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Abstract

We compute the singular points of a plane rational curve, parametrically given, using the implicitization
matrix derived from the μ-basis of the curve. It is shown that singularity factors, which are defined and
uniquely determined by the elementary divisors of the implicitization matrix, contain all the information
about the singular points, such as the parameter values of the singular points and their multiplicities. Based
on this observation, an efficient and numerically stable algorithm for computing the singular points is
devised, and inversion formulae for the singular points are derived. In particular, high order singular points
can be detected and computed effectively. This approach based on singularity factors can also determine
whether a rational curve has any non-ordinary singular points that contain singular points in its infinitely
near neighborhood. Furthermore, a method is proposed to determine whether a singular point is ordinary
or not. Finally, a conjecture in [Chionh, E.-W., Sederberg, T.W., 2001. On the minors of the implicitization
bézout matrix for a rational plane curve. Computer Aided Geometric Design 18, 21–36] regarding the
multiplicity of the singular points of a plane rational curve is proved.
c© 2007 Elsevier Ltd. All rights reserved.

Keywords: Rational parametric curve; Singular point; Inversion formula; Implicitization; μ-basis

1. Introduction

We are interested in finding the singularities of real planar rational curves parametrically given
(although the results can be carried out in general for rational curves over algebraically closed
field of characteristic zero). A singular point of a curve is a point on the curve where the tangent
line of the curve is not uniquely defined. The singularities of a curve represent shape features
known as cusps or self-intersections. Thus detection of singularities helps to determine the
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geometric shape and topology of real curves, which has wide-ranging applications in computer
aided geometric design. Furthermore, singularities of curves are significant in theory. A recent
discovery about curve singularities was made by Sederberg and one of the present authors (Chen
and Sederberg, 2002); they show that singularities of a curve are closely related with the μ-basis
of the curve and thus affect the result of implicitization, a procedure for converting a parametric
form of a rational curve to an implicit form.

Consider an algebraic curve F(x, y, w) = 0 in its homogeneous form. A point P0 =
(x0, y0, w0) is a singular point if and only if

Fx (x0, y0, w0) = 0, Fy(x0, y0, w0) = 0, Fw(x0, y0, w0) = 0.

P0 is called an r-fold singular point or a singular point with multiplicity r of F = 0 if all
derivatives of F of order r − 1 are zero at P0 and at least one r th derivative of F does not vanish
at P0.

A singular point P0 is said to be ordinary if all the tangents of F = 0 at P0 are distinct;
otherwise it is called a non-ordinary singular point. For analyzing non-ordinary singular points,
the notion of neighboring points can be introduced (see Chapter III in Walker (1950)). If a
singular point P0 has any singular point in its infinitely near neighborhood, then P0 is necessarily
a non-ordinary singular point, but the converse is not true; for example, a cusp on a rational
plane cubic curve does not have any singular point in its infinitely near neighborhood but is
non-ordinary, since the two tangents of the curve at the cusp are identical.

A rational curve P(t) can be represented implicitly by F(x, y, w) = 0, for a unique
homogeneous polynomial F up to a multiplicative constant. However, we analyze and compute
the singularities of a rational curve directly from its parametric form P(t), without resorting to
its implicit form F(x, y, w) = 0.

Previous works on detecting the singular points on a cubic curve have been done by Wang
(1981), Su and Liu (1983), Stone and Derose (1989) and Sakai (1999). They derived necessary
and sufficient conditions for the existence of cusps and self-intersections on a plane cubic Bézier
curve. For general degree rational curves, methods exist to detect the cusps and inflection points
(Manocha and Canny, 1992; Li and Cripps, 1997). However, their methods are not applicable to
computing all the singular points of a general rational curve.

There are a few methods in the literature on computing the singular points of a rational plane
curve. One standard way is to convert the parametric equation of the curve into an implicit
equation F(x, y, w) = 0 (in homogeneous form), and then find the singular points by solving
the system of equations (Walker, 1950):

Fx (x, y, w) = 0, Fy(x, y, w) = 0, Fw(x, y, w) = 0.

Other methods for finding the singular points include Peterson’s method (Peterson, 1917),
where a nonlinear system of equations with two variables need to be solved. Abhyankar’s method
(Abhyankar, 1990, p. 153) involves Taylor t-resultant and applies only to polynomial curves,
and it was later extended to rational curves by Gutierrez et al. (2002). Recently, a more direct
approach was given by Chionh and Sederberg (2001). They compute the parameter values of the
singular points by intersecting the parametric curve with the first minor of the implicitization
Bézout matrix. However, this approach suffers from serious numerical problems, since it is not
trivial to accurately and robustly find the roots (often with high multiplicities) of a high degree
polynomial. Furthermore, this method does not compute explicitly the multiplicity of the singular
points.
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In this paper, we improve the method by Chionh and Sederberg by giving an efficient and
numerically stable algorithm for computing the singular points of a plane rational parametric
curve. We start from the implicitization matrix derived from theμ-basis of the rational curve, and
its singularity factors, which are defined in terms of the elementary divisors of the implicitization
matrix as a polynomial matrix (see the definition in Section 3). We show that the singularity
factors contain all information about the singular points, such as the parameter values of the
singular points and their multiplicities. Based on this result, a numerically stable algorithm is
presented to compute the singular points of the curve, and inversion formulae (see the definition
in Section 3) for singular points are derived. Furthermore, a necessary and sufficient condition is
presented for a rational curve containing only ordinary singular points, a method is provided to
determine if a singular point is ordinary or not. A conjecture in Chionh and Sederberg (2001)
regarding the multiplicity of singular points is also proved. On finishing this paper, we just
found a paper by S. Pérez-Dı́az which solves the similar problem but with a totally different
technique (Pérez-Dı́az, 2007).

The remainder of the paper is organized as follows. Section 2 provides some preliminaries
about the μ-basis and implicitization matrix of a rational plane curve. Section 3 studies the
relationship between the singular points and the singularity factors of the implicitization matrix.
Section 4 discusses details on the computation of singular points based on the result in Section 3.
Section 5 summarizes the results for the singular points of low degree parametric curves. Finally,
in Section 6, we conclude the paper with discussions about further research.

2. Preliminaries

Let

P(t) = (a(t), b(t), c(t)) (1)

be a rational plane curve in projective coordinates, where a(t), b(t), c(t) are relatively prime
polynomials, the maximum degree of which is n. We assume that the parametrization is proper,
that is, with the exception of a finite number of points, every point of P(t) corresponds to a
unique parameter value of t .

A moving line L(t) is a family of lines with one free parameter t (Sederberg and Chen, 1995):

L(t) := A(t)x + B(t)y + C(t)w = 0, (2)

where A(t), B(t), and C(t) are polynomials. We also denote L(t) in a vector form
(A(t), B(t),C(t)). A moving line is said to follow the rational curve (1) if the following equation
holds,

L(t) · P(t) = A(t)a(t)+ B(t)b(t)+ C(t)c(t) ≡ 0. (3)

A moving line L(t) is said to have an axis P0 if L(t) · P0 = 0 for any parameter t , that is,
all the lines in the family L(t) pass through the point P0. If a moving line has an axis, then it is
called an axial moving line. One important result about moving lines is the following.

Proposition 1 (Cox et al., 1998). There exist two moving lines p(t) and q(t) of degree μ (μ ≤
�n/2�) and n − μ respectively, such that

P(t) = κp(t)× q(t).
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Here κ is some nonzero constant. Furthermore, p(t0) and q(t0) are linearly independent for any
parameter value t0.

The moving lines p(t) and q(t) are called the μ-basis of the rational curve P(t); equivalently,
we also call p(x, y, w; t) = p(t) · X and q(x, y, w; t) = q(t) · X the μ-basis, where
X = (x, y, w). Efficient algorithms exist for computing the μ-basis, see Chen and Wang (2002),
for example. Once the μ-basis is known, the implicit equation of a rational curve P(t) can be
obtained by simply taking the resultant of p and q with respect to t .

Proposition 2 (Cox et al., 1998). Let p(x, y, w; t) and q(x, y, w; t) be the μ-basis of the
rational curve P(t). Then an implicit equation (in homogeneous form) of P(t) is given by

F(x, y, w) := Res(p, q; t) = 0.

Assume that

p =
μ∑

i=0

p̂i (x, y, w)t i , q =
n−μ∑
i=0

q̂i (x, y, w)t i ,

where p̂i and q̂i are homogeneous linear functions in x, y, w. The implicitization matrix of p
and q can be expressed as (Cox et al., 1998)

B̂(x, y, w) =
⎛
⎜⎝

R1,1 · · · R1,n−μ
...

...
...

