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Abstract—We present a complete framework for computing a subdivision surface to approximate unorganized point sample data, which
is a separable nonlinear least squares problem. We study the convergence and stability of three geometrically motivated optimization
schemes and reveal their intrinsic relations with standard methods for constrained nonlinear optimization. A commonly used method in
graphics, called point distance minimization, is shown to use a variant of the gradient descent step and thus has only linear convergence.
The second method, called tangent distance minimization, which is well known in computer vision, is shown to use the Gauss-Newton
step and, thus, demonstrates near-quadratic convergence for zero residual problems but may not converge otherwise. Finally, we show
that an optimization scheme called squared distance minimization, recently proposed by Pottmann et al., can be derived from the Newton
method. Hence, with proper regularization, tangent distance minimization and squared distance minimization are more efficient than
point distance minimization. We also investigate the effects of two step-size control methods—Levenberg-Marquardt regularization and
the Armijo rule—on the convergence stability and efficiency of the above optimization schemes.

Index Terms—Subdivision surface, fitting, optimization, squared distance.

Ç

1 INTRODUCTION

SHAPES represented by 3D unorganized geometric points
are now readily available as the widespread use of

3D scanning devices for shape acquisition becomes a
common practice. For geometric processing, we often need
to fit a surface to such point samples. Subdivision surface is
a preferred representation because of its compactness and
ability to accommodate general control mesh connectivity.
From the optimization point of view, the surface fitting
problem is a separable nonlinear least squares problem. In
principle, we need to minimize an objective function
consisting of a geometric error term and a smoothing term.
The geometric error term can be approximated by different
functions measuring the squared distance (SD) between a
fitting surface and the target shape. These error functions
lead to different local quadratic models of the objective
function and result in different optimization efficiency.

1.1 Our Work

This paper is an extension to our work [1] presented in the
Proceedings of the 12th Pacific Conference on Computer Graphics

and Applications (PG ’04). We present a general and
complete framework for computing a subdivision surface
via geometric point fitting. Specifically, we focus on the
convergence analysis of optimization schemes for solving

this surface fitting problem. Suppose that the shape to be
fitted, called the target shape, is defined by unorganized data
points. To start the fitting process, an initial subdivision
surface is first generated from the point cloud by applying
the dual marching cubes method [2]. The control points are
then optimized by minimizing an objective function
through iterative quadratic minimization. New control
points are added progressively in order to better capture
the features of the target shape; this gives rise to a
multistaged optimization problem. Although we use Loop’s
subdivision surface [3] to handle triangular meshes, the
proposed algorithmic flow can naturally apply to other
types of subdivision surfaces based on linear schemes.

We consider three geometrically motivated methods in
this paper. The first method is based on a point-to-point
distance error metric, thus called point distance minimization
(PDM) [4]. This method has been used predominantly for
decades in graphics and CAD/CAM for curve and surface
fitting. It has a monotonic descent but converges slowly.
The second method uses a point-to-tangent distance error
metric, thus called tangent distance minimization (TDM). This
has been used in the computer vision field for model
registration [5]. In general, it converges much faster than
PDM but is unstable for a target shape with sharp features.
The third method, called squared distance minimization
(SDM), has been recently proposed by Pottmann and
Leopoldseder [6] for B-spline curve and surface fitting.

Our contribution is the systematic study on the conver-
gence behaviors of the above optimization methods in the
setting of subdivision surface fitting. The derivations of
these methods in the literature are only based on geometric
arguments. We establish their equivalences to three well-
understood optimization methods—steepest descent, the
Gauss-Newton method, and the Newton method, respectively
—for nonlinear constrained optimization.

This connection to well-known optimization techniques
helps explain or understand the practical behaviors of these
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three methods in surface fitting. The steepest descent
method is well known to have a linear convergence rate,
thus explaining the slow convergence of PDM. The Gauss-
Newton method has quadratic convergence for zero
residual problems, but it converges only linearly or may
not converge at all for problems with a large residue—this
also conforms with the observed behavior of TDM. SDM is
a simple geometric incarnation of the Newton method, thus
explaining its observed superior convergence in the general
case. Based on this interpretation, we apply the Levenberg-
Marquardt (LM) regularization to TDM and SDM to ensure
a monotonic decrease of the objective function, thus
improving the robustness of their convergence. Details
about these basic optimization techniques can be found in
standard texts on optimization (for example, [7], [8]).

1.2 Related Work

The problem of computing a compact surface representa-
tion of a target shape defined by unorganized data points
has many applications in computer graphics, CAD, and
computer vision. Numerous approaches have been pro-
posed over the past decades. These include fitting methods
based on optimization [9], [10], [11], [12], [13], [14], active
surface methods [15], [16], [17], and other approaches [18],
[19], [20], [21]. Among parametric surfaces, subdivision
surface has gained popularity because of its ability to deal
with general object topology, as well as arbitrary connec-
tivity of the control mesh [22]. Some works are closely
related to the problem addressed in this paper. In Hoppe et
al.’s method [9], a mesh surface is computed to fit
unorganized points via optimization of an energy function.
In [11], [12], a (noniterative) linear least squares problem is
solved to produce a fitting surface composed of B-spline
surfaces for quadrangle patches and Catmull-Clark surfaces
for extraordinary corner patches. In [13], a Loop’s subdivi-
sion surface is computed to fit a mesh surface by iterative
quadratic optimization, using a simplification of the input
mesh as the initial control mesh. All these methods use the
point distance (PD) error function to approximate the
geometric error between the fitting surface and the target
shape in each iteration. This is essentially the parameter
correction method by Hoschek [4], but we will refer to this
scheme as PDM. PDM belongs to the category of the
alternating method [23], [7] for solving separable nonlinear
least squares problems; it has only a linear convergence rate
and converges slowly in practice, as we will demonstrate
later in this paper.

