMsg essentially

behave like their counterparts in the pull algorithm, except for the fact that

the information distinctive of the gossip message is now the event source

rather than pattern, and that gossipMsg is now augmented with the route

Chapter 5 GOSSIP ALGORITHMS FOR RELIABILITY 66

information necessary to be routed back to the source. It is interesting to

note that there is no guarantee that the route stored in Routes is the same

originally followed by the missing event. On the other hand, it is likely that

the two share at least the first portion or, in the worst case, the source.

One reasonable question to ask is whether this solution suffers from the

well-known “acknowledgment implosion” problem, that affects several reli-

able group communication schemes, and occurs when several nodes missing a

message request retransmission simultaneously to the same node. Our push

and pull solutions, thanks to their distributed nature, are essentially free

from these risk. For the source-based solution, the probability of such a phe-

nomenon is rather low. In fact, it is unlikely that two subscribers holding

different subscriptions (e.g., our usual green and red) realize at the same

time that they have missed an event. Following our example, this would

happen only if the next event published by john matches both patterns

as well. Finally, differently from traditional NACK-based reliable multicast

schemes, retransmission requests are handled by the first dispatcher holding

the desired event found along the path, thus avoiding to overload the source.

Chapter 6

Simulation Results

In this chapter we first show the behavior of our algorithms in a number of

scenarios and then we test them against main parameter values in order to

explore their changes in performance.

In the last section we introduce some graphs pertaining to overhead intro-

duced by our algorithms and analyze its impact with respect to performance.

6.1 Simulation Setting

In the absence of reference scenarios for comparing content-based systems,

we defined our own, based on what we believe are reasonable assumptions

covering a wide spectrum of applications.

In our simulations we considered a default scenario and explored the

behavior of our algorithms as one parameter varies. In the following we

present these parameters and indicate their default value. These values are

summarized in table 6.1

Chapter 6 SIMULATION RESULTS 68

Events, subscriptions, and matching. Events are represented as randomly-

generated sequence of numbers, where each number represents a pattern of

the system. We settle for a uniform distribution in this sequence. Subscrip-

tions are represented as a single number. An event matches a subscription if

it contains the number specified by the subscription. In each simulation the

number of different subscriptions available in the system is set to a constant

numPatterns (default value = 70). Each dispatcher can subscribe to a

number of subscriptions (drawn randomly from the available ones) such that

for each pattern the number of subscribers is equal to numSubscribersPer-

Pattern (default value = 2.8).

Publish rate. The behavior of each dispatcher in terms of publish and

(un)subscriptions is governed by a triple of parameters, fpub, fsub, and funsub,

respectively governing the frequency at which publish, subscribe, and unsub-

scribe operations are invoked by each dispatcher. The most relevant is fpub,

which essentially determines the load in the system in terms of event messages

that need to be routed. Based on this parameter, we choose a load scenario

with a publishRate of about 50 publish/s per dispatcher (fpub = 0.05).

Tree topology. The results we present here are all obtained with tree

configurations of numEDs event dispatchers (default value = 100), where

each dispatcher is connected with at most four other dispatchers (one parent

and three children).

Clients are not modeled explicitly, as their activity ultimately affects only

the dispatcher they are attached to. Moreover, in the scenarios we target

Chapter 6 SIMULATION RESULTS 69

(e.g., MANET and peer-to-peer networks) the architecture of the publish-

subscribe system is likely to have clients and dispatchers coincide.

Channel Reliability. We assume that each link in the tree connecting

two dispatchers behaves as a 10 Mbit/s Ethernet link with a fixed error-

Rate (default value = 0.1) which, of course, affects both events and gossip

messages.

Tree reconfiguration. The selection of the links breaking or appearing is

done randomly. Reconfigurations are triggered with a frequency determined

by the duration of the interval between two reconfigurations, recInterval.

Buffer size. Every dispatcher is equipped with a buffer storing events to

satisfy retransmission requests. Its size varies according to the parameter

bufferSize (default value = 1500). In our simulations we adopt a simple

FIFO buffering strategy where each dispatcher caches only events for which

it is either the publisher or a subscriber. Other simple strategies, such as

buffering also the events simply routed through the dispatcher, have not been

reported here as their performance did not improve on selected strategy.

Gossip interval. The frequency of gossiping is controlled by a parameter.

We set it to a fixed value of 0.03 seconds.

