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Abstract

We investigate 3D shape reconstruction from measurement data in the presence of constraints. The constraints may fix the surface type or set

geometric relations between parts of an object’s surface, such as orthogonality, parallelity and others. It is proposed to use a combination of

surface fitting and registration within the geometric optimization framework of squared distance minimization (SDM). In this way, we obtain a

quasi-Newton like optimization algorithm, which in each iteration simultaneously registers the data set with a rigid motion to the fitting surface

and adapts the shape of the fitting surface. We present examples to show the applicability of our method to constrained 3D shape fitting for reverse

engineering of CAD models and to high accuracy fitting with kinematic surfaces, which include surfaces of revolution (reconstructed from

fragments of archeological pottery) and spiral surfaces, which are fitted to 3D measurement data of shells. Our optimization algorithm can

combine registration of multiple scans of an object and model fitting into a single optimization process which is shown to be superior to the

traditional procedure, which first registers the data and then fits a model to it.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The motivation for the present research comes from

reconstruction of objects from 3D scanner data, where special

kinematic surfaces (cones, cylinders, general surfaces of

revolution, helical surfaces) appear frequently. Many recon-

struction algorithms for the more general representatives of

these surface classes require estimated surface normals [20,23].

Although these methods are quite efficient when good normal

estimates are available, they lack the desired precision if it is

difficult to obtain accurate normal estimation or the deviation

of the data from the ideal shape model is relatively large; an

example is the reconstruction of vessels from archeological

findings. Moreover, in these methods the computation of the

sweeping motion is separated from the computation of the

swept profile, which is a further source of errors.

In the present paper, we extend recent work on improved

reconstruction of surfaces of revolution [26] with a more
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generally applicable concept arising from the geometric

optimization framework of squared distance minimization

(SDM) [18,19,25,27,28]. Our new method combines the two

types of optimization problems that have been solved so far

with SDM, namely curve/surface fitting and registration. This

new approach is not only applicable to surfaces of revolution

but also to other classes of surfaces and to a number of surface

reconstruction problems in reverse engineering in the presence

of constraints.
1.1. Previous work

Since the focus of the present work is on constrained 3D

shape reconstruction, we only review research in this direction.

A constraint may fix the surface type: there have been a

considerable number of contributions to fitting with special

surfaces and thus we refer to [23] for a detailed survey. The

existing methods are mainly taken from geometry (Gaussian

image, line geometry, kinematical geometry), image proces-

sing (methods in extension of the Hough transform) and

optimization (non-linear least squares problems). They are also

used for surface type recognition (shape filters).

Fitting data with a surface of a given type that is determined

with appropriate shape filters, while maintaining constraints
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between the individual elements of the surface, is a challenging

problem [23]. Not only do we need to check the consistency of

the constraints, we also need to fit the data simultaneously

under these constraints. The work of Benkö et al. [2], Fisher

[6], and Karniel et al. [10] can be considered to constitute the

state of the art in this area. In the actual fitting part of the

problem, most authors use a least squares formulation which

embeds the constraints via penalty terms.

Our research is based on a combination of registration and

fitting, and in this sense closely related to the work on

knowledge based image segmentation via a combination of

registration and active contours [15,17,24] and to deformable

models introduced by Terzopoulos and Fleischer [21]. We also

present a new solution for the simultaneous treatment of

multiple view registration and model fitting, which extends

prior work by Jin et al. [9] and Tubic et al. [22].

1.2. Contributions

Our contributions in this paper are:

† The extension of the SDMmethod to surface approximation

with error measurement orthogonal to the fitting surface;

† The combination of registration and surface fitting within

the SDM framework;

† Refined algorithms for fitting with kinematic surfaces

(rotational, helical and spiral surfaces) plus a demonstration

of their efficiency for shape reconstruction from measure-

ment data of archeological pottery, shells and engineering

objects;

† A new way of incorporating constraints into 3D surface

reconstruction for applications in reverse engineering of

CAD models;

† An efficient optimization algorithm which combines

multiple view registration and model fitting and in this

way achieves higher accuracy than the traditional approach

which first registers the data and then fits a model to it.
2. Fundamentals of SDM

Here we summarize a few basic facts about squared distance

minimization (SDM). For more details and issues of efficient

implementation we refer to [1,18,19,25,27]. Before entering

this discussion, we would like to point out that many authors

have used the distance field [13,14] for registration and fitting;

in fact, the concept of the distance field is so closely tied to the

problem that it must occur in some way. However, most papers

do not use the distance function in the same way as we are

doing it: we use local quadratic approximants of the squared

distance function and in this way obtain fast local convergence

via algorithms of the Newton or quasi-Newton type.