TDM uses another error function, called the tangent distance
(TD) error term, based on a point-to-tangent distance, and it
has been used in computer vision for 3D model registration
by Chen and Medioni [5] and active curve fitting by Blake and
Isard [15]. In the extension to their work in [13], Marinov and
Kobbelt apply a combination of the PD error term and TD
error term to improve the efficiency of their surface fitting
method [24], without considering the issues of convergence
analysis and step-size control.

SDM uses the so-called squared distance (SD) error term,
which is first considered in [25] and further investigated in
detail from a geometric point of view by Pottmann and
Hofer [26] with applications to shape fitting with B-spline
curves and surfaces [6], [27]. However, they did not give a

convergence analysis or consider step-size control for
ensuring convergence.

In this work, we emphasize the convergence behaviors of
PDM, TDM, and SDM in the setting of subdivision surface
fitting from an optimization point of view and investigate
the step-size control schemes as applied to these methods.
Our results provide new and useful insights to the practical
surface fitting procedures used in computer graphics. A
variant of the SDM method, along with TDM and PDM, has
been recently studied in [28]. The connections of our work
here to that of [28], as well as their differences, are
elaborated in Section 5.

2 FITTING ALGORITHM

2.1 Problem Formulation

Suppose that the input data points, defining a target shape �,
are sampled from an underlying target surface �T , which is a
manifold surface of an arbitrary genus. For the convergence
analysis, the second order differentiability of �T is assumed.
Our goal is to reconstruct the surface �T by computing a
subdivision surface from �.

Let P ðs; tÞ be a local parameterization of a fitting surface
S. The fitting error between S and the target surface �T is
measured by the sum of SDs from a set of dense sample
points on S to �T . Denote these sample points by
Sk ¼ P ðsk; tkÞ, which are linear combinations of the control
points Pi, k ¼ 1; 2 . . . ;m, of a Loop’s subdivision surface S.
We assume that m is much greater than n, the number of
control points, so that the fitting problem is properly
constrained. Let Vk ¼ V ðuk; vkÞ 2 �T be the closest point
from the sample point Sk on the fitting S to the target
surface �T . The fitting error at Sk is then given by
fk ¼ kSk � V ðuk; vkÞk. The point V ðuk; vkÞ 2 �T is called the
foot point of Sk.

Denote P ¼ fPigni¼1 and U ¼ fðuk; vkÞgmk¼1. The control
points P of the best fitting surface S are computed by
solving the following optimization problem:

minF ðP;UÞ ¼ FeðP;UÞ þ FsðPÞ; ð1Þ

where Fe ¼ 1
2

Pm
k¼1 f

2
k ¼ 1

2

Pm
k¼1 kSk � V ðuk; vkÞk

2 is the
L2 fitting error, and FsðPÞ is a regularization term that
is a quadratic function of the control points P. The
variables in the function F are the control points P ¼ fPig
and the parameter values U ¼ fðuk; vkÞg. Clearly, F is
quadratic in P but is, in general, a highly nonlinear
function of U.

We may treat P as basic variables and U as dependent
variables, since it is required that V ðuk; vkÞ be the foot point
of the sample point Sk, which is a linear function of P. This
leads to the following commonly used optimization strategy
in surface fitting: Given an initial fitting surface with the
sample points Sk, one first computes that foot points
V ðuk; vkÞ. With U being known, one updates the control
points P by minimizing F ðP;UÞ over the control points P;
this is done by solving a linear system of equation, since
F ðP;UÞ is quadratic in P, and U has been fixed. The above
two steps of foot-point computation and control-point
computation are iterated to further improve the fitting
error until convergence.
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This commonly used iterative fitting method is called the
PDM method. Because of the separate treatments of variables
P andU, the optimization problem defined in (1) is also called
a separable variable problem. We will also consider two other
more efficient local optimization schemes based on the same
framework, that is, TDM and SDM.

An initial fitting surface is needed to start the above
iterative procedure. It is natural to begin with an initial
fitting surface having the same topology as the target shape
and a simple control mesh. Control points need to be
inserted progressively as optimization proceeds to make the
fitting surface better capture the fine features of the target
shape. This means that we need to consider a multistaged
optimization problem with proper scheduling of adding
new control points.

2.2 Algorithmic Flow

Our proposed fitting procedure has the following main
steps:

1. Normalization. Normalize the target shape by uni-
form scaling to fit it within the cube ½0; 1�3.

2. Precomputation. Precompute the distance field, as
well as the tangential and curvature information of
the target surface � for setting up error terms.

3. Initial mesh. Compute an initial control mesh using
the dual marching cubes method [2].

4. Points sampling. Generate m dense sample points S0
k

on the current fitting surface using the method in
[29], [30].

5. Error function setup. Use the sample points generated
in Step 4 to set up the error function:

FLðPÞ ¼
1

m

Xm
k¼1

FL;kðPÞ þ FsðPÞ; ð2Þ

where FL;kðPÞ is one of the three error terms to be
introduced in Section 2.4.

6. Minimization. Update the control points by minimiz-
ing the quadratic function FLðPÞ. This is done by
solving a linear system of equations using the
conjugate gradient (CG) method.

7. Error evaluation. Sample new points S1
k on the fitting

surface with updated control points, and compute
their foot points V 1

k . Next, compute the maximum
error Em and the root-mean-square (RMS) error
Erms, where

Em ¼ max
k
fkS1

k � V 1
k k2g

and

Erms ¼
1

m

X
k

kS1
k � V 1

k k
2
2

" #1
2

:

Here, kS1
k � V 1

k k2 is called the local error. The
algorithm is terminated if Em or Erms falls below a
prespecified error threshold or the number of
iterations reaches some limit. If the fitting error has
been reduced significantly in this step by the current
iteration (but still larger than the threshold), then go
to Step 4 to start the next iteration. Otherwise, go to
Step 8.

8. Refinement. New control points are inserted in the
regions of large fitting error Em. Go to Step 4 for the
next iteration.

The flowchart is shown in Fig. 1. Note that remeshing

could be used in Step 3 to reduce the number of

extraordinary vertices whose valences are not six.