Source probability When a combination of pull and source algorithms is

used, a parameter called sourceP sets the probability of using the source

strategy against the pull one. In our simulation we chose a value of 0.3.

Chapter 6 SIMULATION RESULTS 70

Simulation tool. In our simulations, we are not concerned with modeling

the behavior of the underlying networking stack. Instead, we are essentially

comparing the algorithms only at the application level. For this reason, we

decided to develop our simulations using OMNET++ [43], a free, open source

discrete event simulation tool.

Parameter Default Value

numPatterns 70

numSubscribersPerPattern 2.8

publishRate 50

numEDs 100

errorRate 0.1

bufferSize 1500

sourceP 0.3

gossipInterval 0.03

Table 6.1: Default values used in simulations

6.2 Event Delivery

As mentioned in Chapter 1, all the algorithms introduced so far have been

designed for and find their natural application in situations where events

get lost because of the on-going reconfiguration of the event dispatching

infrastructure, due to mobility or other causes. To take into account such

situations we did not make any hypothesis about the stability of network

Chapter 6 SIMULATION RESULTS 71

routes among dispatchers. At the same time, it is important to note that

we did not make any hypothesis about the cause of event loss. Hence, our

algorithms enjoy general applicability, and can provide improved reliability in

any situation determining event loss, e.g., in presence of a stable dispatcher

graph with lossy channels.

In order to show that we tested our algorithms in two scenarios which

experience different causes of event loss.

6.2.1 Error Rate

We defined two scenarios with different error rates. The first, very critical,

exhibits an average delivery equal to 50% obtained by setting errorRate to

0.1. The second shows an average delivery of 70% (errorRate = 0.05).

In figures 6.1 and 6.2 is shown that pull-source and push algorithms ex-

hibit similar performance, recovering up to 90% in the critical scenario and

up to 98% in the other. In the former one the recovery phase is responsible

for the delivery of almost half of the total message delivered.

6.2.2 Tree Reconfiguration

To retain some degree of control over when a reconfiguration occurs, we

assume that each broken link is replaced by a new link in 0.1 s.

Then we considered two reconfiguration scenarios: recInterval = 0.2s

which yields non-overlapping reconfigurations, and recInterval = 0.03s,

which defines a situation where several reconfigurations overlap. The latter

can be regarded as an approximation of the case in which a non-leaf dis-

Chapter 6 SIMULATION RESULTS 72

0.4

0.5

0.6

0.7

0.8

0.9

1

2 2.5 3 3.5 4

D
el

iv
er

y
R

at
e

seconds

errorRate = 0.1

no recovery
push

pull-source

Figure 6.1: Example of delivery in a very critical scenario

patcher is detached from the tree, and hence multiple links are broken at

once. In any case, it defines a particularly difficult reconfiguration scenario,

and provides a good, extreme test case for our analysis.

Reconfigurations are allowed only in the interval between 4 and 6 seconds,

and results are charted in figures 6.3 and 6.4.

We can see that even in situation where routes are under heavy repair

where delivery drops as low as 50% our recovery algorithms do not drop below

90% indicating a good robustness to variation in delivery of the underlying

system.

In the rest of the chapter, we focus on scenarios characterized by lossy

channels since these represent the most general case. In particular, we set

Chapter 6 SIMULATION RESULTS 73

0.4

0.5

0.6

0.7

0.8

0.9

1

2 2.5 3 3.5 4

D
el

iv
er

y
R

at
e

seconds

errorRate = 0.05

no recovery
push

pull-source

Figure 6.2: Example of delivery in a lossy scenario

errorRate to the critical value of 0.1 to better appreciate the variations in

performance with respect to the parameter we vary.

6.2.3 Buffer size

One of the most critical parameters to set in a recovery algorithm is the length

of buffers. In fact as remarked by figure 6.5 with the growth of bufferSize

algorithm delivery rates converge to 1, apart from pull for the reason set

forth in 5.2. On the other hand with very small buffers pull performance is

better than in the case of other algorithms.

We consider a range of values from 500 to 3500 buffered events, that in

our scenario correspond to a time length varying approximately from 1.3

Chapter 6 SIMULATION RESULTS 74

0.4

0.5

0.6

0.7

0.8

0.9

1

4 4.5 5 5.5 6

D
el

iv
er

y
R

at
e

seconds

recInterval = 0.03

no recovery
push

pull-source

Figure 6.3: Example of delivery in a scenario with overlapping reconfigura-

tions

seconds to 9.2 seconds.

