IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, NO. 2, APRIL 2006

213

Continuous Collision Detection for
Two Moving Elliptic Disks

Yi-King Choi, Wenping Wang, Yang Liu, and Myung-Soo Kim

Abstract—Collision detection and avoidance are important in
robotics. Compared with commonly used circular disks, elliptic
disks provide a more compact shape representation for robots or
other vehicles confined to move in the plane. Furthermore, elliptic
disks allow a simpler analytic representation than rectangular
boxes, which makes it easier to perform continuous collision
detection (CCD). We shall present a fast and accurate method
for CCD between two moving elliptic disks, which avoids any
need to sample the time domain of the motion, thus avoiding the
possibility of missing collisions between time samples. Based on
some new algebraic conditions on the separation of two ellipses, we
reduce collision detection for two moving ellipses to the problem of
detecting real roots of a univariate equation, which is the discrim-
inant of the characteristic polynomial of the two ellipses. Several
techniques are investigated for robust and accurate processing
of this univariate equation for two classes of commonly used
motions: planar cycloidal motions and planar rational motions.
Experimental results demonstrate the efficiency, accuracy, and
robustness of our method.

Index Terms—Collision detection, ellipses, elliptic disks, inter-
ference analysis, rational motion.

1. INTRODUCTION

OLLISION detection is important in robotics for path

planning and simulation. Accurate collision-detection
algorithms can greatly facilitate the avoidance of collisions be-
tween moving objects. In applications where real-time response
is mandatory, efficient collision-detection algorithms are also
essential. Although many collision-detection algorithms cater
to 3-D applications [1], [2], there are numerous other applica-
tions in which objects only move in the plane. Examples are
robot or vehicle path planning, where the robots or vehicles are
represented by 2-D figures and move in the 2-D plane, but the
robots may follow any path and make arbitrary motions.

Even in a 2-D setting, the outline of an object can be quite
complicated, and a two-phase approach to collision detection is
widely adopted in practice. Objects are enclosed by simple geo-
metric entities, called bounding objects, to which simpler col-
lision detection is first applied; more complicated collision-de-
tection computation on the detailed objects will only be carried
out if their bounding objects are found to be overlapping.
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Commonly used bounding objects include circular disks and
rectangles. There are, in general, two criteria in choosing the
type of bounding objects to be used in a particular application.
The first is bounding tightness: bounding objects should be
as tight as possible so that when two enclosed objects are
separate, their bounding objects should also be separate for most
of the time. This criterion saves time by ensuring that many
noncolliding pairs are not subject to further processing once
their bounding objects are found to be separate. The second
criterion is that collision detection for a pair of bounding objects
should be simple and very fast, since this operation usually
needs to be done many times, i.e., for every pair of objects
present in an environment. From these considerations, it is not
hard to understand why circular discs are commonly used as
bounding objects for robots in the plane (e.g., [3]); collision
detection between a pair of circles is almost trivial, and can
therefore be performed very efficiently. Interference testing
of multiple circular discs has also been studied intensively in
computational geometry [4]-[6]. (Spheres are popular bounding
objects in the 3-D case, for similar reasons.)

Ellipses provide much tighter bounding than circles. When
ellipses or circles are used as bounding objects, far fewer ellipses
than circles are normally needed to enclose a given object with
the same degree of tightness. Therefore, the use of ellipses as
bounding objects can potentially lead to significant improvement
in the accuracy and efficiency of collision detection. However,
relatively little work can be found in the literature on the use
of ellipses as bounding objects, largely because of the lack
of effective means of collision detection for ellipses. There
are several major issues in using ellipses as bounding objects,
which include computing the smallest bounding ellipse for a
given object, detecting the collision of two moving ellipses, and
computing the penetration distance of two overlapping ellipses.
In this paper, we shall focus on collision detection between
two elliptic disks with prespecified continuous motions.

Thorough analysis and classification of intersection of gen-
eral conics can be found in classical algebraic geometry, e.g.,
[7]-[9]. These results, however, consider conics in the complex
(projective, affine, or Euclidean) plane, and are not applicable
to the 2-D collision-detection problem, for which the analysis
must be done in the real plane. There is, nevertheless, an obvious
way to detect intersection between stationary ellipses, which is
to compute their real intersection points. But this brute-force
approach entails the numerical solution of a quartic equation,
and is, therefore, difficult to extend to deal with moving ellipses.
In this paper, we establish a simple condition for checking
the separation of two ellipses in the real plane based on the
number of the real roots of their characteristic equation, and
apply it to collision detection of two moving ellipses. To the
best of our knowledge, this is a new result that is unknown
in classical geometry.
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A typical framework for collision detection between moving
objects is to sample the time interval of the motion at discrete
time instants and test whether the objects intersect at each sam-
pled instant. This temporal sampling approach is prone to error,
since it may miss collisions that occur between sample instants.
A recent work by Schwarzer et al. [10] uses adaptive sampling,
which guarantees that all configurations along a straight-line
segment connecting two configurations in the C-space are
collision-free, by considering also the distance information in
the workspace. Based on this technique, Ferré and Laumond
[11] further developed a collision-free planar path through an
iterative process. There have also been attempts to use the speed
of moving objects as a bound to determine the safe time-sam-
pling resolution [12]. In recent work [13]-[15], Redon and his
colleagues address the important issue of continuous collision
detection (CCD) in various computing environments, which
include hundreds of thousands of polygons as obstacles and
complex moving objects, such as those composed of articulated
links. In particular, Redon er al. [14], [15] apply a graphics
processing unit (GPU)-based collision detection to the swept
volumes of line swept sphere (LSS) primitives against the envi-
ronment. On the other hand, our current work takes a different
approach and emphasizes the use of algebraic conditions.

We shall present a fast and accurate algorithm for CCD be-
tween two moving ellipses in the plane. We introduce new con-
ditions on the separation of two ellipses to reduce the colli-
sion-detection problem to the problem of detecting a real zero
of a univariate function which is the discriminant of the char-
acteristic polynomial of the two ellipses. If the ellipses serve as
bounding objects, the colliding time intervals computed by our
method can then be used as a refined time span to which other
algorithms for collision detection on the exact objects may be
applied.

Our method is based on theoretical results similar to those of
Wang et al. in [16], concerning the separation of two stationary
ellipsoids in 3-D space, but there are important differences be-
tween these results for ellipses and ellipsoids. First, the separa-
tion condition for two stationary ellipses cannot be derived as a
special case of the result [16] for two stationary ellipsoids, al-
though the former is a low-dimensional counterpart of the latter.
Therefore, in this paper, we shall prove, for the first time, an al-
gebraic condition on the separation of two stationary ellipses.
Second, compared with ellipsoids, the characteristic polynomial
of two ellipses has relatively simple properties, and this sim-
plicity allows us to reduce collision detection in the moving case
to a problem of detecting the zero of a univariate function. In
general, such a treatment is not possible for two moving ellip-
soids, at least not in the same straightforward manner, as will be
discussed in detail later. Our approach to collision detection be-
tween moving ellipsoids [17] addresses this issue, and is based
on the zero-set analysis of a bivariate function.