2.3 Preprocessing and Initialization

To quickly obtain the foot points V 0
k of the sample points S0

k ,

we precompute an adaptive distance field of the target

shape using the idea in [31]. The precomputed information

such as distances and foot points are stored at the corners of

adaptive octree cells. During the optimization process, the

foot point of a sample point S0
k is computed by trilinear

interpolation from the stored values at the corners of the

smallest cell containing S0
k .

The normal vector and the principal curvatures of the

target surface �T at Vk are also precomputed from the point

cloud � for setting up the TD error functions and the

SD error functions. For a given target point Vk, we first find

its neighboring points Vk;j. A local coordinate frame at Vk
can then be defined by the principal curvature directions

and the normal direction that are the eigenvectors of the

covariance matrix CV given by

CV ¼
X
j

ðVk;j � Vk;cÞðVk;j � Vk;cÞT ;

where Vk;c is the centroid of Vk’s neighboring points. A

polynomial z ¼ k1x
2 þ k2y

2 is then fitted to the neighboring

points Vnði;jÞ in this local frame, and the principal curvatures

are simply set to 2k1 and 2k2.
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We use the dual marching cubes method devised by
Schaefer and Warren [2] to compute the initial control mesh
from the dual grid of cells of an adaptive octree partition of
the target data set. The meshes generated by this method
are topologically faithful, adaptive to curvature or features
of the target shape and, therefore, more desirable than those
generated by the ordinary marching cubes method [32],
which tends to produce too many fragmented triangles,
even in flat regions of the target shape, as observed in [1].

2.4 Error Functions

2.4.1 PD Error Term

Suppose that the fitting surface has been sampled by the
points S0

k , whose foot points are V 0
k . Let Sk be the variable

points of S0
k , depending on the variable control points P. A

simple error term is given by

f2
PD;k ¼ kSk � V 0

k k
2; ð3Þ

which is called the PD error term because fPD;k is the
distance between Sk and V 0

k . The optimization scheme
resulting from using the PD error term for FL;kðPÞ in (2) is
called PDM.

2.4.2 TD Error Term

When the target surface �T is relatively flat around V 0
k , the

tangent plane of �T at V 0
k is a good approximation to �T in a

neighborhood of V 0
k . This observation leads to the so-called

TD error term, defined as

f2
TD;k ¼ jðSk � V 0

k Þ
TNkj2; ð4Þ

where Nk is a constant unit normal vector to � at V 0
k .

Clearly, f2
TD;k is the SD from Sk to the tangent plane

ðX � V 0
k ÞNk ¼ 0. The optimization scheme resulting from

using the TD error term is called TDM.

2.4.3 SD Error Term

Now, we consider the second-order approximation to the
SD from Sk to �T , as proposed in [6], [25]. Let d be the
signed distance such that jdj ¼ kS0

k � V 0
k k. Let �1 and �2

denote the principal curvature radii of �T at V 0
k associated

with the principal unit direction vectors T1 and T2. We make
the following convention on the signs of d and �i, i ¼ 1; 2.
Suppose that N is a normal vector to the target surface �T . If
the sample point Sk is on the side of �T pointed to by N ,
that is, N � ðS0

k � V 0
k Þ > 0, then d > 0; otherwise, d � 0.

Similarly, if the curvature center in the normal section
along the tangent vector Ti is on the side of �T pointed to by
N , then �i > 0; otherwise, �i � 0, i ¼ 1; 2.

Since V 0
k is locally the closest point from S0

k to �T , then
we have jdj < j�ij when d and �i have the same sign. It can

be shown [25], [26] that the second-order approximation to
the true SD is

f̂2
SD;k ¼ �1½ðSk � V 0

k Þ
TT1�2 þ �2½ðSk � V 0

k Þ
TT2�2

þ ½ðSk � V 0
k Þ

TN �2;
ð5Þ

where �1 ¼ d=ðd� �1Þ, and �2 ¼ d=ðd� �2Þ. The coefficient
�1 (or �2) becomes negative if �1 (or �2) and d have the same
sign. Denote ½��þ ¼ maxf�; 0g. To have a nonnegative error
function, f̂2

SD;k is modified to

f2
SD;k ¼ ½�1�þ½ðSk � V 0

k Þ
TT1�2 þ ½�2�þ½ðSk � V 0

k Þ
TT2�2

þ ½ðSk � V 0
k Þ

TN �2:
ð6Þ

This term f2
SD;k is called the SD error term, since it is derived

from a second-order approximation to the true SD. The
ellipsoid in Fig. 2 shows an isodistance surface of the
SD error term for the case �1 > 0 and �2 > 0; the SD error
term reduces to the TD error term if �1 ¼ 0 and �2 ¼ 0. The
optimization scheme resulting from using the SD error term
is called SDM.

2.5 Smoothing Term

The smoothing term in (2) is defined as

Fs ¼
�

n

Xn
i¼1

WðPiÞTWðPiÞ;

where Pi, i ¼ 1; 2; . . . ; n, are the control points, and Wð�Þ is a
discrete version of Laplacian [33]. It is difficult to
automatically choose an appropriate value of the coefficient
� [34]; therefore, most existing methods choose � in a
heuristic manner. Likewise, in our test examples, the initial
value for � is set to 0.001 at the beginning and is reduced
gradually as the optimization proceeds.

We use the CG method to minimize the error function
(2). This iterative solver is terminated if the relative error
improvement is less than 10�6 or the number of iterations
reaches 200. These parameters produce satisfactory results
in our experiments.

2.6 Local Refinement

When the fitting error remains large due to the insufficient
number of control points, new control points are inserted to
triangles that have large local errors and split the triangles
in a one-to-four manner (see Fig. 3). This step is called local
refinement. To avoid undesirable T-vertices, the neighboring
triangles are also split, following the Red-Green splitting
scheme [35].