Since buffer length is shown to be responsible for a high percentage of

algorithms performance, we were especially careful in setting its value so as

to avoid impacting the results of the following simulations.

Reasoning on how to set buffer length to allow algorithms to operate

correctly an assumption that seems adequate is to keep messages for a fixed

amount of time before discarding them. This of course would result in a

constant length as measured in time, and an absolute size that grows linearly

with traffic rate.

Consequently, when a modification in a parameter value leads to an in-

Chapter 6 SIMULATION RESULTS 75

0.4

0.5

0.6

0.7

0.8

0.9

1

4 4.5 5 5.5 6

D
el

iv
er

y
R

at
e

seconds

recInterval = 0.1

no recovery
push

pull-source

Figure 6.4: Example of delivery in a scenario with non-overlapping reconfig-

urations

creased traffic on dispatchers, we adjusted bufferSize according to the above

rule.

This choice is in fact rather conservative considering that a known result

from epidemic literature is that the buffering requirement on each dispatcher

grows O(ρ log n)1, where n is equal the system size and ρ is the total message

rate (in our case ρ = nfpub).

1In [28] some improvements have been proposed and their applicability to content-based

system will be a subject for future works

Chapter 6 SIMULATION RESULTS 76

0.4

0.5

0.6

0.7

0.8

0.9

1

500 1000 1500 2000 2500 3000 3500

D
el

iv
er

y
R

at
e

bufferSize

Delivery versus bufferSize

no recovery
push

pull-source
pull

Figure 6.5: Effect of bufferSize on delivery rate

6.2.4 Pattern

Since pattern distribution is a key factor in content-based systems, we ex-

plored several situations to evaluate how performance changes. The main

parameters we used to characterize the content-based scenario are the total

number of patterns present in the system (numPatterns) and the number

of dispatcher subscribed to each pattern (numSubscribersPerPattern).

In the first graph (shown in figure 6.6) we test our algorithms with respect

to the former parameter, keeping the latter constant.

In the second (figure 6.7) we analyze the dual case. In our simulation we

increase numSubscribersPerPattern by varying the number of subscrip-

Chapter 6 SIMULATION RESULTS 77

0.4

0.5

0.6

0.7

0.8

0.9

1

20 30 40 50 60 70 80

D
el

iv
er

y
R

at
e

numPattern

Delivery versus numPattern

no recovery
push

pull-source
pull

Figure 6.6: Performance in different content-based scenarios (I)

tions held by each dispatcher2.

Figure 6.6 confirms that pull-based algorithms are not influenced by

numPatterns. On the other hand push approach performance decreases

as patterns grow. In chapter 7 we elaborate on this showing how this effect

is lessened in real scenarios.

On the other side pull-based algorithms improve significantly their per-

formance as numSubscribersPerPattern increases. Push is somehow in-

dependent from changes of this value.

The aforementioned results confirm our previous expectations since pull

2As this, of course generate more traffic for each dispatcher, to avoid correlation with

the traffic graphs we compensate by slightly rising bufferSize

Chapter 6 SIMULATION RESULTS 78

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7

D
el

iv
er

y
R

at
e

numSubscriberPerPattern

Delivery versus numSubscriberPerPattern

no recovery
push

pull-source
pull

Figure 6.7: Performance in different content-based scenarios (II)

recovery mechanism exploits the presence of subscribers acting as “point

of accumulation” for events, whereas push depends on how many different

patterns a dispatcher has to pick for gossip messages.

6.2.5 System size

As a conclusion we present a graph relating to the size of the system under

simulation. In each run we added a number of dispatchers to the system thus

increasing the event load on every dispatcher, to maintain equality among

runs we also raised bufferSize accordingly to keep buffer time length con-

stant (in this case approximately equal to 4s).

Chapter 6 SIMULATION RESULTS 79

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

40 60 80 100 120 140 160 180 200

D
el

iv
er

y
R

at
e

numEDs

Delivery versus Size

no recovery
push

pull-source
pull

simple

Figure 6.8: Effect of size on delivery rate

The results underline a good scaling behavior relative to the system size

for both push and pull variant, as per epidemic algorithms good scaling

properties. The “simple solution” series verifies the analysis we presented in

4.2: as the network size grows its efficiency degrades dramatically because

the probability of contacting “removed” nodes becomes higher.