The contributions of this paper can be summarized as follows.

1) A simple algebraic condition is established for the sepa-
ration of two stationary ellipses.

2) An algebraic condition is established for detecting colli-
sions between two moving ellipses.

3) An algorithmic framework is presented for fast and ac-
curate collision detection between two moving ellipses.
We discuss in detail two classes of commonly used mo-
tions: cycloidal motions and rational motions. We also
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present robust methods for processing high-degree poly-
nomials arising from the use of rational motions, which
contribute to reliable collision detection.

The remainder of this paper is organized as follows. In Sec-
tion II, we shall establish the algebraic condition for the sepa-
ration of two stationary ellipses, and other algebraic properties
of the configuration formed by a pair of ellipses. These results
are then used in Section III to prove a separation condition for
two moving ellipses. The framework for our collision-detection
algorithm is presented in Section IV. In Section V, we discuss
details of the formulation and processing of the cycloidal mo-
tion, which is a simple but commonly used nonrational motion.
In Section VI, we present algorithms for ellipses making ra-
tional motions, concentrating on devising numerically stable al-
gorithms for processing the high-degree polynomials that arise
from rational motions. We conclude the paper and discuss fur-
ther research problems in Section VII.

II. CONDITION ON SEPARATION OF TWO ELLIPSES

In this section, we will prove the separation condition for
two stationary ellipses. An ellipse is a conic section curve, and
can be represented in the Euclidean plane E? by XTAX = 0,
where A = [a; ;] is a 3 x 3 real symmetric matrix, and X is
a 3-D column vector containing the homogeneous coordinates
of a point in E2. Let A; ; denote the leading submatrix of size
ixiof A,i = 1,2,3. For an ellipse X7AX = 0, we shall
assume throughout that the matrix A is normalized such that
XTAX < 0 for any interior point X of the ellipse. Then, by
elementary geometry, an ellipse X7 AX = 0 is characterized
by the conditions that det(A11) = a1,1 > 0,det(A422) > 0,
and det(Asz 3) < 0. Thus, A, 5 is positive definite.

An elliptic disk A is defined by A = {X|XTAX < 0} C
E2. We use d.A to denote the boundary curve of A, i.e., the set
of points satisfying X7 AX = 0, and use Int(.A) to denote the
interior points of A. Thus, A = d.A U Int(.A). For brevity, we
will use the terms ellipse and elliptic disk interchangeably when
there is no danger of confusion.

Two elliptic disks, A : XTAX < 0and B: XTBX <0, are
said to be separate or disjoint if A(\B = 0. The disks A and
B are said to be overlapping if Int(A) () Int(B) # 0; and they
are said to be rouching if A(\B # 0 and Int(A) () Int(B) =0
(see Fig. 1).

Given two elliptic disks A : XTAX < 0and B: XTBX <
0, the cubic polynomial f(\) = det(AA — B) is called the char-
acteristic polynomial, and f(\) = 0 the characteristic equation
of A and B.

Lemma 1: For any two elliptic disks A : XTAX < 0 and
B: XTBX < 0, the root pattern of f(\) = 0 falls into one of
the following three cases:

1) three positive roots;

2) one positive and two negative roots;

3) one positive and a pair of complex conjugate roots.
Proof: Suppose

f(A) = asA® + a2A? 4+ a1\ + ap.

Then a3 = det(A) < 0 and a9 = —det(B) > 0. It follows
that £(0) > 0 and f(+00) < 0. Hence, f(A) = 0 has at least one
positive root. Moreover, since a3z 7# 0 and ag # 0, it is clear that
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@QANB=10 () Int(A) N © AN B #Qand
Int(B)# 0  Int(A) NInt(B) =0
Fig. 1. Two elliptic disks A and B. (a) Separate. (b) Overlapping.

(c) Touching.

0 or oo cannot be a root of f(A) = 0. Let Ay > 0, A1, and A
denote the three roots. Since A\gA1A\a = —ag/ag > 0, we have
A1A2 > 0. Hence, the other two roots A1 and A, must both be
positive, both negative, or a pair of complex conjugates. ]

Lemma 2: If Int(A) (Int(B) = 0, then f(A) = 0 has a
negative root.

Proof: Since Int(A) () Int(B) = (), we may suppose that
A and B are either separate or touching externally. We make
the substitution A = (u — 1)/u, which maps p € [0,1] to
A € (—00,0], and transforms the characteristic equation f(\) =
det(AM — B) = 0tog(u) = det((1 — p)A + uB) = 0. We
will denote Q(u) = (1 — p)A + pB, observing that Q(0) = A
and Q(1) = B. Clearly, f(A\) = 0 has a finite negative root if
and only if (iff) g(x) = 0 has areal root in (0, 1). We shall now
show by contradiction that g(x) = 0 has a real root in (0,1).

Assume that g(x) = 0 has noreal rootin (0, 1). Since g(p) =
det((1 — u)A + uB) is a continuous function of u, and g(0) =
det(A) < 0, we have g(p) = det((1 — p)A + uB) < 0
for all 4 € [0, 1]. (Recall that g(1) = det(B) # 0.) Clearly,
det(Q(p)1,1) = (1 — p)ar,n + wbiy > 0 for all p € [0,1],
since A7 > 0 and By 1 > 0. Furthermore, Q(11)22 = (1 —
W) Az o+ puBs o is positive definite for any ¢ € [0, 1], since As o
and B, 5 are positive definite. Thus, det(Q(s)22) > 0 for all
w € [0,1]. Hence, XTQ (1) X = Ois anellipse forall 1 € [0,1],
with its center at R(u) = Q(p)~1[0,0,1]7.