3 OPTIMIZATION PROPERTIES

In this section, we shall establish the connection between
the three optimization techniques introduced so far—PDM,
TDM, and SDM—and the standard optimization techniques
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in optimization theory. Due to the space limit, we shall only
discuss some basic facts that we are going to use directly;
the reader is referred to standard texts (for example, [7], [8])
for a detailed introduction to optimization theory.

3.1 Basics of Optimization

First, consider the Newton method. Given an objective
function fðxÞ : RN !R and the current variable value xc
near a local minimum of fðxÞ, the next iterate xþ is the
minimizer of the local quadratic model mcðxÞ of fðxÞ about
xc, where

mcðxÞ ¼ fðxcÞ þ rfðxcÞT ðx� xcÞ

þ 1

2
ðx� xcÞTr2fðxcÞðx� xcÞ;

ð7Þ

which is the second-order Taylor expansion of fðxÞ at xc. If
r2fðxcÞ is positive definite, xþ is the unique solution of the
equation:

0 ¼ rmcðxþÞ ¼ rfðxcÞ þ r2fðxcÞðxþ � xcÞ: ð8Þ

The Newton method has local quadratic convergence.
Various iterative schemes can be obtained by replacing

the Hessian r2fðxcÞ in (7) by different estimates of it.
Among these, the Gauss-Newton method is preferred for
solving nonlinear least squares problems [8]. Consider a
nonlinear least squares problem:

fðxÞ ¼ 1

2

X
k

rkðxÞ2: ð9Þ

The Hessian of fðxÞ is

r2fðxÞ ¼
X
k

rrkðxÞrrkðxÞT þ
X
k

rkðxÞr2rkðxÞ: ð10Þ

In the Gauss-Newton method, one discards the second-
order term to use the approximate Hessian:

~r2fðxÞ ¼
X
k

rrkðxÞrrkðxÞT ð11Þ

to replace the Hessian r2fðxcÞ in (8) to compute the next
iterate xþ. The Gauss-Newton method has quadratic
convergence for zero residual problems because the
discarded term

P
k rkðxÞr2rkðxÞ is negligible in those cases.

However, the Gauss-Newton method only converges
linearly or may not converge at all for large residual
problems because the Hessian is poorly approximated in
these situations [8].

3.2 Surface Fitting as a Separable Problem

The surface fitting problem can be formulated as a
separable nonlinear least squares problem with the follow-
ing objective function:

F ðP;UÞ ¼
Xm
k¼1

FkðP;UÞ þ FsðPÞ

¼ 1

2

Xm
k¼1

kSkðPÞ � V ðuk; vkÞk2 þ FsðPÞ;
ð12Þ

where Sk is a linear function of the control points P. To
simplify the notation, we denote S ¼ SkðPÞ, ðu; vÞ ¼ ðuk; vkÞ,

and E ¼ S � V ðu; vÞ. Then, Fk ¼ 1
2E

TE. In the following, we
will use P, u, and v as subscripts to denote derivatives with
respect to these variables.

Since V ðu; vÞ is the foot point of the sample point S to the
target surface �T , E is perpendicular to the tangent plane of
�T at V ðu; vÞ. It follows that

ðS � V ðu; vÞÞTVu ¼ ETVu ¼ 0;

ðS � V ðu; vÞÞTVv ¼ ETVv ¼ 0:
ð13Þ

These two equations are constraints tying the variables ðu; vÞ
to the control points P. In fact, the two equations in (13) are
also necessary conditions for the objective function F to have
a local minimum, since the partial derivatives of Fk with
respect to u and v are

@Fk=@u ¼ ðS � V ðu; vÞÞTEu;
@Fk=@v ¼ ðS � V ðu; vÞÞTEv;

and noting that Eu ¼ �Vu and Ev ¼ �Vv. Therefore, the
introduction of these constraints does not preclude any
minimizer of the original optimization problem.

We first discuss the convergence behavior of PDM. PDM
performs the following two alternating steps iteratively:
1) solving a linear system of equations to obtain the variable
control points Pi while fixing the parameter values ðuk; vkÞ
and 2) computing foot points to find the ðuk; vkÞ with the
fixed control points Pi. The first step decreases the value of
the objective function but moves away from the constraints
(13). The second step moves the iterate back to give a
feasible point satisfying the constraints (13). This is, in fact,
the alternating method for solving a separable and con-
strained nonlinear problem and is known to have linear
convergence [7].

It can be shown that TDM uses a Gauss-Newton step,
and SDM is equivalent to the Newton method. The proofs
of these facts are given in the appendices in order to have a
better flow of discussion.

3.3 Regularization and Step-Size Control

The Gauss-Newton method works poorly for large residual
problems, so the LM method, which is a regularized version
of the Gauss-Newton method, is normally used [8]. The
essence of the LM method is that the local quadratic model is
trusted only within a small enough neighborhood of the
current point xc, defined by the constraint ksk � 4k, where s
is the step. The selection of the value of 4k depends on the
degree of the agreement between the local model and the
objective function. The optimality condition for this con-
strained optimization gives

ðr2fðxcÞ þ �cIÞs ¼ �rfðxcÞ: ð14Þ

The Hessian is then approximated as

r2fðxÞ �
X
k

rrkðxÞrrkðxÞT þ �cI: ð15Þ

In other words, s is computed by replacingr2fðxcÞ in (8) byP
krrkðxÞrrkðxÞ

T þ �cI.
In LM regularization, the gain ratio is monitored, which

is the ratio of the actual decrease in the objective function to
the decrease predicted by the local model [36]. If the gain
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ratio is small, meaning that the current model is a poor
approximation to the goal function, �c is increased so that
the next step will be closer to the steepest descent direction,
and the step size is reduced. If the gain ratio is large,
meaning that the current model is a good approximation to
the goal function, �c is decreased so that the next step will
be closer to a Gauss-Newton step. By monitoring the
agreement between the local model and the actual objective
function, this approach tries to get the advantages of both
the steepest descent method and the Gauss-Newton
method. For all values of �c, called the LM parameter, the
coefficient matrix is positive definite. Note that both the
direction and the step size are modified in the LM method.
In the same vein, we will also consider the LM regulariza-
tion of SDM in the next section.