6.3 Overhead

In this section we analyze the behavior of our algorithms with respect to

system size, focusing on overhead expense rather than delivery rate as we

did in figure 6.8 obtaining a constant delivery.

Chapter 6 SIMULATION RESULTS 80

The first measure of overhead we introduce is the amount of gossip mes-

sages seen by every dispatcher. As graph 6.9 indicates, when the system

scales up, the trend of traffic due to gossip messages is far under linear.

0

200

400

600

800

1000

1200

40 60 80 100 120 140 160 180 200

G
os

si
p

m
sg

s
pe

r
di

sp
at

ch
er

numEDs

Absolute Overhead versus Size

push
pull-source

Figure 6.9: Measurement of gossip traffic per dispatcher as system size grows

This result is a direct consequence of the decentralized nature of gossip al-

gorithms: the effort in term of gossip messages published by each dispatcher

is independent of system size. Hence, the gossip traffic growth is propor-

tional to the hops traveled by each gossip message which in our case increase

logarithmically.

To give an idea of the global traffic rate due to rough event dissemination

versus gossip messages we plot the ratio between them.

The real bandwidth ratio should account for the relative size of the two.

Chapter 6 SIMULATION RESULTS 81

We act conservatively by assuming an equal weight to both of them, though

it is likely that events are much bigger.

0.05

0.1

0.15

0.2

0.25

0.3

40 60 80 100 120 140 160 180 200

G
os

si
p

m
sg

s
/ E

ve
nt

s

numEDs

Relative Overhead versus Size

push
pull-source

Figure 6.10: Percentage of traffic due to the gossip messages as the system

size grows

Graph 6.10 evidences that as network size grows, event traffic rises faster

than gossip one. This could be explained by noting that gossip mechanism

does not involve any multicast primitive.

Chapter 7

Discussion

The solutions we proposed exhibit very different characteristics, and hence

perform best in different scenarios. We analyzed their tradeoffs and applica-

bility through simulation, and results demonstrate indeed that a significant

improvement in the event delivery rate is achieved. In the following we pro-

vide some additional remarks about the working of our solutions and their

potential exploitation.

7.1 Performance Considerations

We can observe that buffer size plays a key role in determining the perfor-

mance of our algorithms. Likewise the other parameter responsible of the

behavior of our solutions is the interval between gossip rounds. Small values

of gossipInterval improve the performance but increase the overhead as

well, while large values may increase the time needed to retrieve a missed

event or even fail to recover it. Of course the two values of bufferSize and

Chapter 7 DISCUSSION 83

gossipInterval are intimately interconnected: they together set the tradeoff

between performance and overhead respectively in terms of memory require-

ments and network traffic.

Relatively to parameters defining the content based scenario, we can ob-

serve that the effectiveness of the pull solution strongly depends on the avail-

ability of a reasonable number of subscribers for the same pattern used to

“pull” messages. Hence, scenarios where the set of subscriptions of each

dispatcher are largely disjoint are very critical for pull.

One possibility for overcoming the limitations of a given pull algorithm is

to couple it with other algorithms. The most natural solution is actually to

use at the same time the pull solution with the source-based one, in that it

essentially exploits the dual approach of gossiping towards the event sources,

rather than subscribers. The idea is that the combination of pull and source-

based improves the chances of recovering an event, since it is going to look

not only through the route towards who received the event, but also towards

who sent it.

On the contrary the number of subscribers should not affect significantly

the performance of push. A challenging scenario for push is represented

instead by a high number of patterns. This is alleviated by the fact that

what really hampers push dissemination is number of patterns matched by

buffered messages; which, given the reasonable assumption of “locality” be-

tween patterns, are much fewer than the total number of patterns available

globally in the system.

Chapter 7 DISCUSSION 84

7.2 Overhead Considerations

One great advantage of the pull-based solutions is their reactivity. Reac-

tive approaches perform better, in terms of generated traffic overhead, when

there is a large variability in the frequency of event losses, e.g., in situations

where at first the system is in a quiescent state with the system losing very

few events followed by periods in which the system experiences bursts of er-

rors. This is actually what happens when the topology of the dispatching

infrastructure is changed, e.g., because of mobility.