Rn−μ,1 · · · Rn−μ,n−μ

⎞
⎟⎠ , (4)

where

Rij =
{

p̂n−μ−i− j+1, n − 2μ− i + 1 ≤ j ≤ n − μ− i + 1
0, otherwise,

for i = 1, 2, . . . , n − 2μ, and

Rij =
∑

k1≤n−μ−i
2n−3μ−i+1≤k2≤n−μ

k1+k2=2(n−μ)−i− j+1

p̂k1 q̂k2 −
∑

k1≤2n−3μ−i
n−μ−i+1≤k2≤μ

k1+k2=2(n−μ)−i− j+1

p̂k2 q̂k1 ,

for i = n − 2μ+ 1, . . . , n −μ. Note that the first n − 2μ rows of B̂(x, y, w) is linear in x, y, w
and the last μ rows are quadratic in x, y, w. By Proposition 2,

F(x, y, w) = det(B̂(x, y, w)). (5)

The implicit equation of P(t) can also be written as the determinant of an μ× μ matrix.

Proposition 3 (Cox et al., 1998). Let Cp be the companion matrix of polynomial p. Then the
implicit equation of P(t) is given by

F(x, y, w) = p̂n−μ
μ det(q(Cp)) = 0.

Here

Cp =

⎛
⎜⎜⎜⎝

0 1
. . .

. . .

0 1
− p̂0/ p̂μ . . . − p̂μ−2/ p̂μ − p̂μ−1/ p̂μ

⎞
⎟⎟⎟⎠
μ×μ

.
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The μ-basis has the property that under an invertible projective transformation of the rational
curve P(t), the μ-basis is also changed by some invertible projective transformation.

Proposition 4. Let δ = (ti j )3×3 be an invertible matrix and P′(t) = P(t)δ be the projective
transformation curve of P(t). Then the μ-basis of P′(t) is given by

p′(t) = p(t)δ(−T ), q′(t) = q(t)δ(−T ).

Proof. Since δ is invertible, deg(p′(t)) = deg(p(t)) and deg(q′(t)) = deg(q(t)). On the other
hand, it is direct to verify that

p′(t)× q′(t) = (p(t)δ(−T ))× (q(t)δ(−T )) = (p(t) × q(t))δ/ det(δ) = P′(t)/ det(δ).

Hence, p′(t) and q′(t) form a μ-basis of P′(t). �

The valueμ in the μ-basis classifies all the degree n rational curves into �n/2�+1 classes. For
μ = 0, the rational curve is a multiply traced line. μ = 1 if and only if the rational curve contains
a singular point of order n − 1. However, when μ ≥ 2, very little is known about the singular
points of the rational curve. In this paper, we will study relationships between the singular points
and the value μ, and provide an algorithm, based on the implicitization matrix derived from the
μ-basis, to compute all the singular points of a rational curve.

3. Singular points of a rational curve

In this section, we study the singular points of a planar rational parametric curve by the μ-
basis. To allow the case t = ∞, we use homogeneous parameters t : u instead of t . Thus the
curve P(t) becomes

P(t, u) = (a(t, u), b(t, u), c(t, u)),

where a(t, u), b(t, u) and c(t, u) are homogenized from a(t), b(t) and c(t) by a(t/u)un ,
b(t/u)un and c(t/u)un respectively. Similarly, the μ-basis p(t) and q(t) are homogenized to
p(t, u) and q(t, u).

Assume that

p := p(t, u) = (p1(t, u), p2(t, u), p3(t, u)),

q := q(t, u) = (q1(t, u), q2(t, u), q3(t, u))

are the μ-basis of the rational curve P(t, u) whose degrees are μ and n − μ respectively, where
pi(t, u) and qi (t, u), i = 1, 2, 3, are degree n homogeneous polynomials. Let

p := p(x, y, w; t, u) = p(t, u) · (x, y, w) = p1x + p2y + p3w,

q := q(x, y, w; t, u) = q(t, u) · (x, y, w) = q1x + q2y + q3w

with μ ≤ �n/2�. We will show that the only possible singular point of order higher than μ of
P(t, u) has order n − μ.

Theorem 1. If P(t, u) has a singular point P0 of order r > μ, then r = n − μ and p is an axial
moving line with P0 being its axis. Furthermore, the curve P(t, u) has at most one singular point
P0 of order r > μ.
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Proof. Without loss of generality, we may assume that the singular point P0 is at the origin. Then
there exist homogeneous polynomials f, g, h such that

a(t, u) = f (t, u)g(t, u), b(t, u) = f (t, u)h(t, u),

where deg( f ) = r , deg(g) = deg(h) = n − r , GC D(g, h) = 1 and GC D( f, c) = 1.
Since p is a moving line, it follows that p(t, u) · P(t, u) = p1 f g + p2 f h + p3c ≡ 0. From

GC D( f, c) = 1, we have f |p3. Since deg( f ) = r > μ = deg(p3), it follows that p3 = 0 and
p = p1x + p2y, which is an axial moving line with the origin being the axis. Furthermore, from
p1g + p2h = 0 and GC D(g, h) = 1, there exists a homogeneous polynomial k(t, u) such that
p1 = kh and p2 = −kg. Thus p = k(hx − gy). By Proposition 1, p is the lowest degree moving
line, therefore k must be a nonzero constant. So we have r = n − μ.

Since p cannot have more than one axis, P(t, u) cannot have more than one singular point of
order r > μ. This completes the proof. �

By Theorem 1, we immediately have

Corollary 1. μ = 1 if and only if the rational curve P(t, u) has a singular point of order n − 1.

Proof. Suppose that P(t, u) has a singular point of order n−1. Then by Theorem 1, n−1 = n−μ.
It follows that μ = 1. Conversely, suppose that μ = 1. Let P0 be an order r singular point of
P(t, u). Since r > μ = 1, by Theorem 1, r = n − μ = n − 1, and such a P0 is unique. �

Theorem 2. The rational curve P(t, u) has an order n − μ singular point (with μ < n − μ) if
and only if p is an axial moving line.

Proof. The proof of Theorem 1 implies that if P(t, u) has a singular point of order n − μ, then
p is an axial moving line. Conversely, suppose that p is an axial moving line with P0 being the
axis. Then p(t, u) · P0 ≡ 0, and thus for any t : u satisfying q(t, u) · P0 = 0, one must have
P0 = kp(t, u) × q(t, u) = kP(t, u) for some nonzero constant k, that is, P0 is a point on curve
P(t, u). Since there are n −μ values of t : u satisfying q(t, u) · P0 = 0 over the field of complex
numbers, P0 is a singular point of order n − μ. �

The above theorem provides a simple way to detect and compute a high order singular point
of a rational curve. We write p = ∑μ

i=0 p̂i(x, y, w)t i uμ−i , and if all the lines p̂i(x, y, w) = 0,
i = 0, 1, . . . , μ, intersect at the same point P0, then p is an axial moving line with P0 being the
axis, and P0 is the singular point of order n − μ.

Next we explore methods to compute all the singular points of a rational curve. Before going
on, we need to state the following well-known result (Fuhrmann, 1996).

Lemma 1. Let f (t, u) and g(t, u) be two homogeneous polynomials with degree m and n
(n ≥ m) respectively. Let Bez( f, g) denote the Bézout resultant matrix of f and g. Then f
and g have a greatest common divisor of degree r if and only if rank(Bez( f, g)) = n − r .

Suppose that P0 = (x0, y0, w0) is a singular point of order r on P(t, u). An inversion formula
of P0 is a homogeneous polynomial whose roots (including multiplicities) are the parameter
values corresponding to P0, i.e., the fibre of the singular point P0 via the rational map induced
by P(t, u). Since p(t, u) and q(t, u) follow the rational curve P(t, u), the two polynomials
f (t, u) := P0 · p(t, u) and g(t, u) := P0 · q(t, u) must have the inversion formula of P0 as
a common factor. In fact, we have
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Lemma 2. Let P0 = (x0, y0, w0) be an order r singular point of P(t, u) and h(t, u) be the
inversion formula of P0. Then the GCD of f (t, u) and g(t, u) is h(t, u).

Proof. Without loss of generality, we assume that P0 = (0, 0, 1). Then f (t, u) = p3, g(t, u) =
q3 and there exist polynomials f̄ (t, u) and ḡ(t, u) such that

a(t, u) = f̄ (t, u)h(t, u), b(t, u) = ḡ(t, u)h(t, u),

where GC D( f̄ , ḡ) = 1 and GC D(h, c) = 1. From

P(t, u) · p(t, u) ≡ 0, P(t, u) · q(t, u) ≡ 0,

we have

(p1 f̄ + p2ḡ)h + p3c ≡ 0, (q1 f̄ + q2ḡ)h + q3c ≡ 0. (6)

Since GC D(h, c) = 1, we get h|p3 and h|q3. Thus, h|GC D(p3, q3), that is, h|GC D( f, g).
Let GC D( f, g) = kh. We claim that k is a nonzero constant. Assume the contrary. Let t0 : u0

be a zero of k. Then it follows from Eq. (6) that

p1(t0, u0) f̄ (t0, u0)+ p2(t0, u0)ḡ(t0, u0) = 0

q1(t0, u0) f̄ (t0, u0)+ q2(t0, u0)ḡ(t0, u0) = 0.