2.1. Squared distance function of a surface

Given a surface F3R
3, the squared distance function d2

assigns to each point x2R
3 the square of its shortest distance
to F. The importance of this function for our algorithms lies in

the fact that we want to compute a surface, which minimizes

the sum of squared distances to the data point cloud. Since

several important optimization concepts require second order

approximants of the objective function, we need to derive

second order approximants of d2.

Let us fix the notation. We consider a surface F with unit

normal vector field n(s)Zn3(s), attached to points s2F. At

each point s, we have a local Cartesian frame (n1, n2, n), where

the first two vectors n1, n2 determine the principal curvature

directions. We will refer to this local frame as the principal

frame II(s). Let kj be the (signed) principal curvature in the

principal curvature direction nj, jZ1,2, and let rjZ1/kj.

Let s2F be the normal foot point of a point p2R
3, i.e., s is

the closest point onF to p. Expressed in the principal frame at s

the second-order Taylor approximant Fd of the function d2 at a

point x2R
3 in a neighborhood of p is:

FdðxÞZ
d

dKr1
½n1$ðxKsÞ�2 C

d

dKr2
½n2$ðxKsÞ�2

C ½n3$ðxKsÞ�2: (1)

Here, [nj$(xKs)]2, jZ1,2,3, are the squared distances of x to
the principal planes and tangent plane at s, respectively.

In the important special case of dZ0 (i.e., pZs), the

approximant Fd equals the squared distance function to the

tangent plane of F at s. Thus, if p is close to F, the squared

distance function to the tangent plane at p’s closest point on F

is a good approximant of d2.

In a Newton-like iteration it is important to employ

nonnegative quadratic approximants; we obtain them by

removing from the expression of Fd(x) in (1) those terms

with a negative coefficient d/(dKrj); see [25].
2.2. Registration using SDM

A set of points X0Z ðx01;x
0
2;.Þ3R

3 is given in some

coordinate system S0. It will be rigidly moved (i.e. registered)

to be in best alignment with a given surface F, represented in

another system S. We view S0 and S as a moving system and a

fixed system, respectively. A position of X0 in S is denoted by

XZ(x1,x2,.). It is the image of X0 under some rigid body

motion a. Since we identify positions with motions and the

motions have to act on the same initial position, we write XZ
a(X0), or xiZaðx0i Þ.

The registration problem is formulated in a least squares

sense [3,5]: Compute a rigid body transformation a*, which

minimizes the sum of squared distances of aðx0i Þ to F:

FðaÞZ
X
i

d2ðaðx0i Þ;FÞ: (2)

Starting from an appropriate initial position a0, SDM

performs a Newton-like iteration to minimize F [19]. We

describe here a single iteration of the algorithm: Since F is the

sum of squared distances of the data points xi to the model
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shape F, a quadratic approximant is

GZ
X
i

Fd;i; (3)

where the Fd,i are the second-order approximants of the

squared distance functions of xi to the model shape. These

approximants have been described in Section 2.1. Then, by

Eq. (1), a second-order Taylor approximant of the squared

distance function at xi is written in the form

Fd;iðxÞZ
X3
jZ1

ai;j½ni;jðxKsiÞ�
2; (4)

where ni,j$(xKsi)Z0, jZ1,2,3, denote the coordinate planes of

the principal frame at the foot point si2F of the point x0i , and

the ai.j can readily be read from Eq. (1). The same form holds

for a nonnegative modification, i.e. terms with negative

coefficients will be discarded. One now approximates the

displacement of the data point xi, up to the first-order by

x0i Z x0i C �cCc!x0i ; (5)

where �cZ ð �c1; �c2; �c3Þ and cZ(c1,c2,c3) represent the transla-

tional and rotational components of a velocity field,

respectively.