As for push, we may observe that when the system is stable a proactive

push approach is likely to result in wasted bandwidth. To remove this poten-

tial source of inefficiency, an adaptive approach can be exploited where the

gossip interval T is changed dynamically according to the current state of

the system. A simple algorithm can be derived along the lines of [9], where

a dispatcher d maintains a count of the gossip messages which did not gen-

erate an event request reqMsg . When this count reaches a given threshold, d

increases the value of T by a given amount. The original value of T is reset

when d detects that events are lost in the system, i.e., when it receives either

a reqMsg or a gossipMsg concerning events it has missed. This simple scheme

allows to consume only negligible bandwidth shortly after an approximation

of global consistency is detected.

Chapter 7 DISCUSSION 85

7.3 Enhancements and Open Issues

Moreover, another issue is that of computational overhead. In this respect,

the pull-based solutions require that, when an event e is published by a

dispatcher, the latter performs a match of e against all the patterns in its

subscription table. This is more than normally required, since usually the

match processing needed to route a message towards a neighbor stops as soon

as the first matching pattern is found. While we are currently investigating

optimizations to limit this overhead, we also observe that only the source

experiences it: the event routing performed by the other dispatchers in the

system follows the normal processing. Clearly, there is also a traffic over-

head being paid because the event message is inflated by the subscriptions

and sequence numbers attached to it. Nevertheless, since hash values and

integers are being carried, we estimate that this overhead should not impact

significantly the overall performance of the system.

In large networks with a high volume of traffic, cache management is

another critical issue. In particular, the size of the cache and the policy

used to discard obsolete elements are key. As for the second aspect, criteria

should privilege the persistence of events for which the dispatcher is either a

subscriber or a source, with respect to events the dispatcher has received only

for routing purposes. Moreover, event persistence should be tuned (e.g., with

probability parameters) so that the caches belonging to different dispatchers

are somehow differentiated. This would allow to improve the likelihood of

retrieving the lost event, and at the same time allow the individual caches

to be smaller, leveraging off of the scale factor.

Chapter 7 DISCUSSION 86

As a final remark, the solutions we presented assume a subscription for-

warding scheme. While this scheme is the most common, an open question

is to what extent it is applicable to other routing schemes. Interestingly, the

push solution is independent of the routing scheme adopted since it is based

on the idea of routing the gossip message based on the pattern attached to

it, as if it were an event. Conversely, the event identification scheme adopted

by the pull and source-based algorithms is based on the global knowledge of

subscriptions, which is not necessarily provided by other schemes.

Chapter 8

Related Work

Several publish-subscribe systems offer a reliable service (e.g., all the JMS [38]

compliant systems) by adopting a centralized event dispatcher and reliable

channels between the dispatcher and its clients. Similarly, some of the exist-

ing publish-subscribe systems which adopt a distributed dispatcher provide

a reliable service [40, 32, 4, 31, 44, 6], but none of them use a content-based

routing scheme.

Researchers working on reliable multicast [34, 26, 20] and group commu-

nication [14, 8] proposed several protocols for reliable multicast where routing

is group or subject-based.

Traditional implementations of such applications work well in small-scale

settings, but show drastic reduction in performance as system size increases.

In fact, the ack/nack mechanism employed by such protocols to improve

reliability unfortunately tends to compromise their scalability by overflowing

the sender’s buffer and congesting the nearby network.

Chapter 8 RELATED WORK 88

More recent protocols (e.g. RMTP[22]) propose a mechanism of local

recovery to limit the load of the network, but they depend on the stability of

the multicast routing tree. In very dynamic environment, such as MANETs

or peer-to-peer networks, routes change very rapidly and the methods used

are consequently not available to us.

Indeed, other distributed repair based protocols, such as SRM[17], do not

require a permanent multicast tree, but have a solicitation and retransmission

mechanism that involves multicasts; when a duplicate retransmission occurs,

all participants process and transmit extra messages.

FEC-based reliability mechanisms, instead, try to reduce retransmission

requests to the sender by encoding redundancy in the data stream. In sys-

tems adopting a content-based paradigm, even under error-free dissemination,

messages sent by a source make up multiple streams that are difficult to iden-

tify (see 5.2) and since overlapped are also difficult to add redundancy to.

FEC in multicast systems is shown to be very appealing when the group of

receivers is large because different nodes could exploit the same overhead to

repair different losses or when coupled with ARQ(as in [25]) a single retrans-

mission could repair different losses. Unfortunately large groups are much

rarer in content based system.