Since p and q are linearly independent for any parameter value and p3(t0, u0) = q3(t0, u0) = 0,
p1(t0, u0)q2(t0, u0)− p2(t0, u0)q1(t0, u0) 
= 0. Hence, f̄ (t0, u0) = ḡ(t0, u0) = 0, which implies
that f̄ and ḡ have a common factor, a contradiction. Thus k is a nonzero constant, and therefore
h = GC D( f, g). �

By Lemmas 1 and 2, we immediately have

Theorem 3. P0 = (x0, y0, w0) is an order r singular point of the rational curve P(t, u) if and
only if rank(B̂(x0, y0, w0)) = n − μ− r , where the matrix B̂(x, y, w) is defined in (4).

Therefore, to compute the singular points of a rational curve P(t, u), we need to explore the
matrix

B(t, u) := B̂(a(t, u), b(t, u), c(t, u)). (7)

We still call B(t, u) the Bézout matrix or implicitization matrix derived from the μ-basis. The
matrix B(t, u) provides all the information about the singular points.

Corollary 2. rank(B(t, u)) = n−μ−1 except at parameter values corresponding to the singular
points of P(t, u).

Proof. Since det(B̂(x, y, w)) gives the implicit equation of the rational curve P(t, u),
det(B(t, u)) ≡ 0, that is, rank(B(t, u)) ≤ n − μ − 1. On the other hand, if rank(B(t0, u0)) <

n − μ− 1 at some parameter value t0 : u0, then by Theorem 3, t0 : u0 corresponds to a singular
point of P(t, u). �

The next corollary follows directly from Theorem 3.

Corollary 3. P(t0, u0) is a singular point of order r if and only if rank(B(t0, u0)) = n − μ− r .

Recall that the order k determinant factor of a matrix is the GCD of all the order k minors of
the matrix. Let Dk be the determinant factor of B(t, u), k = 1, 2, . . . , n − μ.
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Lemma 3. Let h(t, u) be the inversion formula of an order r singular point P0 of P(t, u). Then
h(t, u)|Dn−μ−r+1 .

Proof. Without loss of generality, we assume that the singular point is at the origin, i.e.,
P0 = (0, 0, 1). Then there exist polynomials f̄ (t, u) and ḡ(t, u) such that

a(t, u) = f̄ (t, u)h(t, u), b(t, u) = ḡ(t, u)h(t, u),

where GC D( f̄ , ḡ) = 1, GC D(h, c) = 1. Let ei j (t, u) be the (i, j) element of matrix B(t, u).
When the corresponding element of B̂(x, y, w) is linear in x, y, w, ei j (t, u) takes the form

ei j (t, u) = αa(t, u)+ βb(t, u)+ γ c(t, u) = (α f̄ + β ḡ)h + γ c.

When the (i, j) element of B̂(x, y, w) is quadratic in x, y, w,

ei j (t, u) = αa2 + βab + γ b2 + δac + λbc + νc2

= (	 f̄ 2 + σ f̄ ḡ + ς ḡ2)h2 + (δ f̄ + λḡ)hc + νc2.

Thus, in general, B(t, u) can be written as

B(t, u) = hG(t, u)+ cH (t, u),

where G(t, u) and H (t, u) are polynomial matrices of order n − μ.

G(t, u) = (G20 f̄ 2 + G11 f̄ ḡ + G02ḡ2)h + (G10 f̄ + G01ḡ)c,

H (t, u) = DH10,

with Gij and Hij being constant matrices of order n − μ and D = diag(1, . . . , 1, c, . . . , c),
where the first n − 2μ elements are 1. Let t0 : u0 be a zero of h(t, u). Since c(t0, u0) 
= 0, by
Theorem 3,

rank(H10) = rank(H (t0, u0)) = rank(B(t0, u0)) = n − μ− r.

Let Bn−μ−r+1(t, u) be an order n − μ− r + 1 submatrix of B(t, u). Then

Bn−μ−r+1(t, u) = hGn−μ−r+1(t, u)+ cHn−μ−r+1(t, u),

where Gn−μ−r+1(t, u) and Hn−μ−r+1(t, u) are the corresponding order n−μ−r+1 submatrices
of G and H , respectively. Thus

det(Bn−μ−r+1) = det(Gn−μ−r+1)h
n−μ−r+1 + · · · + cn−μ−r+1 det(Hn−μ−r+1).

Since rank(H10) = n−μ−r , it is easy to see that the last term in the above equation is identically
zero. Therefore, h| det(Bn−μ−r+1). Hence, h|Dn−μ−r+1. �

Recall that a polynomial matrix is said to be invertible if it is a unit in the matrix ring, i.e. if its
determinant does not vanish and its inverse is also a polynomial matrix. The following discussion
involves the Smith form of a polynomial matrix, a concept that can be found in any standard text
on Linear Algebra (e.g., Lancaster and Tismenetsky (1985)).

Lemma 4. There exist unique polynomials d̄i (t), i = 2, 3, . . . , n − μ, such that

R1(t)B(t, 1)S1(t) = diag(d̄n−μ(t), d̄n−μ(t)d̄n−μ−1(t), . . . , d̄n−μ(t) . . . d̄2(t), 0),

for some invertible matrices R1(t), S1(t). Furthermore, P(t0, 1) is a singular point of order r if
and only if d̄r (t0) = 0 and d̄i (t0) 
= 0, i = r + 1, . . . , n − μ.



100 F. Chen et al. / Journal of Symbolic Computation 43 (2008) 92–117

Proof. The first part follows from the Smith form of B(t, 1), which is a diagonal form each entry
of which is a product of elementary divisors of B(t, 1) (Lancaster and Tismenetsky, 1985).

The second part follows from the fact that

rank(B(t, 1)) = rank(diag(d̄n−μ, d̄n−μd̄n−μ−1, . . . , d̄n−μ . . . d̄2)),

and the conclusion follows. �

Definition 1. The d̄i (t), i = 2, 3, . . . , n − μ, given above in Lemma 4 are called the singularity
factors of B(t, 1).

Lemma 5. Let Dk(t, u) be the determinant factor of B(t, u) of order k. We have

Dk(t, 1) = d̄n−μ(t)k d̄n−μ−1(t)
k−1 · · · d̄n−μ−k+2(t)

2d̄n−μ−k+1(t),

where k = 1, 2, . . . , n − μ− 1.

Proof. By Lemma 4, B(t, 1) is equivalent to its Smith form. Therefore, B(t, 1) and its Smith
form have the same determinant factors. Hence, the conclusion follows. �

To account for the parameter values at infinity, we consider B(1, u). Similarly, we have

Lemma 6. There exist unique polynomials d̂i (u), i = 2, . . . , n − μ, such that

R2(u)B(1, u)S2(u) = diag(d̂n−μ(u), d̂n−μ(u)d̂n−μ−1(u), . . . , d̂n−μ(u) . . . d̂2(u)),

for some invertible matrices R2(u), S2(u). Furthermore, P(1, u0) is a singular point of order r
if and only if d̂r (u0) = 0 and d̂i (u0) 
= 0, i = r + 1, . . . , n − μ.

Lemma 7.

Dk(1, u) = d̂n−μ(u)k d̂n−μ−1(u)
k−1 · · · d̂n−μ−k+2(u)

2d̂n−μ−k+1(u),

where k = 1, 2, . . . , n − μ− 1.

From the above lemmas, we have

Theorem 4. Let di (t, u) = LC M(d̄i (t, u), d̂i (t, u)), where d̄i (t, u) and d̂i (t, u) are the
homogenized polynomials of d̄i (t) and d̂i (t) respectively. Then

Dk(t, u) = dn−μ(t, u)kdn−μ−1(t, u)k−1 · · · dn−μ−k+2(t, u)2dn−μ−k+1(t, u), (8)

k = 1, 2, . . . , n − μ− 1, and

rank(B(t, u)) = rank(diag(dn−μ(t, u), dn−μ(t, u)dn−μ−1(t, u), . . . ,

dn−μ(t, u) . . . d2(t, u))). (9)

Furthermore, P(t0, u0) is a singular point of order r if and only if dr (t0, u0) = 0 and di (t0, u0) 
=
0, i = r + 1, . . . , n − μ.

Remark: Here di (t, u), i = 2, 3, . . . , n − μ are called the singularity factors of B(t, u).