Plugging x0i into G in Eq. (3) gives a local quadratic model

of the objective function:

F2ðc;�cÞZ
X
i

X3
jZ1

ai;j½ni;j$ðx
0
i C �cCc!x0i KsiÞ�

2:

Since, ni;j$ðx
0
i KsiÞ is the distance of x

0
i to the jth coordinate

plane of the principal frame, it vanishes for jZ1,2; and it

equals the oriented distance di of x
0
i to the model surface F for

jZ3. Therefore we may rewrite F2 as:

F2ðc;�cÞZ
X
i

X2
jZ1

ai;j½ni;j$ð�cCc!x0i Þ�
2 C ~F2ðc;�cÞ: (6)

Here, ~F2 denotes the part arising from the squared distances

to the tangent planes at the foot points, given by

~F2ðc;�cÞZ
X
i

½ni$ð�cCc!x0i ÞCdi�
2; (7)

where niZni,3. Since F2 is a quadratic function in ðc;�cÞ, the
unique minimizer ðc0; �c0Þ can be given explicitly by solving a

system of linear equations.

Remark 1. In the above application of SDM, we measure the

squared distance errors from the moving points xi orthogonal to

the fixed model surface F. The moving points xi are functions

of the motion parameters ðc; �cÞ to be optimized.

So far we have estimated the displacement of the data point

cloud with help of the velocity field ðc; �cÞ. We now apply an

appropriate helical motion, which is determined by this

velocity field: The Plücker coordinates ðg;�gÞ of the axis, the

rotational angle f and the pitch p of the helical motion
(including special cases) are given by:

pZ ðc$�cÞ=ðcÞ2;fZscs; ðg; �gÞZ ðc; �cKpcÞ: (8)

Recall that the Plücker coordinates of a line G consist of a

direction vector g and the moment vector �gZp!g, where p
represents an arbitrary point on G. Altogether, the desired

motion is the superposition of a rotation about some axis A

through an angle of fZkck and a translation parallel to A by

the distance of p$f. For the explicit formulae we refer to the

literature [20].
2.3. SDM for B-spline surface fitting

In this section, we describe the basic idea of B-spline fitting

according to [25]. Different from the SDM introduced in

Sections 1 and 2 (Ref. Remark 1, Section 2.2), this method

measures the fitting error orthogonal to a moving fitting

surface. But, since the fitting error is also given by a quadratic

approximation of the squared distance to the fitting surface, we

shall also refer to the method as squared distance minimization,

or SDM. Although the method has been presented in [25] for

B-spline curves only, its generalization to fitting a B-spline

surface to a point cloud (x1,.,xN) is straightforward and

outlined below.

The main steps are as follows.

(1) Specify a proper initial shape of a B-spline fitting surface.

(2) Compute squared-distance error terms for all data points to

obtain a local quadratic model of the objective function.

(3) Solve a linear system of equations to optimize the local

quadratic model to obtain an updated spline surface.

(4) Repeat steps 2 and 3 until convergence, e.g. until a pre-

specified error threshold is satisfied or the incremental

change of the control points falls below a preset threshold.

We explain below briefly steps 2 and 3.

Step 2 An error term is associated with each data point xi.

The error term to be used in the next iteration is found

as follows. Compute a (nonnegative) second-order

approximant of the squared distance function from xi
to the current instance sc of the fitting surface F; see

Eq. (4). Let siZsc(ui,vi) be the closest point on the

fitting surface to xi. Then the error term for xi is:

Ei;c Z
X3
jZ1

ai;j½ni;j$ðxiKscðui; viÞÞ�
2: (9)

When we update the surface F to sC(u,v) with the new

control points, the surface point sC(ui,vi) given by the same

parameters (ui,vi) is, in general, no longer the foot point of xi;

moreover, the normal vectors ni,j and curvature radii ri,j will

have changed there. However, when the model surface is

updated by a small change of the control points, we still use



Y. Liu et al. / Computer-Aided Design 38 (2006) 572–583 575
Eq. (9) to estimate the new fitting error at xi, by

Ei;CðDÞZ
X3
jZ1

ai;j½ni;j$ðxiKsCðui; viÞÞ�
2; (10)

where the variables are the control points D:Z(d1,.,dm) of the

B-spline fitting surface, in the expressions of the updated

surface points sC(ui,vi); we use Ei,C(D) to emphasize the

dependence of the error term on the control points D. It has

been shown in [25] that this simplification yields a quasi-

Newton method for optimization, which is not of a standard

type (such as BFGS [11]), but provides a very good trade-off

between computational simplicity and fast convergence.