In recent years, gossip techniques have been employed successfully to deal

with scalable reliable multicast in peer-to-peer networks [15] and in highly

dynamic environments such as mobile ad hoc networking [7, 24]. Results have

been encouraging but, again, their techniques are not directly applicable to

our problem since they consider broadcasting information to all participants

Chapter 8 RELATED WORK 89

in a group.

To the best of our knowledge, the only system that provides reliable

content-based routing is hpcast [16]. In hpcast nodes are organized in a

hierarchy where the leaves represent event subscribers and publishers, and

intermediate nodes represent delegates, i.e., special nodes which are chosen to

represent aggregate interests of their sons. Gossip-push is used to distribute

events starting from the root of the hierarchy and moving down each time a

delegate retrieves an event that could interest its sons. This idea of using a

gossip algorithm not only to reduce the number of lost events but as the only

routing mechanism is simple and elegant, but results in several drawbacks.

First, in absence of faults it increases the overhead since events are not routed

only to interested nodes, but they can reach also non-interested nodes or even

be sent more than once to the same node. Second, even in absence of faults

it does not guarantee that events are delivered correctly, but provides only

a bimodal behavior. Third, it forces the adoption of a gossip-push approach

in which gossip messages include the entire event content instead of a simple

digest, thus further increasing the network traffic. Finally, the nodes near to

the root of the hierarchy are subject to a high traffic, and hence must keep

their event caches very large to increase the probability of correctly delivering

events.

Chapter 9

Conclusions and Future Work

Mobile computing defines a scenario that is extremely dynamic and fluid. In

this scenario, distributed content-based publish-subscribe appears to provide

the necessary component decoupling, flexibility, expressiveness, and scalabil-

ity. On the other hand, in mobile computing communication links are often

unreliable, and reconfiguration often brings in another source of event loss.

The problem of reliable event delivery has not yet been tackled by researchers,

thus hampering the development of middleware for real-world applications.

In this thesis, we presented solutions that exploit epidemics algorithms for

improving event delivery in this kind of publish-subscribe systems. Epidemics

algorithms [1, 23, 15] provides a lightweight, scalable, and robust means of

reliably disseminating information to a group of recipients, and hence are

amenable to being used in such highly dynamic and unreliable scenarios.

The presented algorithm were also tested intensively in simulated envi-

ronments, where performance and overhead are assessed. Future work will

Chapter 9 CONCLUSIONS AND FUTURE WORK 91

include real implementation in a new generation middleware and further val-

idation through data gathering on the field, together with more exhaustive

exploration of distributed buffering techniques.

Bibliography

[1] K. Birman et al. Bimodal multicast. ACM Trans. on Computer Systems,

17(2):41–88, 1999.

[2] Andrew D. Birrell, Roy Levin, Michael D. Schroeder, and Roger M.

Needham. Grapevine: an exercise in distributed computing. Communi-

cations of the ACM, 25(4):260–274, 1982.

[3] Burton H. Bloom. Space/time trade-offs in hash coding with allowable

errors. Communications of the ACM, 13(7):422–426, 1970.

[4] L. F. Cabrera, M. B. Jones, and M. Theimer. Herald: Achieving a

Global Event Notification Service. In Proc. of the 8th Workshop on Hot

Topics in Operating Systems, Elmau, Germany, May 2001.

[5] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and evaluation of a

wide-area event notification service. ACM Trans. on Computer Systems,

19(3):332–383, 2001.

[6] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. Scribe: A

large-scale and decentralized application-level multicast infrastructure.

BIBLIOGRAPHY 93

IEEE Journal on Selected Areas in communications (J-SAC), 20(8),

2002.

[7] R. Chandra, V. Ramasubramanian, and K. Birman. Anonymous gossip:

Improving multicast reliability in mobile ad-hoc networks. In Proc. 21st

Int. Conf. on Distributed Computing Systems (ICDCS), pages 275–283,

2001.

[8] Gregory Chockler, Idit Keidar, and Roman Vitenberg. Group communi-

cation specifications: a comprehensive study. ACM Computing Surveys,

33(4):427–469, 2001.

[9] F. Cuenca-Acuna et al. PlanetP: Infrastructure support for P2P in-

formation sharing. Technical Report DCS-TR-465, Dept. of Computer

Science, Rutgers University, November 2001.

[10] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-based infras-

tructure and its application to the development of the OPSS WFMS.

IEEE Trans. on Software Engineering, 27(9):827–850, September 2001.