Let us denote p(u) = R(u)T AR(p). Then p(u) is a con-
tinuous function of y in [0, 1]. Clearly, R(0) € Int(.A), since
R(0) is the center of A. We have R(1) ¢ A, since R(1) is
the center of B and Int(.A) () Int(B) = (), which is the hy-
pothesis of the lemma. Hence, p(0) = R(0)T AR(0) < 0 and
p(1) = R(1)TAR(1) > 0. By a continuity argument, it fol-
lows that p(p1) = 0 for some p; € [0, 1], i.e., the center R(p1)
of the ellipse Q(u1) is on the boundary of the elliptic disk .4
(see Fig. 2). We then define a circular disk D centered at R(111)
which is contained in Q(pu1), i.e., D C Q(y1). Note that R(p1)
may or may not be the tangent point of A and B, since .4 and
B are either separate or touching externally. If R(u1) is not
the tangent point, D can be made sufficiently small such that
D N B = {. In any case, the tangent of A at R(u1) (also the
common tangent of A and B at R(yuq), if R(p1) is the tangent
point) gives a diameter of the disk D. We may then choose a
point X on this diameter, except for R(f1), such that X is in-
terior to Q(u1 ), but is exterior to both .4 and B. Hence, we have
XTQ(u1)X: < 0,XTAX; > 0,and XTI BX; > 0. Since
w1 € (0,1), it follows that

X{Q(u) X1 = (1 — ) XTAXy 4+ i X{ BX; > 0.

This is a contradiction. Hence, g(1:) has a real zero in (0,1). m

X =aXo+ X1

Fig. 3.

Configuration for Lemma 3.

Lemma 3: If Int(A) (" Int(B) # 0, then any real root of
f(A\) = 0 is positive.
Proof: The proof goes by contradiction. Let Ao be a real
root of f(A) = 0. Assume Ay < 0 and denote Qo = A\gA — B.
Then there exists a real point X such that Q¢ Xy = 0, because
Qo is singular. Since Int(A) (Int(B) # 0, let X1(# Xo) de-
note a common interior point of A and B, i.e., X{ AX; < 0and
XTI BX; < 0 (Fig. 3). Then

X{QoX1 = M X{AX; — XI'BX; > 0.

Let £ denote the line passing through X and X;. Then, since
A and B are bounded, there exists on the line £ a point X far
enough from A and B such that X is exterior to both .4 and B.
Letus write X = aX+ (X1, where o and /3 are real constants
that are not both zero. Then X7AX > 0 and XTBX > 0. It
follows that

XTQoX = MXTAX — XTBX < 0.

On the other hand, since Qo Xy = 0 and X{ QoX; > 0, we
have

XTQoX = o XF'QuXo + 208X{ Qo Xo + B* X Qo X1
= 2 X{ QoX1 > 0.

This is a contradiction. Hence, any real root A of f(A) = 0 is
positive. ]

Lemma 4: If two elliptic disks A : XTAX < 0 and B :
XTBX < 0 touch externally, then f(\) = 0 has a negative
double root.

Proof: Suppose that A and B do touch externally. As a
result, the two ellipses X7 AX = 0 and X7 BX = 0 will have
a multiple intersection. Then f(A\) = 0 has a multiple root Ag
[18, p. 256]. Since Int(A) () Int(B) = 0, by Lemma 2, f(\) =
0 has a negative root A;. Moreover, by Lemma 1, f(A\) = 0
has a positive root Ay. Thus, we have either \g = A1 < 0 or
Ao = A2 > 0. Again by Lemma 1, only the first case is possible.
Hence, f(\) = 0 has a negative double root. ]
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Lemma 5: If f(\) = 0 has a negative double root, then the
elliptic disks A : XTAX < 0and B: XTBX < 0 touch each
other externally. Moreover, the real touching point X is the
unique solution to (A\gA — B)X = 0, where A is the negative
double root of f(A) = 0.

Proof: Let Ag < 0 be a negative double root of f(\) = 0.
Clearly, )\ is not a zero of the first 2 X 2 minors det(AAs o —
Bs »), because both A, » and Bs » are positive definite, and thus
the two zeros of det(AAs 2 — Bj o) are positive. It follows that
rank (AgA — B) = 2 and its null space, Ker[A\gA — B], has
dimension one.

Since det(AA — B) = 0 has a double root Ao, the pencil
XT(MA — B)X = 0 contains the singular conic \gA — B with
multiplicity 2. In this case, the two ellipses X7 AX = 0 and
XTBX = 0 are tangential to each other at the singular point
X of the conic X T (\gA—B)X = 0, thatis, (A\gA—B)Xo = 0
(see [7]).

We are now going to show that X is a real tangent point of
A and B. Let us suppose that Xg = U £ iV # 0, where U
and V are real homogeneous vectors which are not both zero;
without loss of generality, we suppose that U # 0. Then, from
(MA — B)(U £4V) = 0, it follows that (\gA — B)U = 0
and (AgA — B)V = 0. This means that U and V" are both real
solutions of (A\gpA — B)X = 0. Hence, U and V are linearly de-
pendent, or V' = U for some constant «, since Ker[AgA — B]
has dimension one. It follows that Xo = (1 + i«)U is a real
point, since U stands for a real point and the multiplicative con-
stant (14 ¢«) can be ignored in a homogeneous representation.
Hence, the elliptic disks .A and B touch each other externally at
the real point X. [ |

Lemma 5 also suggests a convenient means to compute the
contact point of two externally touching ellipses, which will be
used to find the first contact point of two moving ellipses in
subsequent sections.

The following theorem gives a condition on the separation
of two elliptic disks, which is the main result of this section.
Fig. 4 illustrates the relationship between two ellipses and the
root pattern of their characteristic polynomial.

Theorem 6: Given two ellipses A : XTAX = 0 and B :
XTBX = 0:

1) A and B touch externally iff f(A\) = 0 has a negative
double root;

2) A and B are separate iff f(\) = 0 has two distinct nega-
tive roots.

Proof: Part 1) follows from Lemmas 4 and 5. For part 2),
the sufficiency follows from Lemmas 3 and 4, and the necessity
follows from Lemmas 2 and 5. [ |

Remark: The application of the above conditions to de-
tecting the overlapping of two stationary ellipses is rather
straightforward. A description of the resulting algorithm will
be discussed in Section IV as the first step of our complete
algorithm for moving ellipses. Note that a quick and exact test
for overlap between two stationary ellipses should be of interest
in its own right in some applications.

The next corollary, following from Theorem 6 2) and Lemma
1, is a key property that enables us to detect collisions between
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Fig. 4. Two elliptic disks and their characteristic polynomial f(\). Left:
Overlapping iff f(A) = 0 has no negative root. Middle: Touching externally
if f(A) = 0 has a double negative root. Right: Separate iff f{(A) = 0 has two
distinct negative roots.

two moving elliptic disks .A(¢) and B(t) by the occurrence of a
double root of f(\;t) = 0, as will be seen in the next section.

Corollary 7: Suppose that two elliptic disks A : XTAX <
0and B : XTBX < 0 are separate. Then f(\) = 0 does not
have any multiple roots.