Step 3 We use a B-spline surface, whose representation of the

form

sðu; vÞZ
X
k

Bkðu; vÞdk

is linear in the control points. Substituting this form for

sC(ui,vi) in the objective function yields:

FðDÞZ
XN
iZ1

Ei;CðDÞCFsðDÞ

ZFsðDÞ

C
XN
iZ1

X3
jZ1

ai;j ni;j$ xiK
X
k

Bkðui; viÞdk

 !" #2
: (11)

Here, Fs is a smoothing term, assumed to be quadratic in D.

The part coming from the sum of squared distances is also

quadratic in the unknown control points D. Therefore the

minimization of F requires only the solution of a linear system.

2.4. TDM and PDM

When setting ai,1Zai,2Z0 and ai,3Z1 in Eq. (4) or (10), we

obtain the tangent distance minimization or TDM, since

Fd,i(x)Z[ni(xKsi)]
2 which measures the squared distance

from x to the tangent plane at si.

When ai,1Zai,2Zai,3Z1 in Eq. (4) or (10), we obtain

Fd;iðxÞZsxKsis
2, which measures the distance between the

two points x and si; hence, the resulting minimization scheme is

called the point distance minimization or PDM. A detailed

discussion of these two minimization methods and their

comparison with SDM can be found in [25].

SDM is simplified to the TDM method if we approximate

the function d2 at a point xi by the squared distance to the

tangent plane at the foot point yi. For registration, a method

similar to TDM has been first proposed by Chen and Medioni

[5] and is known to be superior to the standard ICP [3]. For

B-spline curve fitting, the TDM method has been described by

Blake and Isard [4]. It is known [19,25] that TDM corresponds

to a Gauss–Newton iteration. Thus, it exhibits quadratic

convergence for a zero residual problem and a good initial

position. However, this is not a practical assumption and thus
one should enhance its stability by applying step-size control,

e.g. using the Armijo rule or the Levenberg-Marquardt (L-M)

regularization [11].

The standard ICP algorithm [3] approximates d2 at xi by the

squared distance to the foot point si, i.e. the error term for xi is
defined in PDM as kxiKsC(ui,vi)k

2 (ref. Eq. (10)). This PDM

method is frequently used for freeform surface fitting [23],

exhibits only linear convergence and is prone to be trapped in a

poor local minimizer; see, e.g. [25].
3. Combination of surface fitting and registration

Before entering the general discussion, let us explain the

main idea with the following example: We want to fit a surface

of revolution to a set of data points.

The standard solution to this problem uses estimated surface

normals at the data points and line geometry to compute the

rotational axis [20]. The axis is then kept fixed and an

appropriate generatrix is computed to obtain the final surface.

This method works very well for finding a good initial guess of

the axis, but has the disadvantage that the error in the axis

estimate, which arises from the normal estimates, cannot be

further reduced in the subsequent computation of the

generatrix. We present here the following idea.

After an initial guess of the axis A has been found, use a

coordinate system in which A is a coordinate axis, say the

x3-axis. A surface of revolution with this axis takes a very

simple form. Then, we use SDM optimization to simul-

taneously update the fitting surface (i.e. control points of its

generatrix) and move the set of data points (as a single rigid

body system) until the fitting error is minimized. This is

carried out by combining the techniques in Sections 2.3 and

3.3. Moving the data point cloud is a registration process

and equivalent to changing the axis. However, we register

the data point cloud to a changing surface rather than a

fixed one.

More specifically, let us explain the registration of a point

cloud to a changing surface s. In each iteration, for each data

point x0i , we compute its closest point si,chsc(ui,vi) on the

current instance sc of the fitting surface F: s(u,v), and set up the

SD error term:

Ei;c Z
X3
jZ1

ai;j½ni;j$ðxiKsi;cÞ�
2:

The error after a small displacement of the data point

set and a change of the surface is estimated as follows. We

use a linearization for the displacement of the data point set,

i.e. xi will be approximated by x0iZx0i C �cCc!x0i ; the

change of the control points updates the model surface to

sC(u,v); therefore, the surface points si,c will be replaced by

si,ChsC (ui,vi). Then, the new error term, as an approximation

to the squared distance from xi and F, is

Ei;CZ
X3
jZ1

ai;j½ni;j$ðx
0
i C �cCc!x0i Ksi;CÞ�

2; (12)
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where the variables are the motion parameters ðc; �cÞ and the

control points D. A sum of these error terms, together with a

quadratic fairness term Fs

F Z
XN
iZ1

X3
jZ1

ai;j½ni;j$ðx
0
i C �cCc!x0i Ksi;CÞ�

2 CFsðDÞ;

(13)

gives rise to the minimization of a quadratic function in each

iteration. Since, the surface points si,C depend linearly on the

unknown shape parameters, i.e. control points, F is quadratic in

those unknowns as well as ðc; �cÞ, assuming that Fs is also a

quadratic function of D. Of course, the data point cloud is

updated with an appropriate helical motion as for pure

registration. We note that this method is applicable even

when shape parameters are not linear variables, such as the

weights in a rational B-spline surface—one just needs to apply

a linearization (see Section 4.2), like using ðc; �cÞ to

approximate a rigid motion. Let us now move to a further

extension of the concept, where more than one data point.

Cloud are registered to the fitting surface.

Due to misalignment, multiple view registration for a 3D

object usually introduces errors not present in the measurement

data. These errors would affect the subsequent surface fitting
errors, thus the precision of the final reconstructed CAD model

of the 3D object.

Within the present setting, we may use an initially registered

point cloud for the initial steps in the constrained fitting

procedure. In later steps, however, we can allow a different

motion for each of the K scans that have been used. In this way

we hope to remove inaccuracies resulting from the initial

registration (see [9,22]). Given K point clouds

XkZ fx0k;i;iZ1;.;Nkg; kZ1;.;K, which represent the indi-

vidual scans (views), our SDM objective function is

reformulated as

F Z
XK
kZ1

wk

XNk

iZ1

X3
jZ1

ak;i;j½nk;i;jðx
0
k;i C �ck Cck!x0k;iKsk;i;CÞ�

2

CFsðDÞ;

(14)

where wk is a weight for the points in each scan (in practice, we

can choose wkZ1/Nk); ak,i,j and nk,i,j have the same meaning as

in (13); ðck;�ckÞ is the velocity field of Xk. We will show some

examples in Section 4.3.2.

The new version of the SDM method—a combination of

fitting and registration—is as simple as the previously
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discussed cases of pure surface fitting or registration. Its

performance from the viewpoint of optimization is comparable

to that of pure fitting [25]. As in [25], TDM with step size

control also has good performance.
4. Applications

In this section, we present three applications of our

combined framework of registration and fitting to: (1) surface

reconstruction from archeological pottery; (2) shell shape

model verification; and (3) constrained CAD model recon-

struction in reverse engineering. In all these applications we

need to fit a surface of a special type to a given set of 3D

scanned data points. For the convergence analysis we use the

average error defined by the following root mean squared

error:

Ave_ErrorZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
iZ1

sxiKsi;cs
2

vuut (15)

The data set is first normalized by uniform scaling to fit in

the unit box [0,1]3, to make the optimization parameters

independent of model dimensions.

4.1. Surfaces of revolution

In order to fit a surface of revolution or a helical surface to a

set of data points, we use the well-known line geometric
method to compute an initial guess [20]. The axis is then used

as x3-axis of the coordinate system. For the generatrix we take a

B-spline curve

ðrðuÞ;zðuÞÞZ
X
k

ðrk;zkÞBkðuÞ

with control points pkZ(rk,zk). Then the surface is:

xðu; vÞZ
X
k

ðrk cos v; rk sin v; zkÞBkðuÞC ð0; 0; pvÞ:

Here p is the pitch of the helical surface; we have pZ0 for a

surface of revolution. The essential parameters pkZ(rk,zk) and

p appear linearly, therefore the SDM method from Section 3

can be applied. For pure surface fitting, according to Section

2.3, the parameters (ui,vi) of the closest point si,cZsc(ui,vi) to xi
are kept unchanged when we move to si,CZsC(ui,vi).

The registration part does not require the full motion group.

We exclude translations parallel to the x3-axis by setting
�cZ ð �c1; �c2; 0Þ. Moreover, rotations about the x3-axis are

excluded by setting cZ(c1,c2,0). This is done for both surfaces

of revolution and helical surfaces. In the latter case, eventually,

necessary translations in axis direction or rotations about the

axis can be handled via a translation of the profile curve

parallel to the axis.