[11] G. Cugola, D. Frey, A.L. Murphy, and G.P. Picco. An algorithm for

dynamic reconfiguration of publish-subscribe systems. Technical report,

Politecnico di Milano, February 2002. Submitted for publication. Avail-

able at www.elet.polimi.it/~picco.

[12] G. Cugola, G.P. Picco, and A.L. Murphy. Towards distributed publish-

subscribe middleware for mobile systems. In Proc. of the 3rd Int. Work-

shop on Software Engineering and Middleware (SEM02), co-located with

BIBLIOGRAPHY 94

the 24th Int. Conf. on Software Engineering (ICSE03), Orlando (FL),

USA, May 2002.

[13] A. Demers et al. Epidemic algorithms for replicated database mainte-

nance. Operating Systems Review, 22(1):8–32, 1988.

[14] C. Diot, W. Dabbous, and J. Crowcroft. Group communication. IEEE

Journal on Selected Areas in Communication. Special Issue on Group

Communication, May 1997.

[15] P. Eugster et al. Lightweight probabilistic broadcast. In Proc. of the Int.

Conf. on Dependable Systems and Networks (DSN 2001), pages 443–452,

2001.

[16] P. Eugster and R. Guerraoui. Hierarchical probabilistic multicast. Lau-

sanne, 2001.

[17] S. Floyd et al. A reliable multicast framework for light-weight ses-

sions and application level framing. IEEE/ACM Trans. on Networking,

5(6):784–803, 1997.

[18] A. J. Ganesh, A.-M Kermarrec, and L. Massouli. Peer-to-peer mem-

bership management for gossip based protocols. IEEE Transactions on

Computer, February 2003.

[19] Zygmunt Haas, Jospeh Y. Halpern, and Li Li. Gossip-based ad hoc

routing. In Proceedings of INFOCOM, 2002.

BIBLIOGRAPHY 95

[20] B. Levine and J. Garcia-Luna-Aceves. A comparison of known classes

of reliable multicast protocols. In Proc. of the IEEE International Con-

ference on Network Protocols, October 1996.

[21] L. Li, J. Halpern, and Z. Haas. Gossip-based ad hoc routing.

[22] J.C. Lin and S. Paul. RMTP: A reliable multicast transport protocol.

In INFOCOM, pages 1414–1424, San Francisco, CA, March 1996.

[23] M.-J. Lin and K. Marzullo. Directional gossip: Gossip in a wide area

network. In European Dependable Computing Conference, pages 364–

379, 1999.

[24] J. Luo, P. Eugster, and J.-P. Hubaux. Route driven gossip: Probabilistic

reliable multicast in ad hoc networking.

[25] Jörg Nonnenmacher, Ernst W. Biersack, and Don Towsley. Parity-based

loss recovery for reliable multicast transmission. IEEE/ACM Transac-

tions on Networking, 6(4):349–361, 1998.

[26] K. Obraczka. Multicast transport protocols: a survey and taxonomy.

IEEE Communications Magazine, 36(1):94–102, January 1998.

[27] Lukasz Opyrchal, Mark Astley, Joshua Auerbach, Guruduth Banavar,

Robert Strom, and Daniel Sturman. Exploiting ip multicast in content-

based publish-subscribe systems. In J. Sventek and G. Coulson, edi-

tors, Middleware 2000, volume 1795 of LNCS, pages 185–207. Springer-

Verlag, 2000.

BIBLIOGRAPHY 96

[28] Oznur Ozkasap, Robert van Renesse, Kenneth Birman, and Zhen Xiao.

Efficient buffering in reliable multicast protocols. In Proceedings of

NGC99, Pisa, Italy, November 1999.

[29] C. Perkins. Ad hoc on demand distance vector (aodv) routing, 1997. C.

Perkins. Ad Hoc On Demand Distance Vector (AODV) Routing IETF,

Internet Draft, draft-ietf-manet-aodv-00.txt, November 1997.

[30] G.P. Picco, G. Cugola, and A.L. Murphy. ”Efficient Content-Based

Event Dispatching in Presence of Topological Reconfigurations”. Tech-

nical report, Politecnico di Milano, 2002. Submitted for publication.

Available at www.elet.polimi.it/~picco.

[31] P. Pietzuch and J. Bacon. Hermes: A distributed event-based middle-

ware architecture. In Proc. of the Workshop on Distributed Event-Based

Systems (DEBS), 2002., Vienna, Austria, July 2002. IEEE Computer

Society.