Proof. We first prove (8) by induction on k. When k = 1, by Lemmas 5 and 7, there exist
nonnegative integers λn−μ and δn−μ such that

D1(t, u) = d̄n−μ(t, u)uλn−μ = d̂n−μ(t, u)tδn−μ .
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It is easy to see that dn−μ = LC M(d̄n−μ(t, u), d̂n−μ(t, u)) = D1(t, u). Thus (8) holds for
k = 1.

Now suppose that the statement is true for 1 ≤ k < n−μ−1. That is, di (t, u) = d̄i (t, u)uλi =
d̂i (t, u)tδi for some nonnegative integers λi and δi , i = n −μ, . . . , n −μ− k + 1, and (8) holds
for i = 1, 2, . . . , k. Again from Lemmas 5 and 7, there exist nonnegative integers λ̄n−μ−k and
δ̄n−μ−k such that

Dk+1(t, u) = d̄n−μ(t, u)k+1d̄n−μ−1(t, u)k · · · d̄n−μ−k+1(t, u)2d̄n−μ−k(t, u)uλ̄n−μ−k

= d̂n−μ(t, u)k+1d̂n−μ−1(t, u)k · · · d̂n−μ−k+1(t, u)2d̂n−μ−k(t, u)t δ̄n−μ−k .

Substituting d̄i(t, u) = di (t, u)u−λi and d̂i (t, u) = di (t, u)t−δi , i = n − μ, . . . , n − μ− k + 1,
into the above equation yields

Dk+1 = dn−μ(t, u)k+1dn−μ−1(t, u)k · · · dn−μ−k+1(t, u)2d̄n−μ−k(t, u)uλn−μ−k ,

and

d̄n−μ−k(t, u)uλn−μ−k = d̂n−μ−k(t, u)tδn−μ−k ,

where

λn−μ−k = λ̄n−μ−k −
k+1∑
i=2

iλn−μ−k+i−1 ≥ 0

and

δn−μ−k = δ̄n−μ−k −
k+1∑
i=2

iδn−μ−k+i−1 ≥ 0.

It is easy to verify that dn−μ−k(t, u) = d̄n−μ−k(t, u)uλn−μ−k = d̂n−μ−k(t, u)tδn−μ−k . Hence,
Eq. (8) holds also for k + 1. This proves (8).

Eq. (9) and the second part of the theorem follow from Lemmas 4 and 6 by noticing that
di (t, u) = d̄i(t, u)uλi = d̂i (t, u)tλi . �

Corollary 4. Let hr (t, u) be the product of all the inversion formulas of order r singular points
of P(t, u). Then hr (t, u)|dr (t, u).

Proof. By Lemma 3 and (8),

hr |dn−μ−r+1
n−μ · · · d2

r+1dr .

Since hr is the inversion formula of the singular points of order r , GC D(hr , di ) = 1 for i > r .
Therefore hr |dr . �

The following degree count will be useful.

Lemma 8. deg(Dn−μ−1) = (n − 1)(n − 2).

Proof. We just sketch the proof, since it is similar to the proof of Theorem 2 in Chionh and
Sederberg (2001).

Consider the linear system B(t, u)v = 0, where v is a column vector of dimension n − μ.
Since rank(B(t, u)) = n −μ−1 except at a finite number of parameter values at singular points,
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the linear system has exactly one solution. Obviously, v = (un−μ−1, un−μ−2t, . . . , tn−μ−1)T

is a solution by the construction of the Bézout matrix, and for each i (1 ≤ i ≤ n − μ),
v = (Bi,1(t, u), Bi,2(t, u), . . . , Bi,n−μ(t, u))T is also a solution. Here Bi, j (t, u) is the algebraic
cofactor of the (i, j) element of B(t, u). Thus

Bi,1(t, u)

un−μ−1 = Bi,2(t, u)

un−μ−2t
= · · · = Bi,n−μ(t, u)

tn−μ−1 .

Therefore Bij (t, u) = (−1)i+ j u2n−2−i− j t i+ j Dn−μ−1(t, u). The conclusion follows
immediately by noticing that deg(Bi, j ) = n(n − 1). �

The next theorem enables us to tell whether a rational curve has any non-ordinary singular
point with singular points in its infinitely near neighborhood . First recall hr (t, u) and dr (t, u)
defined in Corollary 4 and Theorem 4.

Theorem 5. hr (t, u) = dr (t, u) for r = 2, . . . , n −μ, if and only if all the singular points of the
rational curve P(t, u) do not contain singular points in their infinitely near neighborhoods.

Proof. First consider sufficiency. Suppose that the rational curve P(t, u) has mr singular points
of order r . Since all the singular points do not have singular points in their infinitely near
neighborhoods, from the genus formula (Walker, 1950), we have

n−μ∑
r=2

r(r − 1)× mr = (n − 1)(n − 2).

On the other hand, by Theorem 4, Corollary 4 and Lemma 8, we have

(n − 1)(n − 2) = deg(Dn−μ−1) =
n−μ∑
r=2

(r − 1) deg(dr )

≥
n−μ∑
i=2

(r − 1) deg(hr ) ≥
n−μ∑
i=2

(r − 1)× rmr = (n − 1)(n − 2).

Hence deg(dr ) = deg(hr ), r = 2, 3, . . . , n − μ, i. e., dr = hr if both are monic polynomials.
Now consider necessity. Suppose that hr (t, u) = dr (t, u), for r = 2, . . . , n−μ. Then, hr (t, u)

corresponds to all mr singular points of order r , each of which is counted as r(r − 1)/2 double
points. Clearly, the degree of hr (t, u) is deg(hr ) = rmr . From hr (t, u) = dr (t, u), it follows that

(n − 1)(n − 2) =
n−μ∑
r=2

(r − 1) deg(dr ) =
n−μ∑
r=2

(r − 1) deg(hr ) =
n−μ∑
r=2

(r − 1)rmr .

Therefore,

n−μ∑
r=2

mr
(r − 1)r

2
= (n − 1)(n − 2)

2
. (10)

Hence, all the singular points do not have singular points in their infinitely near neighborhoods,
for otherwise Eq. (10) does not hold (Walker, 1950). �

Theorems 4 and 5 lead to a modified version of the conjecture proposed in Chionh and
Sederberg (2001).
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Theorem 6. Suppose that all the singular points of P(t, u) are ordinary, and P(t0, u0) is a
singular point of order r such that t0 : u0 is a simple root of the inversion formula. Then t0 : u0
is a root of Dn−μ−1(t, u) with multiplicity r − 1.

Proof. Since the singular points of P(t, u) are ordinary, and t0 : u0 is a simple root of
dr (t, u) = hr (t, u), and t0 : u0 is not the root of di (t, u), i = 2, . . . , n − μ and i 
= r , by
Theorem 4, Dn−m−1(t, u) contains factor (u0t − t0u)r−1, and the multiplicity of u0t − t0u in
Dn−μ−1(t, u) is exactly r − 1. This completes the proof of the theorem. �

Remark 1. The conjecture in Chionh and Sederberg (2001) is based on the Bezoutian matrix
derived from c(t)x − a(t) and c(t)y − b(t), and it is equivalent to Theorem 6 since the two
Bezoutian matrices have essentially the same singularity factors.

Based on Theorem 5, we have a conjecture about the relationship between the singularity
factors and the structure of non-ordinary singular points.

Conjecture 1. Suppose that P(t, u) has mr singular points of order r . Let mi
r be the number

of singular points that are the order r singular points in the neighborhood of order i (i ≥ r)
singular points. Then

dr (t, u) = hr (t, u)
n−μ∏
i=r

ψ i
r (t, u),

where ψ i
r (t, u) is the factor corresponding to the mi

r order r singular points in the neighborhood
of order i(i ≥ r) singular points, and deg(ψ i

r (t, u)) = rmi
r .

Remark 2. Conjecture 1 depicts a clear structure tree of the non-ordinary singular points of a
rational curve. If this conjecture is true, it would be very easy to decide whether a singular point
is ordinary or not.

From the above results, to compute the singular points of P(t, u), we only need to study the
singularity factors di (t, u), i = 2, . . . , n−μ. However, the zeros of dr (t, u)may not contain only
order r singular points, since it may contain a factor of other singularity factors di (t, u), (i > r ),
which corresponds to higher order singular points. To eliminate such ambiguity, we modify the
singularity factors as follows.

For l = n − μ, n − μ − 1, . . . , 3, eliminate the common factors of dl(t, u) and di (t, u)
from di (t, u), i = l − 1, . . . , 2. The modified singularity factors are denoted by d̃i (t, u),
i = 2, . . . , n −μ. For example, suppose that d5(t, u) = t2(t − u)3, d4(t, u) = (t + u)2(t − 2u)2,
d3(t, u) = t (t −u)2(t +2u)(t +3u)(t −3u) and d2(t, u) = t (t −u)(t +u)(t −2u)(t −5u)(t +6u).
The modified singularity factors are then d̃5(t, u) = t2(t − u)3, d̃4(t, u) = (t + u)2(t − 2u)2,
d̃3(t, u) = (t + 2u)(t + 3u)(t − 3u) and d̃2(t, u) = (t − 5u)(t + 6u).