III. SEPARATION CONDITION FOR TwoO
MOVING ELLIPTIC DISKS

In this section, we are going to establish a condition for
detecting a collision between two moving elliptic disks.
Consider two elliptic disks A(%) XTA()X < 0 and
B(t) : XTB(t)X < 0 making continuous motions M 4(#) and
Mp(t),t € [0,1] respectively. The disks .A(¢) and B(t) are
said to be collision-free if A(t) and B(t) are separate for all
t € [0,1]. Otherwise, A(t) and B(t) collide, i.e., A(t) and B(¢)
are either touching or overlapping for some ¢ € [0, 1].

The characteristic polynomial of .A(t) and B(t),t € [0,1] is

f(A;t) = det(AA(t) — B(t))
and we can write
f(A; 1) = g3(1)A* + g2()A? + g1 (H)A + go(t). (D

The discriminant of f(\; ¢) with respect to A, as a function of ¢,
is

A(t) = 18g3g28180 — 48380 + 8387 — 4gagi — 27gigy (@)
(see [19]). By definition, f(A; ¢) = 0 has a multiple root in A for
some ¢ iff A(¢) = 0. Furthermore, it can be shown that f(\; ¢) =
0 has three simple real roots if A(¢) > 0, and f(\;¢) = 0 has
two complex conjugate roots and a real root if A(t) < 0.

The next theorem states the condition that two moving elliptic
disks are collision-free.

Theorem 8: Let A(t) and B(t),t € [0, 1] be two moving el-
liptic disks in E2. Let f(\; ¢) be their characteristic polynomial.
Let A(t) denote the discriminant of f(\;¢) with respect to A.
Suppose that .A(0) and B(0) are separate. Then A(¢) and B5(¢)
are collision-free iff A(¢) has no real zero in [0, 1].

Proof: First, we prove necessity. Suppose that .4(¢) and
B(t) are collision-free. Then by Corollary 7, f(A;t) = 0 does
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not have a multiple root in \ for any ¢ € [0, 1]. Therefore, A(%)
does not have any real zero in [0, 1].

To prove sufficiency, suppose that A(¢) = 0 has no real root
in [0, 1]. Now assume that .A(¢) and B(t) collide. Then .A(%o)
and B(ty) are overlapping or touching for some ¢, € [0,1].
Since A(0) and B(0) are separate, by a continuity argument,
there exists an instant ¢; € (0,%9] C [0,1] at which A(#;)
and B(t1) touch each other externally. Then, by Theorem 6,
f(\; t1) = 0 has a negative double root in A. Therefore, A(t1) =
0. But this contradicts the condition that A(t) has no zero in
[0, 1]. Hence, A(¢) and B(t) are collision-free. ]

Corollary 9: Let A(t) and B(t),t € [0,1] be two moving
elliptic disks. Suppose that A(0) and B(0) are separate. If A(#)
has a real zero in [0, 1], then .A(¢) and B(¢) touch each other
externally at ¢;, € [0, 1], where ¢,,;, is the smallest real zero
of A(t) in [0, 1], i.e., tymin = min{¢t|A(t) = 0,t € [0,1]}.

The proof of Corollary 9 is similar to the proof of necessity
in Theorem 8, and is therefore omitted. Here #.,;,, gives the time
of first contact between the disks .A(¢) and B(t).

IV. OUTLINE OF ALGORITHM

Based on the separation conditions proved in the preceding
sections, in this section, we shall outline the framework of our
algorithm for collision detection between two moving ellipses.

Algorithm: CD-DISC

Input:  The matrices A(¢) and B(t) of two moving elliptic
disks A(t) and B(t).

Output: Whether the two elliptic disks collide:
COLLISION or COLLISION-FREE.

Step 1:  Compute the characteristic equation f(\;0) = 0 for
A(0) and B(0). Then determine whether f(A;0) = 0
has two distinct negative roots. If yes, by Theorem 6,
A(0) and B(0) are separate, and go to Step 2; other-
wise, report COLLISION and exit.

Step 2:  Compute the characteristic polynomial

f(A;t) = det(AA(t) — B(t)).

Step 3:  Compute the discriminant A(t) of f(\; ¢) with respect
to .

Step 4 Determine whether A(¢) = 0 has any real root in

[0,1]. If yes, by Theorem 8, report COLLISION and
exit; otherwise, again by Theorem 8, report COLLI-
SION-FREE and exit.

In Step 1 of the algorithm CD-DISC, we use the Sturm
sequence method [19, p. 96], a classical real-root isolation
method, to check whether or not f(\;0) = 0 has two distinct
negative roots. By Theorem 6, this can determine whether or not
thetwoellipses are separateatt = 0. The Sturm sequence method
counts the number of real zeros of a polynomial within a specified
interval by taking the difference between the numbers of sign
changes exhibited by the Sturm sequence of the polynomial at
the two ends of the interval (a multiple real root is counted once
only). When applying the Sturm sequence method to f(A;0)
over the interval (—o0,0), Lemma I ensures that the number
of zeros can only be 0, 1, or 2, corresponding to situations in

which f(\;0) = 0 has no negative root, one negative double
root, or two distinct negative roots, respectively.

The algorithm CD-DISC only reports whether the two moving
ellipses collide. By solving for the roots of A(¢), this algorithm
can be extended to report also the time of first contact, or
all instants at which the ellipses are in external contact. By
Corollary 9, the smallest root ¢,,;, of A(¢) = 0in [0, 1] is always
the instant of first contact between the two disks. However, to
report all contact instants, the other roots of A(t) = 0 in [0, 1]
need to be checked, because while all contact instants must be
roots of A(t) = 0, aroot of A(¢) = 0 may not correspond to an
external contact between the disks. We will discuss this more
in Section VI-B. For each external contact time instant ¢;, the
corresponding touching point of the two ellipses can be obtained
by finding the unique solution to (A\;A(t;) — B(t;))X = 0,
where )\; is the negative double root of f(\;¢;) = 0 (Lemma
5). Implementation of the algorithm CD-DISC, with various
enhancements for different types of motions and outputs, will
be discussed in the following sections.

V. NONRATIONAL MOTIONS

In the algorithm CD-DISC, it is necessary to at least to
detect the real roots of the univariate equation A(t) = 0.
When the motions of the ellipses are analytical, but otherwise
arbitrary, A(t) = 0 is a rather general equation, and appropriate
root-finding techniques need to be used. If the motions are
piecewise analytical, then the algorithm can be applied to each
piece. In the rest of the discussion, we shall consider some
special types of motion that are frequently encountered, and
which allow relatively easy formulation or efficient handling.
In particular, we will consider the cycloidal motion in this
section, and the rational motion in the next section.