Besides the LM method, the Armijo method [8] is also
commonly used for guaranteeing convergence. After the
direction of a step s has been determined by a particular
method (PDM, SDM, or TDM), the step size is decided by
performing a line search. Although the Armijo method
improves convergence, extra goal function and gradient
evaluations are required, and these increase the computa-
tional time. Different from the LM method, only the step
size is modified in the Armijo method. The effectiveness of
the LM method and the Armijo method will be investigated
in the experiments in Section 4.

4 EXPERIMENTS

We will present test examples computed by PDM, TDM,
and SDM to observe and confirm the convergence behavior
of the three methods, as influenced by the initial control
mesh specification, smoothness term, and step control
methods (that is, the LM method and the Armijo rule.)
We will also present examples of subdivision surface
reconstruction from complex target shapes. All experiments
were run on a PC with an Intel Xeon 2.8-GHz CPU and a
2.00-Gbyte RAM. All data sets are first scaled uniformly to
fit into a rectangular box with the longest side equals to 1.0.

4.1 Initial Mesh and Sharp Feature

We first consider applying PDM, TDM, and SDM to a data
set with two different initial control meshes, without the
smoothness term or regularization. Here, no new control
points are added during optimization.

Example 1 (Refer to Fig. 4). The target shape is an ellipsoid
with semiprincipal axes being 0.25, 0.5, and 1.0, and the
initial mesh has 14 control points, as shown in Fig. 4. The
optimized surface by SDM is shown in Fig. 4a; the
optimized surface by TDM is similar to that by SDM and
is therefore not shown. The error curves are shown in
Fig. 4b.

Example 2 (Refer to Fig. 5). The same target shape is used
here as in Example 1, but the initial control mesh is now
farther away from the target shape, as shown in Fig. 5a.
The surface reconstructed with SDM is also shown. The
error curves of PDM, TDM, and SDM are shown in
Fig. 5b. TDM does not converge for this data set.

Discussion. Examples 1 and 2 show that SDM converges
much faster than PDM. TDM has a similar convergence rate
as SDM but may easily become unstable if the initial mesh is
far away from the target shape. That is because TDM, using
a Gauss-Newton step, discards from the Hessian the part
rðxÞr2rðxÞ that is related to the curvature and residue; here,
rðxÞ reflects the distance between the initial fitting surface
and the target shape. Therefore, TDM should always be
used with LM regularization for stable convergence, as will
be seen shortly.

Example 3 (Refer to Fig. 6). Here, we consider an elongated
ellipsoid with two sharp ends, with semiprincipal axes
being 0.125, 0.25, and 4.0, as shown in Fig. 6a with the initial
mesh. We use this target shape to test PDM, TDM, and
SDM in the presence of sharp features. The optimized
subdivision surface by SDM is also shown. The optimized
surface by TDM is similar to that by SDM and is therefore
not shown. The error curves of PDM, TDM, and SDM are
shown in Fig. 6b. We see that SDM and TDM have similar
convergence behaviors, and PDM converges to a poor local
minimum with a larger residual error.

4.2 Smoothness Term and Multistage Optimization

In this section, we consider the effects of the smoothness term
onconvergence behaviors andinsertion of newcontrol points.

Example 4 (Refer to Figs. 5a and 7a). The data set and initial
control mesh used here are the same as those in Example 2
(see Fig. 5a), where TDM fails to converge. Now, we want
to observe whether the introduction of a smoothness term
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Fig. 4. (Example 1). (a) Top: Target shape and initial mesh. Bottom:

Optimized mesh and surface by SDM. (b) Error curves.

Fig. 5. (Example 2). (a) Top: Target shape and initial mesh. Bottom:

Optimized mesh and surface by SDM. (b) Error curves.



can make the convergence of TDM stable. The smoothness
term is defined in Section 2.4. We tested different values of
coefficients � ¼ 10�i, i ¼ 2; 3; 4; 5; 6, resulting in the error
curves of TDM shown in Fig. 7a.

Discussion. In this example, � ¼ 0:001 or 0.0001 leads to
stable convergence with a small fitting error. Bigger values of
� make the surface too “stiff,” giving large fitting errors,
whereas smaller values of � fail to make TDM stable. We
remark that, except for trial and error or methods based on
user assistance, there is currently no commonly accepted
general scheme that can automatically determine the coeffi-
cient of the smoothness term in the context of curve or surface
fitting.

Example 5 (Refer to Fig. 7b). Here, we will test the effects
of adaptively adding new control points and reducing
the smoothness coefficient progressively at different
stages of the fitting process, using PDM, TDM, and
SDM. The target shape is the ball joint model contain-
ing 137,062 points (Fig. 9), and the initial control mesh
has 128 control points. The initial smoothness coeffi-
cient is 0.01. Throughout optimization, new control
points are inserted at regions of large errors progres-
sively. The final number of control points at the
50th iteration is 202, 151, and 199 for PDM, TDM, and
SDM, respectively. The smoothness coefficient is
decreased to 0.001 and 0.0001 at the 20th and
40th iterations, respectively. Fig. 7b shows the error
curves of PDM, TDM, and SDM. The obvious reduc-
tion of the fitting error can be observed due to the
control point insertion and the smoothing coefficient
adjustment. During each stage between the insertions
of control points, SDM and TDM are again more
efficient than PDM.

4.3 LM Regularization and the Armijo Rule

Since TDM uses a Gauss-Newton step, it exhibits instability
if used without any regularization. In this section, we apply
LM regularization to TDM and also to SDM to observe its
effect on the convergence of the two methods.

Example 6 (LM regularization of TDM. Refer to Figs. 4a
and 8a). Here, the target shape and initial control mesh
are the same as in Example 1, as shown in Fig. 4a. No
smoothing term is used. Let TDMLM denote TDM with
LM regularization. Fig. 8a shows the error curves for
TDMLM and TDM. TDMLM takes 0.551 sec to get an
Erms smaller than 0.002. The error curves in Fig. 8a
indicate that TDMLM delivers both fast convergence and
a monotonic descent of the fitting error, whereas the
error of TDM is not monotonically decreasing.