GCD computation is needed to eliminate the common factor of two polynomials, say f (t, u)
and g(t, u), from one polynomial, say g(t, u).

Theorem 7. P(t0, u0) is a singular point of order r if and only if d̃r (t0, u0) = 0.

Proof. Noticing that d̃r (t, u) is obtained by eliminating the common factors of dr (t, u) and
di (t, u), i = r + 1, . . . , n − μ, the assertion follows directly from Theorem 4. �
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Conjecture 2. Suppose that hr (t, u) = ∏mr
i=1 hi

r (t, u), where hi
r (t, u) is the inversion formula

for some order r singular point. Then

d̃r (t, u) =
mr∏
i=1

hi
r (t, u)li ,

where li , i = 1, 2, . . . ,mr are positive integers.

Remark 3. The positive integer li in Conjecture 2 indicates that the singular point corresponding
to hi

r (t, u) has li − 1 neighborhood singular points of order r .

Remark 4. By Theorem 2, there are no singular points of order between μ+ 1 and n − μ− 1.
Therefore, d̃i (t, u) = 1 for i = μ+ 1, . . . , n − μ− 1.

Remark 5. For any 2 ≤ i 
= j ≤ n − μ, d̃i (t, u) and d̃ j (t, u) do not have a common factor.

Remark 6. One may take the n × n Bézout matrix of polynomials c(t, u)x − a(t, u)w and
c(t, u)y − b(t, u)w or the μ×μ matrix in Proposition 3 as the implicitization matrix B̂(x, y, w)
and derive similar results in the above theorems. In the former case, the singularity factors will
be (1, . . . , 1, dn−μ(t, u), . . . , d2(t, u)), where the first μ singularity factors are all 1. In the latter
case, the singularity factors are (dμ(t, u), . . . , d2(t, u)), which do not include the singularity
factor of the order n − μ singular point (if any). One can find it by Theorem 2.

Remark 7. It is also possible to obtain information about the singular points of a rational
parametric curve using the subresultant technique. As indicated in Abdeljaoued et al. (2004)
that, for any two polynomials P(t) and Q(t),

deg(gcd(P, Q)) = r ↔ psc0(P, Q) = · · · = pscr−1(P, Q) = 0, pscr (P, Q) 
= 0,

where psci (P, Q), i = 0, 1, . . . is the principle subresultant (PS) sequence which can be
computed from the minors of the Bezoutian matrix of P and Q. Applying the above result
to singularity computation, one has to compute the subresultants of the μ-basis p and q , and
substitute the parametric equation of the curve into the subresultants to get psci (t, u). Then
compute gr (t, u) := GC D(psc0(P, Q), . . . , pscr−1(P, Q)) and eliminate the common factors
of gr (t, u) and pscr (P, Q) from gr (t, u) to get a polynomial ĝr (t, u). Solving ĝr (t, u) = 0
should give the parametric values corresponding to all the order r singular points. It is an
interesting question to find the relationship between ĝr (t, u) and the singular factor dr (t, u).

4. Computing the singular points

Based on Theorem 7, a direct approach to computing the singular points of a rational plane
curve is as follows. We first find the singularity factors di(t, u) by computing the Smith form
of the Bézout matrix B(t, u), and then compute the modified singularity factors d̃i(t, u). The
parameter values of the singular points of order i can be obtained by solving d̃i (t, u) = 0, and
the singular points are thus obtained simply by substituting the parameter values in P(t, u). Let
us illustrate the process with an example.

Example 1. Consider a quartic curve:

a(t, u) = t4 − 40t3u + 40tu3 + u4,

b(t, u) = t4 + 480t2u2 + u4,

c(t, u) = t4 + 40t3u + 480t2u2 + 40tu3 + u4.
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The μ-basis of the curve is computed as

p = (276x − 589y + 313w)t2 + (−1434x − 1924y + 1878w)tu + (37x − 37y)u2,

q = (37w − 37y)t2 + (−1434x + 1388y − 1434w)tu + (−239x − 37y + 276w)u2.

The implicitization matrix B̂(x, y, w) is the resultant matrix of p and q with respect to t and u,
and the matrix B(t, u) is obtained as

B(t, u) = d(t, u)

(
u2 −tu

−tu t2

)
,

where

d(t, u) = −883200tu(37t4 − 2868t3u − 16656t2u2 + 2868tu3 + 37u4).

B(t, u) has just one singularity factor φ(t, u) which gives all the parameter values of three
double points. Solving d(t, 1) = 0 gives (10 digits accuracy):

t = 0,−5.583944445,−0.01205829975, 0.1790848763, 82.93043138.

Substituting these values of t and u = 1 into the parametric equation yields

(1, 1, 1), (0.8814197653, 1.821262166, 1), (0.8814197649, 1.821262166, 1),

(0.3335521852, 0.6892130165, 1), (0.3335521853, 0.6892130166, 1).

Note that the second and the third points correspond to the same double point, and the fourth and
fifth points correspond to another double point. The two parameter values corresponding to the
singular point (1, 1, 1) are t = 0 and u = 0.

The above example reveals some problems in computing the singular points by directly
solving the roots of the modified singularity factors. First, due to numerical errors, the number of
computed singular points is bigger than expected. One has to regroup them such that each group
corresponds to an actual singular point. If two singular points are too close, it will be difficult
to properly regroup the singular points. Furthermore, it could happen that a singular point is
computed as two distinct singular points. Second, to compute the singular points of order r , one
has to solve the roots of a polynomial d̃r (t, u) whose degree is, in general, r ×mr . Here mr is the
number of singular points of order r . Ideally, we would like to find the singular points of order
r by solving the roots of a polynomial of degree mr . In the following, we will propose a more
efficient and numerically more stable algorithm to compute the singular points. Specifically, we
will explore the following problems:

(1) Find a numerically more stable algorithm to compute the singular points.
(2) Compute the inversion formula for a singular point.
(3) Determine how many real singular points a rational plane curve segment has.
(4) Determine if a singular point is ordinary or not.

4.1. Compute singular points

For simplicity, we use d̃(t, u) to denote the modified singularity factor which determines
the singular points of some order r . Let m be the number of singular points of order r . To
simplify the computation, we use the reduced (or square-free) polynomial d̃red (t, u) of d̃(t, u)
instead of d̃(t, u). Here d̃red (t, u) = d̃(t, u)/GC D(d̃t (t, u), d̃u(t, u)) is the polynomial that is
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striped off the repeated factors of d̃(t, u). For example, for d̃(t, u) = (t − 2u)3(2t + u)2(t − u),
d̃red(t, u) = (t − 2u)(2t + u)(t − u).

The singular point (x, y, w) can be obtained by solving the following system of equations

d̃red (t, u) = 0, c(t, u)x − a(t, u)w = 0, c(t, u)y − b(t, u)w = 0. (11)

Let

f (x, w) := Res(d̃red (t, u), c(t, u)x − a(t, u)w),
g(y, w) := Res(d̃red (t, u), c(t, u)y − b(t, u)w).

(12)

Solving f (x, w) = 0 and g(y, w) = 0 should give the x-coordinates and y-coordinates of the
singular points, respectively. Note that, since we are only interested in finding the coordinates of
the singular points rather than their multiplicities, we only need to find the roots of the reduced
polynomials fred (x, w) and gred(y, w) of f (x, w) and g(y, w). Thus, we only need to find the
roots of polynomials whose degree is less than or equal to m.

Let xi : 1, 1 ≤ i ≤ r and y j : 1, 1 ≤ j ≤ s be the roots of fred (x, w) = 0
and gred(y, w) = 0 respectively (for brevity of description, we assume that the roots are
all finite). For each point (xi , y j , 1), 1 ≤ i ≤ r, 1 ≤ j ≤ s, we need to check if it is a
singular point on the curve. To do so, we substitute (xi , y j , 1) into the equation G(x, y, w) :=
Res(d̃red (t, u), α(c(t, u)x −a(t, u)w)+β(c(t, u)y −b(t, u)w)), where α ∈ [0, 1] and β ∈ [0, 1]
are two randomly chosen numbers. If G(xi , y j , 1) = 0, then (xi , y j , 1) is a singular point;
otherwise, it is not. To increase the reliability, this process can be tested several times. Note that,
since xi and y j are approximately computed, even if (xi , y j , 1) is a singular point, G(xi , y j , 1)
is not exactly zero. So the test criteria is that the absolute value of G(xi , y j , 1) is less than some
threshold. The knowledge that we have in total m singular points is also helpful when determining
the singular points.