The cycloidal motion is commonly used in cam design. An
object with a cycloidal motion has the trajectories of all of
its points being cycloids. The simplest cycloidal motion is a
circle rolling along a straight line. We shall consider ellipses
making cycloidal motions, such that they translate with constant
velocities and, at the same time, rotate about their centers with
a constant angular velocity. In this case, the elements of the
motion matrix M (¢) contain not only rational functions of
time ¢, but also trigonometric terms such as cos(aot + 3p) and
sin(a1t + (1), for some constants g, a1, By, 31. Therefore,
the coefficients g;(t) of the characteristic polynomial in (1)
are not rational functions in £. It might be suggested that the
trigonometric functions could be convertedintorational functions
using the variable substitution v = tan(¢/2). However, this
substitution would make the translational part, which is linear
in ¢, nonrational. In fact, this kind of motion is intrinsically
transcendental; hence, it can only be approximated, but not
exactly represented, by a rational motion.

Suppose that two elliptic disks A and B perform cycloidal
motions. Since the sizes and shapes of the disks do not change
during the motion, the coefficients g3(¢) and go(t) of (1) are
constant and equal to det(A) and — det(B), respectively. Let
uw = (1—1¢)0g+tb and v = (1 — t)po + t¢p1 be linear in-
terpolations of the initial and final orientation angles 6y, #; of
A, and ¢, ¢1 of B. Then the other two coefficients, go(¢) and



g1(t), can be expressed as

go(t) = (a2 cos(20) + a1 sin(20) + agg)t?
+ (@12 €0s(2v) + a1 sin(2v) + aqg)t
+ a3 cos(2(u — v)) 4+ a2 cos(2v)
+ a1 8in(2v) + ago

g1(t) = (Baz cos(2u) + Bo1 sin(2u) + fao)t?

+ (612 COS(2U) + P11 Sin(2u) + ﬁlo)t
+ Bos cos(2(u — v)) + Boz cos(2u)
+ [301 sm(2u) + [300

where the « and 3 terms are all constants.

Since the coefficients g;(¢) are not rational, neither is the dis-
criminant A(t) for a cycloidal motion. One may use any suitable
numerical solver to compute the roots of A(t) = 0 or to check
for the existence of any real roots. The example below illustrates
the steps of the algorithm CD-DISC for two ellipses making cy-
cloidal motions.

Example 1: Consider two elliptic disks A : 22 /62 + y2/10?
< 1land B : 22/14% 4+ y? /4% < 1. Two moving elliptic disks,
A(t) and B(t),t € [0, 1], are defined by the transformation of
A and B under the following cycloidal motions:

Cos (109”) —sin (%) 115¢ — 80
My = | sin (19%)  cos (;09”) 55¢ N 38
cos (%) —sin %) 76t — 60
Mp = | sin (%) cos (%) 97t — 57
0 0 1

The characteristic polynomial is

f(Ast) = det(AA(t) —

B(t))
— 1 A3 47rt)

~ 3600 (( 125 240 cos ( 3
4141870 sin (4§t) - 1358?1?10) 2
+ (31%60 cos (472Tt) + 6125;3210 sin (%)
+41730943090) t+ M cos (Sgt)
+ 12?340 cos (4gt) - %
4mt) _ _10519 2
3 ) 1881 600)

+ (( 3922700 cos (2097rt) - %
sin (252 + L)
+ (gg00 c0s (%5™)

+5§2820 sin (%) - 23?5?72%)0) t
20m)

- 1960 cos (Sﬂ) + 117 600 cos ( 9

19 i (20wt 937
8820 sm( 9 ) + 313600) A+ 3136'

X sin (45t

The discriminant A(¢) has a long expression, and is therefore
omitted.

The disks \A(t) and B(t), moving from left to right, and the
graph of their discriminant are shown in Fig. 5. Using Maple,
with floating-point computations to 12 decimal places, the
roots are found at ¢ = 0.226,0.393,0.600,0.731. Therefore,
the two ellipses collide during the cycloidal motion, the first
contact is at time ¢ = 0.226, and the contact point is found
at (—47.605, —33.162)T. Furthermore, only ¢+ = 0.731 corre-
sponds to another external touching of the two ellipses, and the
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Fig. 5. Two moving ellipses of Example 1, progressing from left to right, and
the discriminant A(?).

contact point is (—2.469, 2.723)T. Comparing with the results
obtained by Maple integer arithmetics (except for the last step
of root solving using floating-point computations), the accuracy
of the roots found above is up to nine decimal places.

VI. RATIONAL MOTIONS

Recent studies on rational motions [20]-[23], and in partic-
ular, on planar rational motions [24], have shown that low-de-
gree rational motions are adequate to meet the need for mo-
tion design and representation in robotics and CAD/CAM. The
use of rational motions also allows effective computation, using
various well-developed techniques for processing polynomials.
In this section, we shall study in detail the application of our
method to collision detection between two elliptic disks making
rational motions, with particular emphasis on rational Euclidean
motions. The resulting algorithms are also applicable to affine
motions that produce continuous deformation of the objects, an
effect often required in computer animation.

A. Planar Rational Euclidean Motions

We start with a brief review of planar rational Euclidean mo-
tions. A Euclidean transformation in E2 is given by X’ = M X,

where
R V
w=r(g 1)

for some nonzero constant p, and X, X' are points in E? in ho-
mogeneous coordinates. The rotational part of the transforma-
tion is described by the 2 X 2 orthogonal matrix R, and the trans-
lational part by the vector V. If the elements of R and V are con-
tinuous functions of ¢, then M describes a transformation over
time, and can, therefore, be denoted by M (t). In particular, if
the elements of M (t) are rational functions and R is orthogonal
for all ¢, then M (t) is called a rational Euclidean motion whose
degree is the maximal degree of its elements. (Note that M ()
represents an affine motion only if R(t) is nonsingular.)
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One way to construct a rational Euclidean motion is to use
the kinematic mapping that associates the Euclidean transfor-
mation M with a point d in P3, the 3-D real projective space,
as described in [24]. If we write

cos¢p —sing Vg
R:<51n¢ cosgb) and V:<vy>

then the kinematic image d € P3 of M is given by

do v sin(¢/2) — vy, cos(¢p/2)
d— di | _ [ vacos($/2) + vysin(¢/2)

da —2cos(¢/2)

ds 2sin(¢/2)

Conversely, any point d in P? at which d3 +d3 # 0 corresponds
to a Euclidean transformation M in EZ, given by

d3 —d3  2dyds  2(dods — dydy)
M = | —2dods  d3 —d% 2(dode+did3) | . (3)
0 0 d3 + d3

It follows that there is a one-to-one correspondence between
a Euclidean transformation in E? and a point in the kinematic
image space, which is P3 with the line dy = d3 = 0 removed.
Due to this correspondence by means of a kinematic mapping,
we may construct a polynomial curve in the kinematic image
space and then obtain the corresponding rational Euclidean mo-
tion in E2. In general, if the d; terms are polynomials of degree
n,, the resulting motion will be of degree 2n.. A C? interpolation
scheme of a set of given positions in E? with piecewise quartic
B-spline rational motions can be found [24]. Another advantage
of rational motions is that they permit an algebraic treatment of
the collision-detection problem.