[32] Real-Time Innovations, Inc. NDDS: Network Middleware for Distributed

Real Time Applications. http://www.rti.com.

[33] Robbert Van Renesse, Yaron Minsky, and Mark Hayden. A gossip-style

failure detection service. In Proceedings of the IFIP International Con-

ference on Distributed Systems Platforms and Open Distributed Process-

ing (Middleware ’98), September 1998.

BIBLIOGRAPHY 97

[34] V. Roca, L. Costa, R. Vida, A. Dracinschi, and S. Fdida. A survey of

multicast technologies. Technical report, Laboratoire d’Informatique de

Paris 6 (LIP6), September 2000. http://www-rp.lip6.fr.

[35] D.S. Rosenblum and A.L. Wolf. A Design Framework for Internet-Scale

Event Observation and Notification. In Proc. of the 6th European Soft-

ware Engineering Conf. held jointly with the 5th Symp. on the Foun-

dations of Software Engineering (ESEC/FSE97), LNCS 1301, Zurich

(Switzerland), September 1997. Springer.

[36] R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller, B. Mukher-

jee, D. Sturman, and M. Ward. Gryphon: An information flow based

approach to message brokering. In Int. Symp. on Software Reliability

Engineering, 1998.

[37] Q. Sun and D. C. Sturman. A gossip-based reliable multicast for large-

scale high throughput applications. In Proc. of the Int. Conf. on Depend-

able Systems and Networks, New York, NY (June 2000), pages 347–358,

2000.

[38] Sun Microsystems, Inc. Java Message Service Specification Version 1.1,

April 2002.

[39] P. Sutton, R. Arkins, and B. Segall. Supporting Disconnectedness—

Transparent Information Delivery for Mobile and Invisible Computing.

In Proc. of the IEEE Int. Symp. on Cluster Computing and the Grid,

May 2001.

BIBLIOGRAPHY 98

[40] TIBCO Inc. TIBCO Rendezvous. http://www.rv.tibco.com.

[41] A. Vahdat and D. Becker. Epidemic routing for partially connected ad

hoc networks. Technical report, Duke University, April 2000.

[42] Robbert van Renesse. Scalable and secure resource location. In Proceed-

ings of the IEEE Haway International Conference on System Science,

2000.

[43] A. Varga. OMNeT++ Web page. www.hit.bme.hu/phd/vargaa/

omnetpp.htm.

[44] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatowicz. Bayeux:

An architecture for scalable and fault-tolerant widearea data dissemi-

nation. In Proc. of the Eleventh International Workshop on Network

and Operating System Support for Digital Audio and Video (NOSSDAV

2001), June 2001.

List of Figures

2.1 Actions for subscription and event processing using a subscrip-

tion forwarding scheme (I). 14

2.2 Actions for subscription and event processing using a subscrip-

tion forwarding scheme (II). 15

2.3 A undirected acyclic graph with subscriptions laid down ac-

cording to a subscription forwarding scheme. 16

3.1 An example of the diffusion of an infection in a finite population. 23

3.2 Gossip recovery examples:in (PUSH) gossiper A pushes out

a missing packet X to B. In (PULL) gossiper C pulls in a

missing packet Y from D . 24

3.3 The convergence of push and pull approach 26

3.4 Direct mail algorithm. 33

3.5 Anti-entropy algorithm. 34

3.6 Rumor Mongering algorithm. 35

3.7 This figure shows part of two level tree used by Captain Cook 41

3.8 An example of message delivery in presence of network partition 48

LIST OF FIGURES 100

5.1 Push algorithm(I). 56

5.2 Push algorithm(II). 57

5.3 Pull algorithm. 60

5.4 Source-based algorithm. 64

6.1 Example of delivery in a very critical scenario 72

6.2 Example of delivery in a lossy scenario 73

6.3 Example of delivery in a scenario with overlapping reconfigu-

rations . 74

6.4 Example of delivery in a scenario with non-overlapping recon-

figurations . 75

6.5 Effect of bufferSize on delivery rate 76

6.6 Performance in different content-based scenarios (I) 77

6.7 Performance in different content-based scenarios (II) 78

6.8 Effect of size on delivery rate 79

6.9 Measurement of gossip traffic per dispatcher as system size

grows . 80

6.10 Percentage of traffic due to the gossip messages as the system

size grows . 81