4.2. Inversion formula for singular points

Let (x0, y0, w0) be a singular point of order r , and h(x0, y0, w0; t, u) be the inversion
formula for (x0, y0, w0). By Lemma 2, h(x0, y0, w0; t, u) is in fact the GCD of two polynomials
f (x0, y0, w0; t, u) := p(t, u) · (x, y, w) and g(x0, y0, w0; t, u) := q(t, u) · (x0, y0, w0),
where p(t, u) and q(t, u) are the μ-basis of P(t, u). Thus h(x0, y0, w0; t, u) can be computed
symbolically by the subresultants of f (x0, y0, w0; t, u) and g(x0, y0, w0; t, u) (with respect to
t, u) as follows.

Let

f (x0, y0, w0; t, u) :=
μ∑

i=0

fi (x0, y0, w0)t
i uμ−i

and

g(x0, y0, w0; t, u) :=
n−μ∑
i=0

gi(x0, y0, w0)t
i un−μ−i .

Let S denote the Sylvester matrix of f and g, with respect to t, u. The first n − μ rows of S are
coefficients (with respect to t, u) of f , and the last μ rows are coefficients of g. Let Si j be the
submatrix of S by deleting the last j rows of the n −μ rows of f -coefficients, and the last j rows
of the μ rows of g-coefficients, and the last 2 j + 1 columns except the column n − i − j .
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For 0 ≤ j ≤ μ, define

Sj (x0, y0, w0; t, u) :=
j∑

i=0

det(Si j )t
i u j−i . (13)

Sj is called the j th subresultant of f and g (with respect to t). By the property of subresultants
(Wang, 2004), we have

Theorem 8. Let (x0, y0, w0) be a singular point of order r (2 ≤ r ≤ μ). Then the inversion
formula of the singular point is hr (x0, y0, w0; t, u) := Sr (x0, y0, w0; t, u) = 0.

Remark 8. All singular points of the same order r share the same inversion formula hr = 0.

One can also find the inversion formula for each specific singular point (x0, y0, w0) by
computing the GCD of f (x0, y0, w0; t, u) and g(x0, y0, w0; t, u). However, since (x0, y0, w0) is
not exactly computed, f (x0, y0, w0; t, u) and g(x0, y0, w0; t, u) generally do not have an exact
GCD. Thus numerical algorithms for computing approximate GC D must be employed. Detailed
discussion in this direction is beyond the scope of the present paper.

To compute the parameter values of a singular point (x0, y0, w0), one just solves for t : u
from the equation hr (x0, y0, w0; t, u) = 0, which has degree at most r . However, since
hr (x0, y0, w0; t, u) = 0 is an approximate inversion formula for a specific singular point,
the solutions may not be accurate. Fortunately, there is a way to improve the accuracy of the
solutions. In fact, since any parameter t0 : u0 corresponding to the singular point is a solution
of d̃red(t, u) = 0, we can use t0 : u0 as an initial value to refine the solution of d̃red (t, u) = 0
numerically using the Newton–Raphson iteration.

4.3. Detecting singular points on a real curve segment

In shape classification and control, it is often required to determine if there exist any singular
points on a real curve segment, which is defined as a mapping P : I → R2, where I ⊂ R is
an interval. Without loss of generality, we assume that I = [0, 1]. This problem can be solved
based on the inversion formula for the singular points. Since we are only interested in a finite
portion of the curve, we dehomogenize the corresponding polynomials and coordinates in this
subsection. Here we make it clear that a singular point of the whole curve P(t), t ∈ R ∪ {∞},
may not be a singular point on the segment P(t), t ∈ [0, 1], since it may happen that only one of
the parameters corresponding to the singular point lies in [0, 1].

First we need to find the coordinates of all singular points and test each of them to see if they
are on the given curve segment.

Let h(x, y; t) be the inversion formula for a singular point (x, y) of order r . Then (x, y) is a
singular point on the curve segment P(t), t ∈ [0, 1], if and only if h(x, y; t) has more than one
root in [0, 1] or has a multiple root in [0, 1]. We will explore the two cases separately.

A necessary condition for h(x, y; t) having a multiple root is that dis(x, y) :=
Res(h, h′

t , t) = 0. Thus if dis(x, y) 
= 0, then h(x, y; t) cannot have a multiple root. If
dis(x, y) = 0, we need to check if the multiple root is in [0, 1] or not. To do so, we compute
GC D(h, h′

t ) and use Sturm sequences to check if the GCD has a root in [0, 1] or not.
Now suppose that h(x, y; t) does not have multiple roots in [0, 1]. To determine whether the

singular point (x, y) is a singular point on the curve segment or not, we just have to check if
h(x, y; t) has more than one root in [0, 1] using Sturm sequences. In particular, if (x, y) is the
only singular point of order r , we just have too check the number of roots of d̃(t) = 0 in [0, 1].
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4.4. Determine if a singular point is ordinary or not

There are several ways to determine if a singular point is ordinary or not, based on the
representations of the rational curve.

The first approach is solely based on the parametric equation of P(t, u). Suppose we have
a singular point (x0, y0) of order r and let t1 : u1, t2 : u2, . . . , tr : ur be the parameter
values corresponding to (x0, y0). Without loss of generality, we assume that (x0, y0) = (0, 0).
Obviously, if there are identical parameter values among ti : ui , i = 1, 2, . . . , r , then we have
identical tangents at the singular point. Hence the singular point is non-ordinary. In the following,
we assume that ti : ui , i = 1, 2, . . . , r are distinct. To compute the tangent lines at the singular
point, we compute the places of P(t, u) at the singular point by taking Taylor expansions of
(a(t, u)/c(t, u), b(t, u)/c(t, u)) at ti : ui , i = 1, 2, . . . , r respectively. From the places, it is
easy to compute that the tangent directions are

(
a′(ti , ui ), b′(ti , ui )

)
, i = 1, 2, . . . , r . If there are

identical tangent directions, then the singular point is non-ordinary. Otherwise, it is ordinary.
The second approach is based on the implicit equation of P(t, u) which can be easily obtained

by taking the resultant of the μ-basis. Let P0 = (x0, y0) be an order r singular point of P(t, u),
and F(x, y) = 0 be the implicit equation. Expand F(x, y) at x = x0 and y = y0, we get

F(x, y) :=
∑

r≤i+ j≤n

Fi j (x0, y0)(x − x0)
i (y − y0)

j ,

where Fij (x0, y0) is a polynomial in x0, y0. The directions of the tangent lines of P(t, u) at P0
are defined by the roots of

Fr (x, y) :=
∑

i+ j=r

Fi j (x0, y0)(x − x0)
i (y − y0)

j = 0.

Let

f (x, y; α, β) :=
∑

i+ j=r

Fi j (x, y)αiβ j

and

g(x, y) := Res( f ′
α, f ′

β ; α, β). (14)

Then P0 is non-ordinary if and only if f (x0, y0; α, β) has multiple roots (with respect to α, β),
and if and only if g(x0, y0) = 0.

The above approaches are based on the fact that the singular points and/or the corresponding
parameter values are already computed. If the singular points and/or the corresponding parameter
values are not computed, how can we determine if the curve P(t, u) has any singular point or not
of a specific order? Furthermore, even if the singular points and/or the corresponding parameter
values are available, since they are, in general, approximately computed, serious numerical
computation problem arises. For example, suppose P(t, u) has identical tangents at some non-
ordinary singular point. But due to numerical computation, one may obtain distinct tangents, and
hence one wrongly concludes that the singular point is ordinary. Besides, numerical stability is
another problem for the first approach.

In the following, we provide a method to determine if P(t, u) has any non-ordinary singular
point of a specific order r with the help of singularity factors. Note that all the computation can
be exactly executed if the coefficients of the rational curve are rational numbers.
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Define

φ(t, u) := g(a(t, u)/c(t, u), b(t, u)/c(t, u)) · c(t, u)l, (15)

where l is the degree of polynomial g. Let h(t, u) be the inversion formula of P0 and t0 : u0 be a
zero of h(t, u), then P0 = P(t0, u0) is non-ordinary if and only if φ(t0, u0) = 0.

Let d̃(t, u) be the modified singularity factor of order r , andψ(t, u) = GC D(d̃(t, u), φ(t, u)).
If ψ(t, u)) = 1, then P(t, u) cannot have non-ordinary singular points of order r . Otherwise,
P(t, u) must have non-ordinary singular points. The non-ordinary singular point P0 = (x0, y0)

is determined by the following system of equations

ψ(t, u) = 0, c(t, u)x0 − a(t, u) = 0, c(t, u)y0 − b(t, u) = 0. (16)

Theorem 9. Let d̃(t, u) be the modified singularity factor of order r , and ψ(t, u) =
GC D(d̃(t, u), φ(t, u)). Here φ(t, u) is the polynomial defined in (15). Then P(t, u) does not
have non-ordinary singular points of order r if and only if ψ(t, u) = 1. Furthermore, the non-
ordinary singular points of order r can be obtained by solving the system of equations (16).