When applying a rational motion M (t) to an ellipse A :
XTAX = 0, we get a moving ellipse A(t) : XTA(t)X = 0,
where

At) = (M~ (1)TAM~Y(t).

Inverting (3), we have

d% - d% —2dods 2(d1d2 + d0d3)
M= | 2dods  2—d2 2dvds — dods)
0 0 d3 + dj

Therefore, the maximal degree of the entries in A(¢) is 2k, if the
degree of the motion M (t) is k.

B. Properties of A(t)

We now analyze the degree of the discriminant A(¢). The
characteristic equation f(\;¢) = 0 of the two moving elliptic
disks \A(¢) and B(t) is cubic in ), and its degree in ¢ depends
on the degree of the rational motions of the two disks. Suppose
that the motions M 4(t) and Mp(t) both have degree k. Then
the maximum degree of the elements of AA(t) — B(¢) is 2k, and
the maximum degree of the coefficients g;(¢) of the character-
istic equation is 6k. Hence, from (2), the maximum degree of
A(t) is 24k. This analysis only gives an upper bound of the de-
gree of A(t), because the actual degree of A(t) depends on the
specific motions that are used. For example, consider a linear
translational motion

R(t)

o= (40 19

TABLE 1
DEGREES OF VARIOUS ENTITIES FOR RATIONAL MOTIONS OF DIFFERENT
DEGREES. THE LAST ROW SHOWS MAXIMUM DEGREES OF THE ENTITIES FOR A
GENERAL MOTION OF DEGREE k. THE MOTION M (t) TAKES THE FORM OF (3)

Degree in ¢
Motion Type M(t) | g (1) [ A(?)
Linear Translation 1 0 (g0.,83)> 2(g1.82) 8
General Motion k 6k 24k
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Fig. 6. Two elliptic disks with translational motions, and their corresponding
discriminant function.

where the entries in R(t) are all constants, and those in V() are
linear polynomials. Then, the degree of g and g3 is 0, while that
of g1 and g is 2. Therefore, the degree of A(t) is only 8, which
is much lower than 24, which is the degree that could be deduced
from the general analysis. The relationship between the degree
of A(t) and the degree of the rational motions is summarized in
Table 1.

Now let us consider the geometric meaning of the roots of
A(t). If two ellipses A(tg) and B(ty) touch each other exter-
nally, by Theorem 6, f(\,ty) = 0 has a negative double root,
and we have A(tg) = 0. However, when A(#) = 0 for some ,
the disks .A(#) and B(t) do not necessarily touch each other.

Fig. 6 shows two elliptic disks moving with linear transla-
tional motions and the graph of their discriminant. Here, A(0)
and B(0) are separate. Note that the first real root ¢; of A(t) = 0
corresponds to an external contact between A(¢) and B(¢), while
the next two roots, ¢, and ¢3, are caused by internal tangency of
the two disks.

Since the degree of A(t) is eight in the case of a linear trans-
lational motion, A(t) = 0 can have eight real roots at most.
Fig. 7 illustrates a case where all eight real roots are accounted
for by real tangencies between two elliptic disks during linear
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to t1 t2
Fig. 7. Eight real roots of A(t) =

corresponding contact points between the two elliptic disks. Note the double
roots at 5 and ¢3.

0 for a translational motion, and the

motions. Here, there are two instants (o and £3) when the two
disks are internally tangential to each other simultaneously at
two points; o and ¢3 are double zeros of A(t) = 0.

We have mentioned thatareal zero of A(t) = 0 may not corre-
spond to any real tangency between the two ellipses. To see this,
consider two moving circular disks that become two concentric
circles 22 4+ y? = land 22 +y? = 4 attime t,. It is easy to verify
that the characteristic equation f(\; ¢y) = 0has a positive double
root, and therefore, A(tp) = 0. But the two circles have no real
touching point: the two circles are tangential to each other at two
complex conjugate points (1, £, 0), known as the circular points
in projective geometry. This explains why only the first real root
of A(t)int € [0, 1] always indicates an external contact between
two moving elliptic disks, as assured by Corollary 9, on condition
that the two elliptic disks are separate at the beginning (i.e., when
t = 0). For each of the other real roots ¢ of A(t) = 0, we need to
check the root pattern of the characteristic polynomial at time £
to see whether there is an external contact. Theorem 6 1) tells us
that aroot ¢ of A(¢) = 0 corresponds to an external tangency of
the two ellipses iff the characteristic polynomial f(\; ) = 0 has
a negative double root in \.

C. Robust Computation

In this section, we shall discuss robust implementation of
CD-DISC for testing collisions between two elliptic disks
moving with rational motions. One of the steps in CD-DISC
(see Section IV) is to construct the discriminant A(t). The
discriminant is a univariate polynomial in ¢ that is the result
of long polynomial computations (mainly polynomial mul-
tiplications) from the coefficients of the motion matrices,
which are also polynomials. If the computations are carried out
using the power series representation of the polynomials (i.e.,
p(t) = Yiyait',a; € R), we found that CD-DISC suffered
severely from numerical instability when the degree of motion
is higher than two, using double-precision floating-point arith-
metic. By comparing intermediate results through the entire
process with exact results produced by a Maple implementation
of the same algorithm using exact integer computations, signif-
icant errors in the coefficients of A(t) are revealed. We perform
a test, in which two elliptic disks move with degree-4 motion,
using Maple with high-precision floating-point computation,
and found that acceptable results could only be obtained when
the number of decimal places in the floating-point computation
is increased above 20. In this case, the degree of A(%) is 96.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, NO. 2, APRIL 2006

To overcome this numerical instability in processing high-de-
gree polynomials, we turned to the Bernstein form of poly-
nomials. The Bernstein form has the expression

Z(?)aiti(l — )" a; €R

i=0
and is known to be numerically more stable for polynomial
computations than the power form [25], [26]. In our current
implementation of CD-DISC, we still use polynomials in
the power form when computing the characteristic equation
f(A;t) = 0 from the motion matrices, and then convert the
coefficients g;(¢) of f(A\;¢) = 0 into the Bernstein form; the
numerical condition of this conversion is satisfactory, since
the terms g;(¢) have relatively low degrees [27]. Finally, we
derive A(t) by computing with polynomials in the Bernstein
form. Our experiments show that this adoption of the Bernstein
form significantly improves the robustness and accuracy of
our collision-detection procedure.