Example 7 (LM regularization of TDM. Refer to Figs. 5a
and 8b). Here, the target shape and the initial control mesh
are the same as that used in Example 2, as shown in Fig. 5a.
Recall that TDM fails to converge in that example. Now, we
apply TDMLM without a smoothing term. Fig. 8b shows
the error curves of TDMLM and TDM. Clearly, TDMLM
converges fast and stably. TDMLM takes 1.593 sec to have
an Erms smaller than 0.002.

Example 8 (LM regularization of SDM. Refer to Figs. 4a
and 8c). Here, we apply LM regularization to SDM for
the same target shape and initial mesh as in Example 6,
as shown in Fig. 4a. The regularized SDM will be
denoted by SDMLM. Fig. 8c shows the error curves of
SDM and SDMLM, where the SDM error curve here is
the rescaled version of the same SDM error curve in
Fig. 4. It can be seen that the SDM error curve is actually
not monotonically descending, but that of SDMLM is.
SDMLM takes 1.011 sec to get an Erms smaller than 0.002.

Example 9 (LM regularization of SDM. Refer to Figs. 5a
and 8d). In this example, SDM and SDMLM are applied
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Fig. 6. (Example 3). (a) Top: Target shape and initial mesh. Bottom:

Optimized mesh and surface by SDM. (b) Error curves.

Fig. 7. (a) Error of TDM for Example 4. (b) Error for Example 5.

Fig. 8. Error curves (a) for Example 6 (this is the zoom-in view of the TDM error curve in Fig. 4), (b) for Example 7, (c) for Example 8, (d) for Example 9,

and (e) for Example 10.



to the same target shape and initial control mesh as in
Example 7, as shown in Fig. 5a. The error curves of SDM
and SDMLM are shown in Fig. 8d. Again, we see that
SDMLM leads to more stable convergence than SDM
without regularization.

Example 10 (Refer to Figs. 5 and 8e). In this example, step-
size control using the Armijo rule is applied to every step
of PDM, TDM, and SDM. The target shape and the initial
mesh are the same as in Example 2 (shown in Fig. 5). The
corresponding variants of PDM, TDM, and SDM with
step-size control are called PDMSC, TDMSC, and
SDMSC, respectively. Fig. 8e shows the error curves of
PDM, TDM, SDM, and their variants. We see that the
stability of TDM is improved greatly by step-size control,
whereas PDMSC and SDMSC have similar convergence
behaviors to PDM and SDM. PDMSC has an Erms larger
than 0.002 after 100 iterations (4.138 sec), whereas
SDMSC and TDMSC just take five iterations (0.240 sec)

and 12 iterations (0.812 sec) to obtain an Erms smaller
than 0.002, respectively.

Discussion. From the three preceding examples, we
conclude that LM regularization is helpful to the stabiliza-
tion of TDM and SDM, and it ensures a monotonic decrease
of fitting errors. Step-size control by the Armijo rule is also
very effective for TDM, but much less effective for PDM
and SDM, which are often already quite stable even without
step-size control, though step-size control does ensure a
monotonic decrease of SDM.

4.4 Surfaces from Complex Target Shapes

In this section, we will show that our fitting method works
effectively as well for complex target shapes. Figs. 9, 10, 11,
12, and 13 show the data sets for a ball joint, a head (Igea), a
rocker arm, a bunny, and a buddha (data sources: http://
www.cyberware.com (Igea, the ball joint, and the rocker arm)
and http://www-graphics.stanford.edu/data/3Dscanrep/

CHENG ET AL.: DESIGN AND ANALYSIS OF OPTIMIZATION METHODS FOR SUBDIVISION SURFACE FITTING 885

Fig. 9. Ball Joint: (a) Point cloud (137,062 points; dimension: 0.87 � 0.50 � 1). (b) Initial mesh (416 control points). (c) Initial surface. (d) Final mesh
(551 control points). (e) Final surface. (f) Shaded subdivision surface. Maximum error: 0.0064; RMS error: 0.0009.

Fig. 10. Igea: (a) Point cloud (134,345 points; dimension: 0.70 � 1 � 1). (b) Initial mesh (526 control points). (c) Initial surface. (d) Final
mesh (2,464 control points). (e) Final surface. (f) Shaded subdivision surface. Maximum error: 0.0036; RMS error: 0.0005.

Fig. 11. RockerArm: (a) Point cloud (40,177 points; dimension: 0.51 � 1 � 0.30). (b) Initial mesh (870 control points). (c) Initial surface. (d) Final

mesh (950 control points). (e) Final surface. (f) Optimized subdivision surface. Maximum error: 0.0029; RMS error: 0.0003.



(the bunny and the buddha)). The figures show the initial
meshes, the optimized control meshes by SDM, the initial
and optimized subdivision surfaces with color error coding,
and the shaded optimized subdivision surfaces. The color
code of a data point is interpolated in a piecewise linear
manner from blue, green, yellow, and red corresponding to
local error values (see Section 2.2) 0.0, 0.0066666, 0.0133333,
and 0.02, respectively.

Table 1 gives the timing data for the preprocessing steps.
Neighboring points within a distance of 0.03 from a data point
Vk are used for computing the curvatures at Vk. Table 4 shows
the error statistics. The numbers in the # of contr. pts field refer
to the number of control points in the initial control meshes
and the final optimized control meshes. The numbers in the
smooth. coeff. field refer to the initial and the final values for the
smoothing term coefficient. Table 2 shows the breakdown of
the time used in different tasks in the optimization. The total

time does not include the time on precomputation. All the five
examples were computed with SDM.

In Table 2, we observe that the time for generating entries
of the matrix of the linear equations is substantial when
compared with other parts. Note that the number of data
points affects mainly the time used for the preprocessing
steps but does not affect much the time used in the
optimization step, which is mainly determined by the
number of control points.