4.5. Algorithm

Based on the results in the previous subsections, we can devise algorithms to compute the
singular points on a parametric curve and determine if a parametric curve segment has any
singular points. Non-ordinary singular points can also be detected.

Algorithm 1. SINGULAR-COMPUT
Input: A parametric curve P(t, u) = (a(t, u), b(t, u), c(t, u)).
Output: All the singular points of P(t, u).
Procedure:

1. Compute the singularity factors and then the modified singularity factors di (t, u) and d̃i (t, u),
i = 2, . . . , n − μ, of P(t, u).

2. For each modified singularity factor d̃(t, u), compute f (x, w) and g(y, w) from Eq. (12). Let
fred (x, w) and gred (y, w) be the reduced polynomials of f (x, w) and g(y, w) respectively.

3. Solve fred (x, 1) = 0 and gred (y, 1) = 0. Let xi , 1 ≤ i ≤ m and y j , 1 ≤ j ≤ m be the
solutions respectively.

4. Choose some threshold ε > 0 and let

G(x, y) := Res(d̃red (t, u), α(c(t, u)x − a(t, u))+ β(c(t, u)y − b(t, u)))

be a randomly generated polynomial with α and β being two random numbers in [0, 1]. For
each pair of combinations (xi , y j ), 1 ≤ i, j ≤ m, check if |G(xi , y j )| < ε. If yes, then
(xi , y j ) is a singular point of order r , and output the singular point. To enhance the reliability,
this step can be repeated several times with different random combinations (α, β).

Algorithm 2. SINGULAR-DETECT
Input: A parametric curve segment P(t) = (a(t), b(t), c(t)), 0 ≤ t ≤ 1.
Output: The singular points on the curve segment.
Procedure:

1. Compute the singularity factors and modified singularity factors di (t) and d̃i (t), i =
2, . . . , n − μ.
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2. For each modified singularity factor d̃(t) (which corresponds to m singular points of order r ),
check the number of roots of d̃(t) in [0, 1] using Sturm sequences. If d̃(t) = 0 has a simple
root or no root in [0, 1], then the curve segment does not have a singular point of order r .
Otherwise, if m = 1, then the curve segment has one singular point of order r ; else, i.e., if
m > 1, go to the next step.

3. Compute the singular points of order r of P(t) using the algorithm SINGULAR-COMPUT.
4. Compute the inversion formula h(x, y; t) = 0 of the singular points by Theorem 8.
5. For each singular point (x, y) of order r , check the number of zeros of h(x, y; t) = 0 again

using Sturm sequence. If h(x, y; t) = 0 has a simple root or no root in [0, 1], then (x, y) is
not a singular point on the curve segment; otherwise, it is.

Algorithm 3. NONSINGULAR-DETECT
Input: A rational parametric curve P(t, u) = (a(t, u), b(t, u), c(t, u)).
Output: Determine if P(t, u) has any non-ordinary singular points of order r . If yes, compute
the non-ordinary singular points.
Procedure:

1. Compute the singularity factors and then the modified singularity factors d(t, u) and d̃(t, u)
of order r .

2. Compute the implicit equation F(x, y, w) = 0 of P(t, u) and the polynomial φ(t, u) as
defined in (15).

3. Compute ψ(t, u) = GC D(φ(t, u), d̃(t, u)). If ψ(t, u) = 1, then P(t, u) does not have any
non-ordinary singular points. Otherwise, P(t, u) has non-ordinary singular points which can
be solved from (16).

4.6. Examples

In this subsection, we provide several examples to illustrate the algorithms for computing and
detecting the singular points of a planar rational curve.

Example 2. Consider again the curve in Example 1. As computed in Example 1, B(t, u) has
only one singularity factor

d(t, u) = −883200tu(37t4 − 2868t3u − 16656t2u2 + 2868tu3 + 37u4),

which gives all the parameter values of three double points. By (12), one computes

fred (x) = (x − 1)(128190757x2 − 155748174x + 37688017),

gred(y) = (y − 1)(536363y2 − 1346526y + 673263).

The roots of fred (x) = 0 and gred(y) = 0 give the x-coordinates and y-coordinates of the
singular points respectively. It is easy to find that the three singular points are

(1, 1, 1),

(
325833

536363
± 370

128190757

√
9007436063,

673263

536363
± 1110

536363

√
74807, 1

)
.

The inversion formulae for the singular points are given by p(x, y; t, u) = 0 or q(x, y; t, u) = 0.
For example, for (x, y, w) = (1, 1, 1), the inversion formula is tu = 0.

To determine whether the segment P(t), t ∈ [0, 1] has any singular points, we first use Sturm
sequences to find that φ(t) has two simple roots in [0, 1]. We then conclude there might exist
singular points in [0, 1].

For the point (x, y) = (1, 1), p(x, y; t) = t = 0 has only one root in [0, 1]. Therefore,
(x, y) = (1, 1) is not a singular point on the curve segment P(t), t ∈ [0, 1]. Similarly, neither
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are the other two singular points on the curve segment. Hence, there is no singular point on the
curve segment.

To determine whether (x, y) = (1, 1) is ordinary or not, we expand (a(t, u)/c(t, u),
b(t, u)/c(t, u)) at (t, u) = (0, 1) and (t, u) = (1, 0) respectively to get two tangent directions
(0,−40) and (−80,−40) of the singular point. Thus (x, y) = (1, 1) is an ordinary double point.

Example 3. The following example is from Cox et al. (1998). Let P(t, u) be given by

a(t, u) = t6 + t3u3 + t2u4,

b(t, u) = t6 − t4u2 − t2u4,

c(t, u) = t6 + t5u + t4u2 − tu5 − u6.

The μ-basis of P(t, u) is

p = (x −w)t2 + ytu + yu2,

q = (7y − 7w)t4 + (8x + 7y − 8w)t3u + (15y + 7w)t2u2 + 8ytu3 + 7xu4.

Now, since p is an axial moving line with the axis being (1, 0, 1), P(t, u) has an order
four singular point (1, 0, 1). The inversion formula for the singular point is q(1, 0, 1; t, u) =
−7(t4 − t2u2 − u4) = 0.

To compute the other singular points, we employ the matrix in Proposition 3 and obtain the
singularity factor for B(t, u) as

d(t, u) = 7t2(2t6 + 3t5u + 3t4u2 + t3u3 + 3t2u4 + 3tu5 + u6),

whose roots are the parameter values of the four double points. From (12), one obtains

fred (x) = x(3x3 − 15x2 − 3x − 1), gred (y) = y(3y3 − 21y2 − 8).

The four double points are then found to be

(0, 0, 1), (5.204449622, 7.053597847, 1),

(−0.1022248111 − 0.2315120875i,−0.02679892333 + 0.6142796379i, 1),

(−0.1022248111 + 0.2315120875i,−0.02679892333 − 0.6142796379i, 1).

The inversion formula for these double points is p(x0, y0, w0; t, u) = 0. Since φ(t, u) does not
have a real root in (0,∞), P(t, u) does not have any singular point in (0,∞).

To determine whether the singular point (x, y) = (1, 0) is ordinary or not, we compute the
implicit equation F(x, y) = 0 of P(t, u) and expand F(x, y) at x = 1, y = 0 to get its lowest
degree terms: F4(x, y) = (x −1)4−2(x −1)3y+6(x −1)y3− y4. The corresponding polynomial
f (α, β) = α4 − 2α3β + 6αβ3 − β4. Since resultant( f ′

α, f ′
β ; α, β) 
= 0, f (α, β) does not have

multiple roots, and hence the singular point (x, y) = (1, 0) is ordinary.
To determine if P(t, u) has non-ordinary double points, we compute φ(t, u) = 8t2(t4−t2u2−

u4)6g(t, u) and GC D(d(t, u), φ(t, u)) = t2, where g(t, u) is a polynomial of degree 30. Thus
we know that P(t, u) has a non-ordinary double point P(0, 1) = (0, 0, 1).

Example 4. In this example, we consider a curve of relatively high degree. Let

a(t, u) = 3t8 − 4t7u + 5t6u2 − 4t5u3 + 4t4u4 − 4t3u5 − 3t2u6 + 5tu7 − u8,

b(t, u) = −t8 − 4t7u + 4t6u2 + 3t5u3 − 5t4u4 + 9t2u6 − 10tu7 + 3u8,

c(t, u) = 2t8 − t5u3 − t2u6 + u8.
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Fig. 1. Left: illustration of x7 − y2 = 0 in Example 5; Right: the rational curve in Example 6.