Having obtained the discriminant A(t) in a robust manner,
the next step is to analyze its zeros. The extent of processing
of A(t) depends on what kind of collision-detection output
is required by an application. The following three variants of
CD-DISC have been implemented that give different colli-
sion-detection outputs for two elliptic disks making rational
motions.

Variant 1)
Variant 2)

reports whether the two elliptic disks collide.
reports whether the two elliptic disks collide, and, if
80, reports the time of first contact.

reports whether the two elliptic disks collide, and, if
so, reports all instants of external contact.

These different output types require different ways of han-
dling the discriminant A(¢) = 0. For Variant 1, we only need
to check for the existence of real roots of A(¢) = 0. Here we
make use of a recent result that uses an idea similar to the Sturm
sequence method to count the number of real roots of a poly-
nomial in the scaled Bernstein form [28], which is expressed
as > i bit!(1 — t)" ", where b; € R. This method inherits
the robustness provided by the Bernstein form, and therefore, is
suitable for high-degree polynomials. Using this technique, we
are able to determine robustly whether A(¢) has any real roots
in the time interval ¢ € [0, 1]. Here, the coefficients g; () of the
characteristic equation f(A;¢) = 0 are first transformed to the
scaled Bernstein form, and then A(t) is obtained by computing
with polynomials in the scaled Bernstein form. This treatment
avoids the errors that would otherwise be caused by the high de-
gree of A(t), if A(t) were first obtained in the Bernstein basis
and then transformed into the scaled Bernstein form. The scaled
Bernstein form is used only in Variant 1.

For Variant 2, we need to solve for the smallest real root of
A(t) = 01in [0, 1], if one exists. For Variant 3, we must obtain
all the real roots of A(¢) = 0 in [0, 1]. For each of these roots,
we also need to check for the existence of a negative double root
of the characteristic polynomial, in order to verify the external
tangency of the two elliptic disks. In both Variants 2 and 3, we
use the de Casteljau algorithm to subdivide A(¢) in the Bern-
stein form to locate all real roots of A(¢) in [0, 1]. Using the
convex hull property, we can discard an interval of ¢ if the Bern-
stein coefficients of A(%) over that interval are all positive or

Variant 3)



CHOI et al.: CONTINUOUS COLLISION DETECTION FOR TWO MOVING ELLIPTIC DISKS 221

For Two Colliding Ellipses

For Two Collision-Free Ellipses

—4— Variant 1

Time (ms)

Degree of A(t)

(a)

Fig. 8.

—>— Variant 2
Total Time
Report first
contact instant

—=— Variant 3
Total Time
Report all
contact instants

-- - - Obtaining A (t)
in Bernstein form

Total Time 7
Report whether
collide or not

- - -k -- Obtaining A (t)
in scaled
Bernstein form 5

Time (ms)

Degree of A(t)

)

Average CPU time needed for CD-DISC to detect collision for two moving elliptic disks with different degrees of motion, when the two moving elliptic

disks (a) collide, or (b) are collision-free. The solid lines show the total collision detection time for the three variants of CD-DISC (see Section VI-C), and the
dashed lines show the computation time taken for obtaining A(#) in the Bernstein form and in the scaled Bernstein form.

all negative. For Variant 2, in which only the first contact-time
instant is needed, we can save computation time by continuing
to subdivide only those intervals within which the smallest real
root might be contained.

D. Experimental Results

We shall first use a large set of synthesized motions to demon-
strate the efficiency of our collision-detection algorithm, and
then use a more detailed example to show its accuracy. We gen-
erated 2000 test cases for each of four kinds of motion: linear
translations and general rational motions of degrees 2, 4, and
6. In each set of 2000 cases, 1000 cases were randomly gen-
erated pairs of colliding elliptic disks, and the other 1000 were
randomly generated pairs of collision-free elliptic disks. The ex-
periments were run on a PC with a 2.2 GHz Intel CPU, and the
timings are shown in Fig. 8. The graphs in Fig. 8(a) and (b) give
the average CPU time taken by CD-DISC for colliding and col-
lision-free elliptic disks, respectively. The three solid lines cor-
respond to the three different outputs (Variants 1-3, as described
in Section VI-C) that CD-DISC can report. Clearly, more time
is needed as the degree of motion, and hence, the degree of A(¢)
increases. For two elliptic disks making a motion of degree 6,
for which the degree of A(t) is 144, it takes less than 1 ms to
determine whether there is any collision, less than 5 ms to com-
pute the instant of first contact, and less than 7 ms to compute
all instants of contact.

For both colliding and collision-free ellipses, Variant 1 of the
algorithm takes the same time, since the computation involved
to decide whether there is a collision (i.e., to determine root
existence by Sturm sequences) is the same in both cases. In the
case of colliding elliptic disks [Fig. 8(a)], more time is needed
for Variants 2 and 3 to detect the instants of contact; in general,
the computation time increases as the number of roots of A(t)
increases. When there is no collision [Fig. 8(b)], A(¢) has no
root, and the average CPU time taken for reporting the instant

of first contact (Variant 2) or the instants of all contacts (Variant
3) is the same.

The dashed lines in the graphs show the time needed for ob-
taining the polynomial A(t) from the characteristic equation; in
Variant 1, A(t) is obtained in the scaled Bernstein form, while
in Variants 2 and 3, the computation is done in the Bernstein
form. It is obvious that in Variants 2 and 3, obtaining A(t) takes
up most of the overall time for collision detection. Polynomial
multiplications in the scaled Bernstein form are much more ef-
ficient than those in the Bernstein form, which explains why the
time needed for obtaining A(t) in Variant 1 is much less than
that needed in Variants 2 and 3.

Next, we use a worked example to show the robustness of the
algorithm CD-DISC.

Example 2: Consider two ellipses A : 2 /5% +4?/10% = 1
and B : 22/5% + y2/10% = 1. Two moving elliptic disks .A(t)
and B(t),t € [0,1], are defined by applying to .A and B the
following motions M4 and Mp:

M,y =
—16t% 4+ 32t3  —3213 4 48¢2 —160¢% — 240¢2
—16t+4 —16t +160t — 40
3213 — 4812 —16t* + 32¢3 480t* — 960¢t3
+16t —16t+4 +880t2 — 400t + 80
0 0 16t* — 323 + 32¢2
—16t+4
Mp =
—16t* 4+ 323 32¢3 — 48¢> 160t3 — 240t2
—16t+4 +16¢ +160t — 40
—32#3 4+ 4812  —16t* + 323 —480t* + 960¢t3
—16t —16t+4 —880t% 4+ 400t — 80
0 0 16t* — 323 + 32¢2