Finally, we would like to compare the fitting result of
the Igea model in Fig. 10 with that produced in [24].
Table 3 shows that SDM obtains comparably small Em

and Erms as by the method in [24], using a significantly
shorter period of time. (The PC on which we ran this
experiment has the same specifications as the one used in
[24].) However, we note that the projection direction for
fitting error evaluation is different from that in our
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Fig. 12. Bunny: (a) Point cloud (35,201 points; dimension: 1 � 0.78 � 0.99). (b) Initial mesh (919 control points). (c) Initial surface. (d) Final mesh

(996 control points). (e) Final surface. (f) Optimized subdivision surface. Maximum error: 0.0082; RMS error: 0.0009.

Fig. 13. Buddha: (a) Point cloud (543,652 points; dimension: 0.41 � 0.41� 1). (b) Initial mesh (4,662 control points). (c) Initial surface. (d) Final mesh

(18,715 control points). (e) Final surface. (f) Optimized subdivision surface. Maximum error: 0.0043; RMS error: 0.0003.

TABLE 1
Time Statistics (in Seconds) for Precomputation

TABLE 2
Time Breakdown (in Seconds)



approach. In [24], target data points are projected onto
the fitting subdivision surface. In our approach, sample
points on the subdivision surface are projected onto the
target shape, following the framework in [6].

5 DISCUSSION AND CONCLUSION

We have presented a comprehensive study on a class of
three methods for fitting subdivision surfaces to 3D data
points, both theoretically and experimentally, from the
optimization point of view. There are a variety of other
optimization techniques that can be applied to shape fitting
and further efforts should be made on understanding these
methods as well.

There are currently two different variants of SDM, along
with TDM and PDM. The study presented in this paper is
based on the original framework proposed by Pottmann
and Leopoldseder [6], and the other variant has been
recently proposed by Wang et al. [28] in the setting of B-
spline curve fitting, where the connections of PDM, TDM,
and SDM to the standard optimization techniques are also
studied. Although these two different frameworks have
apparently been motivated by the same geometric intuition,
they need to be distinguished carefully, not merely because
of the difference in the dimensions of their working spaces.
In the framework used in [28], the data points are projected
onto the fitting curve for error measurement, whereas in the
present paper, sampled points on the fitting surface are
projected onto a fixed target shape defined by data points
for error measurement. This difference means that the
analysis and results in [28] do not apply to the setting in this
paper. For example, here, we have shown that the SDM
method follows directly from the Newton method, whereas
the Hessian has to be greatly simplified in order to derive
the SDM method in [28]. In addition, the present paper is
featured by extensive experimental study of effects of many
practical aspects of optimization, including control point
insertion, smoothness terms, LM regularization, and the
Armijo rule for step-size control.

In the three optimization methods considered here, since
sample points on the fitting surface are projected onto the
target shape for setting up error functions, they essentially
assume that the target shape is not very noisy or sparse so
that the estimated normal and curvatures are reasonably
accurate. The advantage of this treatment is that foot points,
normal, and curvature information can be computed

efficiently with the aid of preprocessing the fixed target
shape. However, the drawback is the limit on the applica-
tion of these methods to fitting a surface to noisy and sparse
data points. One way of addressing this limitation is to use
instead the methods (PDM, TDM, and SDM) presented in
[24], [28]. Note that in that case, the computation of foot
points, normal, and curvature information has to be
performed on an iteratively updating fitting subdivision
surface and will therefore be relatively time consuming.

APPENDIX A

TDM AND THE GAUSS-NEWTON METHOD

We shall show that TDM uses a Gauss-Newton iteration. We
first compute the gradient of F by taking into account the
dependence of the foot point parameters ðu; vÞ on the control
points P through the constraints (13). Since Fk ¼ 1

2E
TE, due

to the constraints (13), we obtain the gradient vector

rPFk ¼ ðSTP �rPuV T
u �rPvV T

v ÞE ¼ STPE: ð16Þ

Here, rPFk is a 3n vector, where n is the number of control
points, and STP is a 3n by 3 matrix. Let FkðxÞ ¼ 1

2 f
2
k ¼ 1

2E
TE,

where fk ¼ kEk. Since rPFk ¼ fkrPfk, we have, by (16)

rPfk ¼
rPFk
fk
¼ STP

E

fk
¼ STP

E

kEk ¼ S
T
PN; ð17Þ

where N is the unit normal vector of the target surface �T at
the foot point V .

By (17), we have rPfkðrPfkÞT ¼ STPNNTSP . In the

second-order Taylor expansion of Fk at Pc, replacing the

Hessian by rPfkðrPfkÞT yields

FkðPcÞ þ rPFkðPcÞT�P þ 1

2
�PTr2

PFkðPcÞ�P

� FkðPcÞ þ rPFkðPcÞT�P þ 1

2
�PTSTPNNTSP�P

¼ 1

2
ðSc � VcÞT ðSc � VcÞ þ ðSc � VcÞTSP�P

þ 1

2
�PTSTPNNTSP�P

¼ 1

2
ðSc � VcÞTNNT ðSc � VcÞ

þ ðSc � VcÞTNNTSP�P þ 1

2
�PTSTPNNTSP�P

¼ 1

2
ðSc þ SP�P � VcÞTNNT ðSc þ SP�P � VcÞ

¼ 1

2
ðS � VcÞTNNT ðS � VcÞ ¼

1

2
½ðS � VcÞTN�2

¼ 1

2
� TD error term;

ð18Þ

where the last equality follows from (4). Since ðSc � VcÞ and
N above are parallel, we have made use of the fact that

ðSc � VcÞT ðSc � VcÞ ¼ ðSc � VcÞTNNT ðSc � VcÞ

and

ðSc � VcÞTSP�P ¼ fkNTSP�P
¼ fkNTNNTSP�P ¼ ðSc � VcÞTNNTSP�P:

Hence, by (18), TDM uses a Gauss-Newton step.
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TABLE 3
Comparison with the Approach in [24] for the Igea Model

The errors Em and Erms are expressed in percentage of the diagonal of
the model.