Fig. 1 shows an example of 2260 data points of a scanned

pot. The profile curve is a cubic B-spline curve with seven

control points and uniform knots. The significant improvement

of the rotation axis is illustrated by the data points rotated into
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(bottom middle): bottom view; (bottom right): front view.
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Fig. 5. (top left): Initial fit; (top right): optimized fit after 6 iterations of TDM; (bottom left): average error of our method vs. the number of iterations; (bottom right):

comparison with the alternating method.
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the profile plane: after optimization this cloud is much thinner

than the one obtained in the initial fit via line geometry. The

results of using SDM, TDM, and PDM are shown. Here and for

the examples below, the stability of SDM is enhanced by

applying a regularization similar to the L–M method, a trust-

region based regularization conventionally applied to the

Gauss–Newton method. It is observed that for this example

SDM and TDM have nearly the same convergence behavior,

while PDM is much slower (Fig. 2).
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Fig. 6. Variations of the parameters for the machine part model in Fig. 4.
4.2. Spiral surfaces

A spiral surface is generated by a curve undergoing a spiral

motion (one-parameter subgroup of similarities in R
3), which

is the composition of a rotation about a spiral axis A and an

exponential scaling from the so-called spiral center C2A.

Placing C at the origin and setting A to be the x3-axis, a spiral

surface with a B-spline profile can be represented as:

xðu; vÞZ epv
X
k

½rk cos v; rk sin v; zk�BkðuÞ: (16)

Spiral surfaces are frequently taken as models for shapes of

shells [7,12]. We would like to test the precision of this

mathematical model using our new optimization method. Very

recently, we devised a method, which is in some sense
analogous to the line geometric approach and can estimate the

spiral axis and center from a set of data points and estimated

normals, under the assumption that the data points are close to

some spiral surfaces [8]. Using this method to provide an initial

fit, we now present an improved spiral fitting algorithm based

on SDM.

We note that x(u,v) (16) is no longer linear in the unknowns

p (spiral parameter) and pkZ(rk,zk). Hence, we use the

following first–order Taylor approximant at the current values



Fig. 7. (left) A data set of 331,150 points from a 3D model using seven scans;

(right) the registered point set.
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pc and pk,c of the unknowns:

xðu; vÞZ epcv
X
k

½rk cos v; rk sin v; zk�BkðuÞCvðp

KpcÞe
pcv
X
k

½rk;c cos v; rk;c sin v; zk;c�BkðuÞ:

Keeping the parameter values (ui,vi) of the foot points si,c,

we arrive at new points si,C, which depend linearly on the

unknown parameters. Therefore, SDM from Section 3 works

again.
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Fig. 8. (top left): Front and bottom views of a parametric model; (top right): initial

(bottom right): average error vs. the number of iterations, and comparison with the

lead to higher accuracy.
Fig. 3 shows that an initial fit can be improved

significantly by our optimization algorithm, although for

this example the residual fitting error is still rather large. For

this example, we see that PDM and TDM do not converge as

fast as SDM. Since the optimized fit is not ideal, we are

inclined to conclude that the spiral surface is not an accurate

model for this type of shell.

4.3. Constrained 3D shape reconstruction

4.3.1. Constrained fitting to a single set of data points

In the applications described above, it is an advantage to

represent a fitting surface in an adapted coordinate system S;

for example, we put the rotational axis into a coordinate axis or

the spiral center into the origin. Choosing an adapted

coordinate system may also be possible for a typical

engineering object: important elements such as rotational

axes, planar faces, etc. can be brought into a special position

with respect to S. Using an adapted coordinate system, we can

set up a parametric model (see Figs. 4, 8 and 10). Varying the

parameters gives a family of models all of which satisfy the

constraints. Thus, our viewpoint leads to an unconstrained

optimization problem for the parameters of the model.

Identifying such a coordinate system S for building the

parametric model is made feasible either with some prior

knowledge about the model or by user interaction. Within

the general SDM procedure described in Section 3, we now

adapt the model shape parameters (if necessary, using
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model and initial fit; (bottom left): optimized fit after eight iterations of TDM;

single view case. We see that combining fitting and multiple-view registration



Fig. 9. (left) A data set of 107670 points from a CAD model based on seven

scans; (right) the registered point set.
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linearization as in Section 4.2) and update the position of

the data set using a rigid motion with respect to the model

shape.