—16t 4+ 4
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The characteristic equation is

f(A;2)
= det(AA(t) — B(t))
= (—40961%* + 4915273 — 294 91212*
+1171456t%' — 3446 784t%° 4+ 7974912410
— 15048 7048 4 23 721 984417
— 31756 032t° + 36 517 888t1° — 36 360 192t
+ 31509504t — 23835904t + 15754 752¢11
— 9090048410 + 4564 73617 — 1984 7528
+ 741 312t7 — 235136t + 62 304¢°
— 13464t + 22883 — 28812 + 24t — 1)\3
+ (—135168t%* + 1622016t*® — 11304 960t
+ 55959 552¢21 — 206 878 720¢%°
+ 588967936t — 1325514 752t1%
+ 2409461 760t — 3596 409 600¢*°
+ 4461631 488t1° — 4639457 280+ + 4065 807 360¢13
— 3011391 74412 4 1 886 084 608t — 997 282 816¢°
+ 443501 312t° — 164 884 848t° + 50 819 520t”
— 12842 880t5 + 2624 352t> — 426 168t*
+ 53808t% — 5120t + 344t — 13)\?
+ (135168%* — 1622016t>* 4 11 304 960t
— 55959 552! 4 206 878 720t*°
— 588967 936t'% + 1325514 752t'®
— 2409461 760t*7 + 3596 409 600£'6 — 4461 631 488¢1°
+ 4639457 280t — 4065 807 360t*3
+ 3011391 744¢'2 — 1886 084 608t + 997 282 816¢1°
— 443501 312t° + 164 884 848t — 50819 520t"
+ 12842 880t% — 2624 352t° + 426 168¢*
— 53808t% 4+ 5120t% — 344t + 13)\
+ 4096+ — 49152t 4 294 912¢22
— 1171 456t% + 3446 784t%° — 7974 912¢1°
+ 15048 704418 — 23721 98417 + 31 756 032¢16
— 36517888t + 36 360 192¢'*
— 31509504t + 23835904¢'2 — 15754 75211
+ 9090 048t'° — 4564 736t° + 1984 752t5
— 741312t7 + 2351365 — 62 304t° 4 13 464t*
— 2288t3 4 2882 — 24t + 1
=0
while the discriminant A(¢) is of degree 96 and is omitted. Fig. 9
shows the two moving elliptic disks and the graph of A(¢). The
two disks are designed only to touch each other externally at
t = 0.5, and are separate for the rest of the time. All three
variants of CD-DISC determined correctly that there is a con-
tact, and Variants 2 and 3 reported the contact time accurately
as t = 0.5. To examine the sensitivity of CD-DISC, the lower
disk in Fig. 9 was translated by a small amount in the negative

gy direction, so that the two moving disks attain a minimum sep-
arating distance d > 0 at ¢ = 0.5. CD-DISC reports collision

IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, NO. 2, APRIL 2006

A(t)

Fig. 9. Two moving elliptic disks in Example 2 and their discriminant A(t).

when d < 1075, and reports noncollision for larger values of d.
Note that the above analysis is only based on the specific setup
in this example. The robustness of the method depends not only
on the degree of the motion, but also varies with different input,
e.g., sizes of the ellipses. However, it is not easy to formulate
the theoretical condition for the robustness of this method. If an
error bound is crucial to an application, one may consider the
use of the interval arithmetic [29] in the computations.

VII. CONCLUSION

We have presented a collision-detection algorithm for two el-
liptic disks moving with continuous motions in the plane. The
algorithm, called CD-DISC, is based on an algebraic charac-
terization of two collision-free elliptic disks, which can assume
rigid or deformable motions. CD-DISC uses exact representa-
tions for the ellipses, and therefore, does not suffer from er-
rors induced by polygonal approximations. The algorithm deter-
mines whether there is a collision by checking for the existence
of real roots of a univariate function, which is the discriminant
of the characteristic equation of the two moving ellipses. It may
also report the time instants at which the two ellipses are ex-
ternally touching, and the corresponding contact points. Unlike
many other collision-detection algorithms, CD-DISC does not
use temporal sampling of the motion path, so inaccuracy due to
limited sampling resolution is avoided.

We have studied commonly used cycloidal motions and ra-
tional motions in detail. For motions that are intrinsically nonra-
tional, such as cycloidal motions, the algorithm can be used with
the aid of any numerical solver that will deal with a univariate
function. Rational motions are also considered because they are
flexible enough for modeling general motions, and their poly-
nomial representation makes an algebraic treatment of collision
detection possible: in this case, collision detection is achieved
by detecting or finding the real roots of a univariate polynomial.
We have demonstrated that the use of Bernstein forms for poly-
nomial manipulation significantly increases numerical stability
of CD-DISC for high-degree rational motions, which conforms
to others’ observations [25]-[27]. Our experiments show that
CD-DISC is fast and accurate for detecting collisions between
moving ellipses under continuous rational motions of degree six
or less; note that research [24] in planar rational motions sug-
gests that rational motions of degree four are adequate for mod-
eling all smooth motions in practice.



CHOI et al.: CONTINUOUS COLLISION DETECTION FOR TWO MOVING ELLIPTIC DISKS

There are several problems open for further research.
Knowing the minimum distance between two collision-free
moving elliptic disks would be useful for motion path planning.
Work is needed to study the relationship between the minimum
distance and the value of the discriminant A(t). An observation
that can already be made is that the difference between the two
negative roots of the characteristic polynomial becomes smaller
as the two separate disks approach each other gradually, and
eventually the two roots merge into a negative double root, at
which point the two disks become externally tangential to each
other, signaled by the vanishing of the discriminant function.

Devising an algebraic approach to CCD of moving ellipsoids
in 3-D space is another interesting but challenging problem.
Unfortunately, it would not be a straightforward task to extend
CD-DISC directly to moving ellipsoids. It has been proved [16]
that the quartic characteristic equation f(\) = det(AA—B) = 0
of two ellipsoids in 3-D always has two positive roots, and two
ellipsoids are separate iff f(A) = 0 has two distinct negative
roots. Unlike the situation with elliptic disks (see Corollary 7),
in 3-D the characteristic equation f(A\) = 0 may have a posi-
tive double root for a pair of separate ellipsoids (compare the
characteristic equation of two separate spheres, which always
has a double root A = 1). Thus, if we were to rely on detecting
real zeros of the discriminant for collision detection between
moving ellipsoids, our algorithm would certainly fail (i.e., have
afalse positive) because a zero of the discriminant can be caused
by a positive double root, which does not correspond to an ex-
ternal contact between the ellipsoids. To circumvent this diffi-
culty, a method has been proposed [17] for CCD between ellip-
soids by analyzing the zero-set topology of the bivariate func-
tion f(\; ¢) = 0. The main issue with this method is how to ex-
tract the contact instants of two moving ellipsoids by parsing the
zero-set of a high-degree bivariate polynomial resulting from
general rational motions in an efficient way.
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