TABLE 4
Optimization Setup



APPENDIX B

SDM AND THE NEWTON METHOD

Now, we are going to show that the SD error term is given

by the Newton iteration, after appropriate modification to

make the Hessian positive semidefinite. Differentiating

rPFk in (16) yields the Hessian as

r2
PFk ¼ STP � rPuV T

u �rPvV T
v

� �
SP þ ETSPP

¼ STP � rPuV T
u �rPvV T

v

� �
SP :

ð19Þ

Here, ETSPP ¼ 0, since the sample point S is a linear

combination of control points P.
Without loss of generality, suppose that V ðu; vÞ is a local

regular parameterization of the target surface �T such that

Vu ¼ T1 and Vv ¼ T2, which are the unit principal direction

vectors of �T at the current foot point Vc, and then, there is

V T
u Vv ¼ 0. Differentiating the constraints (13) with respect to

P yields

0 ¼ rPuV T
uu þrPv V T

vu

� �
E

þ STP � rPuV T
u �rPv V T

v

� �
Vu

¼ V T
uuE � V T

u Vu
� �

rPuþ STPVu þ V T
vuErPv

ð20Þ

and

0 ¼ rPv V T
vv þrPuV T

uv

� �
E

þ STP � rPuV T
u �rPv V T

v

� �
Vv

¼ V T
vvE � V T

v Vv
� �

rPvþ STP Vv þ V T
uvErPu:

ð21Þ

From (20) and (21), we obtain

rPu ¼ �
STPVu þ V T

vuErPv
V T
uuE � VuTVu

ð22Þ

and

rPv ¼ �
STPVv þ V T

uvErPu
V T
vvE � V T

v Vv
: ð23Þ

By assumption and differential geometry of surfaces, we

have Vu ¼ T1, Vv ¼ T2, Vuu ¼ �1N , Vvv ¼ �2N , and E ¼ dN ,

where �1, �2 are the signed principal curvatures at V . With

the substitutions in (22) and (23), we obtain V T
uuE � V T

u Vu ¼
d�1 � 1 and V T

vvE � V T
v Vv ¼ d�2 � 1. Furthermore, since

V T
u E ¼ 0, differentiating with respect to v yields

V T
uvE þ V T

u Ev ¼ V T
uvE � V T

u Vv ¼ 0:

Therefore, V T
uvE ¼ V T

u Vv ¼ 0. Putting all these together, it

follows from (22) and (23) that

rPu ¼ �
STPT1

d�1 � 1
; rPv ¼ �

STPT2

d�2 � 1
: ð24Þ

Recall the notation �1 ¼ 1
�1

and �2 ¼ 1
�2

from Section 2.4.

Substituting (24) in (19) yields

r2
PFk ¼ STPSP þ

STPT1T
T
1 SP

d�1 � 1
þ S

T
PT2T

T
2 SP

d�2 � 1

¼ STPðI � T1T
T
1 � T2T

T
2 ÞSP

þ d�1
STPT1T

T
1 SP

d�1 � 1
þ d�1

STPT2T
T
2 SP

d�2 � 1

¼ STPNN
TSP þ �1S

T
PT1T

T
1 SP þ �2S

T
PT2T

T
2 SP ;

where �1 ¼ d=ðd� �1Þ and �2 ¼ d=ðd� �2Þ as in Section 2.4.

Here, note that T1T
T
1 þ T2T

T
2 þNNT ¼ I, and d; �1; �2 are

signed values (see Section 2.4.3).

Thus, we have obtained the Hessian r2Fk. Substituting

r2Fk in the following second-order Taylor approximation of

the objective function, noting that ðSc � VcÞTT1 ¼ ðSc � VcÞT

T2 ¼ 0, we obtain

FkðPcÞ þ rPFkðPcÞT�P þ 1

2
�PTr2

PFkðPcÞ�P

¼ 1

2
ðSc � VcÞT ðSc � VcÞ þ ðSc � VcÞTSP�P

þ 1

2
�PT STPNN

TSP þ �1S
T
PT1T

T
1 SP

�
þ�2S

T
PT2T

T
2 SP

�
�P

¼ 1

2
ðSc � VcÞTNNT ðSc � VcÞ

þ ðSc � VcÞTNNTSP�P þ 1

2
�PTSTPNNTSP�P

þ 1

2
�1 Sc þ SP�P � Vcð ÞTT1T

T
1 Sc þ SP�P � Vcð Þ

þ 1

2
�2 Sc þ SP�P � Vcð ÞTT2T

T
2 Sc þ SP�P � Vcð Þ

¼ 1

2
Sc þ SP�P � Vcð ÞTNNT Sc þ SP�P � Vcð Þ

þ 1

2
�1 S � Vcð ÞTT1T

T
1 S � Vcð Þ

þ 1

2
�2 S � Vcð ÞTT2T

T
2 S � Vcð Þ

¼ 1

2
½ðS � VcÞTN �2 þ

1

2
�1½ðS � VcÞTT1�2

þ 1

2
�2½ðS � VcÞTT2�2

¼ 1

2
f̂2
SD;k;

ð25Þ

which, up to a constant multiple, is the second-order

approximation of the SD given in (5). Thus, the SD error

term defined in (6) is derived from the Newton iteration after

removing the negative eigenvalues from the full Hessian by

setting the negative coefficients in (5), if any, to zero.
When we compute the gradient and Hessian of the

global function with respect to P, we treat P as basic

variables and U as dependent variables. Furthermore, the

dependence between U and P is expressed by the way we

compute the gradient in (16) and the Hessian using the local

linear relations (22) and (23). In fact, this local linear

dependence between U and P represents the tangent plane

�T to the constraint hypersurface SC defined by the

constraints in (13). Therefore, the iterates used by TDM

and SDM essentially move on the plane �T , according to

their respective approximations to the Hessian (see Fig. 14).
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