We use an example to illustrate these steps. Fig. 4 shows

33,981 measured data points of a machine part, and the

parametric CAD model of the part and three side views, with

constraints and model parameters indicated. Fig. 5 shows the

initial fit, final fit and error curves. The constraints of the model

are preserved strictly and only the values of the model

parameters are updated in each iteration. Here and later for the

examples in Section 4.3, only the TDM method is used, since
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Fig. 10. Combining fitting and multiple-view registration. (top left) Front view of the

optimized fit after 12 iterations of multiple-views TDM; (bottom) average error vs
many faces of the CAD model are planar, i.e. having zero

curvature, thus making SDM reduce to TDM at these planar

locations. The variations of all the model parameters are shown

in Fig. 6.

For evaluation, using the same data and CAD model in

Fig. 4, we compare our combined approach with an approach

that optimizes position and surface shape alternatively [9];

(the latter is therefore called the alternating method). TDM is

used in both position and shape updates in the alternating

method. One position update and its successive surface shape

update are counted as one iteration of the alternating method.

The two error curves are shown in Fig. 5 (bottom right),

from which it is clear that the combined approach is more

efficient. A theoretical explanation is that in the alternating

method the iterate follows a zig-zag path in the subspace of

motion parameters and the subspace of shape parameters,

thus making the alternating method have only linear

convergence. On the other hand, the combined method

using TDM behaves similarly to the Gauss–Newton method,

and therefore can have near quadratic convergence for small-

residual problems.
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parametric model; (top right): side view; (middle left): initial fit; (middle right):

. the number of iterations, and comparison with the single view case.
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4.3.2. Constrained fitting to multiple views

In this section, we provide an experimental validation of our

conjecture that relaxing the initial registration by allowing

different motions for the individual scans can reduce the

overall error. As seen from Figs. 8 and 10, the combination of

fitting with multiple-view registration leads to higher accuracy

than first performing the registration on the point cloud data

and then fitting a model to the registered data. We consider it an

important feature of our algorithm that multiple-view

registration can so easily be combined with fitting.

4.4. Remarks on the implementation

In this section, we provide a few details on the actual

implementation.

Closest points. Our algorithm requires to find for every data

point x its closest point (foot-point) s on the initial surface. If

there are too many points, this step will be very time

consuming. To speed up this step, we sample a number of

points on the surface firstly, then construct a kd-tree structure

for finding the nearest point in the set of sample points.

Viewing the nearest sample point as an initial point, we then

apply a Newton iteration to compute a more precise foot-point

on the surface. Of course, if the surface is very simple, like a

plane or cylinder, we can find the closest point directly.

Step size control. In each step we minimize the objective

function by solving a linear system. We use Levenberg-

Marquart regularization in order to avoid instabilities and too

large steps [11].

4.5. Data acquisition

The data sets in Figs. 1, 3 and 7 are scanned using a Minolta

VIVID-900 3D scanner. The data set in Fig. 4 is from Stanford

3D Scanning Repository (Figs. 8 and 9). The data set in Fig. 2

is synthesized from the original scanned data in Fig. 1. The data

set in Fig. 10 is synthesized from a cad model.

5. Conclusions

We have shown that 3D shape fitting in the presence of

constraints may be simplified and made more efficient by

combining registration and surface approximation. To achieve

a good convergence behavior, we have implemented this idea

within the framework of SDM. We have also compared SDM

with TDM and PDM, and found that SDM and TDM are more

efficient than PDM, and with proper step size control TDM is

as good as SDM in many cases. Moreover, we have shown that

relaxing the initial registration in the final phase of our

algorithm is easily formulated within our framework and

improves the fitting accuracy.

Requiring prior knowledge about the model may be the

main weakness of our approach in constrained 3D shape

reconstruction (Section 4.3). The user should input some

information such as parameters. But providing prior knowledge

is very useful for achieving higher accuracy in reconstruction

especially for CAD models. In practice some initial parameters
can be obtained by segmentation and measurement. Our work

is focusing on developing an efficient algorithm, not on how to

obtain prior knowledge.

Among the topics for future research we would like to

mention a thorough investigation of the combination of

registration and implicit surface fitting [16].
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