The μ-basis of P(t, u) is

p = (126x + 52y − 163w)t4 + (−6x + 10y + 370w)t3u + (36x + 16y − 457w)t2u2

+ (61x − 14y + 93w)tu3 + (6x + 2y)u4,

q = (10y + 5w)t4 + (−384x − 158y + 517w)t3u + (36x − 26y − 1171w)t2u2

+ (−107x − 56y + 1416w)tu3 + (−183x + 44y − 315w)u4.

The singularity factors of matrix B(t, u) are

d2(t, u), d3(t, u) = (t − u)2(t − u), d4(t, u) = 1,

where d3(t, u) corresponds to a triple point (1,−1, 1), while d2(t, u) is a polynomial of degree
36, corresponding to 18 double points. Computing the subresultants of p and q yields an
inversion formula for the double points

h(x, y, w; t) := A2(x, y, w)t2 + A1(x, y, w)t + A0(x, y, w) = 0,

where Ai (x, y, w), i = 0, 1, 2, are degree five polynomials. The double points can be
found by solving two degree 18 polynomials fred (x) = 0 and gred (y) = 0. Note that
if we use the algorithm in Chionh and Sederberg (2001) to compute the double points
using 10 digits accuracy, some of the double points lose several digits accuracy. For
example, (−0.06509039827,−1.566956501, 1) is a double point computed by our algorithm.
However, the algorithm in Chionh and Sederberg (2001) computes two different points:
(−0.06509040134±0.1176641135×10−9i,−1.566956501±0.2825182231×10−9i, 1), which
have only 7 digits accuracy. One can use Sturm sequences to show that d2(t, u) = 0 does not
have real roots. Hence, P(t, u) has only one real singular point (1,−1, 1).

Next we use two more examples to demonstrate that the two conjectures Conjectures 1 and 2
proposed in the last section do hold in these two examples.

Example 5. Consider the rational curve as illustrated in Fig. 1

x(t) = t2(t − 1)5, y(t) = t7, w(t) = (t − 1)7.

Clearly the curve has the implicit equation x7 − y2w5 = 0. It has two singular points—a non-
ordinary double point P1 = (0, 0, 1) corresponding to (t, u) = (0, 1), and a 5-fold point at
P2 = (0, 1, 0) corresponding to (t, u) = (1, 1).

By analyzing the singularities of the curve (see Abhyankar (1990, Lecture 19)), we have the
following singularity trees:
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P1, d = 2

P11, d = 2

P111, d = 2

P1111, d = 1

P2, d = 5

P21, d = 2

P211, d = 2

P2111, d = 1

The double point P1 has a double point in its first neighborhood and a double point in its second
neighborhood. The 5-fold point P2 has also a double point in its first neighborhood and a double
point in its second neighborhood.

Now let us check whether the Conjectures 1 and 2 are true or not for this example. Theμ-basis
of the rational curve is computed as

p = (t2 − 2tu + u2)x − t2w,

q = (6t3u2 − 9t2u3 + 5tu4 − u5)x − (t5 − 5t4u + 10t3u2 − 10t2u3 + 5tu4 − u5)y

+ (t5 + 2t4u − 3t3u2 + t2u3)w.

The Smith form of the Bézout resultant matrix of p and q is diag((t−u)5, (t−u)5, (t−u)5, t6(t−
u)9, 0).

From the Smith norm, we obtain d5(t, u) = (t − u)5, d4(t, u) = d3(t, u) = 1, and
d2(t, u) = t6(t − u)4. Obviously, the rational curve has two singular points—a double point
P1 = (0, 0, 1) (which corresponds to the parameter value (t, u) = (0, 1)) and a 5-fold point
P2 = (0, 1, 0) (which corresponds to the parameter value (t, u) = (1, 1)). The inversion formulas
of the two singular points are h2(t, u) = t2 and h5(t, u) = (t − u)5, respectively.

Based on the singularity tree, we have ψ5
2 (t, u) = (t − u)4, ψ2

2 (t, u) = (t2)2 = t4. On the
other hand, our computation yields d5(t, u) = h5(t, u), d2(t, u) = h2(t, u)ψ5

2 (t, u)ψ2
2 (t, u) and

d̃2(t, u) = t6 = h2(t, u)3. Hence, both Conjectures 1 and 2 are true for this example.

Example 6. Consider the rational curve as illustrated in Fig. 1

x(t, u) = t7(5t − u)2(2t − u)2(4t − u)3(t − u)3,

y(t, u) = −(3t − u)(1048t6 − 3384t5u + 3912t4u2 − 2196t3u3 + 633t2u4

− 90tu5 + 5u6)(2t − u)2(4t − u)3(5t − u)2(t − u)3,

z(t, u) = t17.

Using the symbolic software Maple, we first implicitize the rational curve, and then compute
the singularities for the implicit curve to obtain the following singular points of the curve,

• P1 = (0, 0, 1): multiplicity: 10; delta invariant: 51; the number of local branches: 4;
• P2 = (0, 1, 0): multiplicity: 7; delta invariant: 48; the number of local branches: 1;
• other 21 ordinary double points, each having delta invariant equal to 1.

Here the delta invariant is the equivalent number of double points of the singular point, including
those in its infinite neighborhood, should be counted for. For a rational curve of degree n, the
delta invariants of all the singular points sum up to (n − 1)(n − 2)/2 (Walker, 1950).

The singularity trees are as follows:
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P1, d = 10

P11, d = 3

P111, d = 1

P12, d = 2

P121, d = 1

P13, d = 2

P131, d = 1

P14, d = 2

P141, d = 1

P2,, d = 7

P21, d = 7

P211, d = 3

P2111, d = 3

P21111, d = 1

The μ-basis of the rational curve is

p = yt7 + (3144t7 − 11200t6u + 15120t5u2 − 10500t4u3 + 4095t3u4 − 903t2u5

+ 105tu6 − 5u7)x,

q = (461001311101725700720594564577544178760t9

− 1061879936783309389915737743038241347408t8u

+ 1304100914918618857266985210880963215440t7u2

− 963446574311820113320946778382349917340t6u3

+ 453046814272856502188347922742872709375t5u4

− 138677398795088621035172691416800230285t4u5

+ 27519175579414801620922982185410211771t3u6

− 3413749009440773749339485419802971315t2u7

+ 240614259752476291340326794064525710tu8

− 7358652103980467780171952529147300u9)x

− t7(25606870338581626368379674846725000t3

− 55408512503057088229879836607577665t2u

+ 17216513113777293591343158190486482tu2

− 1471730420796093556034390505829460u3)y

− 80508000344500633302185697718103400000(5t − u)2

× (2t − u)2(4t − u)3(t − u)3w.

The Smith form of the Bézout matrix is diag(θ1(t, u), θ1(t, u), θ1(t, u), t14θ1(t, u), t14θ1(t, u),
t14θ1(t, u), t14θ1(t, u), t20θ1(t, u)(4t − u)3, t20θ2(t, u)θ3(t, u), 0),
where θ1(t, u) = (5t − u)2(4t − u)3(2t − u)2(t − u)3, θ2(t, u) = (5t − u)4(4t − u)6

(2t − u)4(t − u)5, and θ3(t, u) is a 42-degree polynomial.
From the Smith form, we obtain d10(t, u) = (5t − u)2(2t − u)2(4t − u)3(t − u)3,

d7(t, u) = t14, d3(t, u) = (4t − u)3t6, d2(t, u) = θ3(t, u)(t − u)2(2t − u)2(5t − u)2 and
the other singularity factors are all 1. Obviously, P1 = (0, 0, 1) is a 10-fold singular point
and P2 = (0, 1, 0) is a 7-fold singular point. The inversion formulas are h10(t, u) = d10(t, u)
and h7(t, u) = t7, respectively. Based on the singularity tree, we have ψ10

3 (t, u) = (4t − h)3,
ψ10

2 (t, u) = (t − u)2(2t − u)2(5t − u)2, ψ7
7 (t, u) = t7 and ψ7

3 (t, u) = t6. On the other hand,
our computation yields d10(t, u) = h10(t, u), d7(t, u) = h7(t, u)ψ7

7 (t, u), d3(t, u) = ψ10
3 ψ

7
3
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and d2(t, u) = θ3(t, u)ψ10
2 (t, u). Hence, Conjecture 1 is true for this example. Similarly, we can

easily verify that Conjecture 2 is also true for this example.

5. Singular points of low degree curves

For low degree curves such as cubic or quartic curves, there exists a relatively simple treatment
to the singular points of the curves based on the main results from previous sections.

5.1. Cubic curves

For a cubic curve P(t), the μ-basis takes the form

p = p1(x, y)t + p0(x, y), q = q2(x, y)t2 + q1(x, y)t + q0(x, y),

where pi , qi are linear functions in x, y. Thus p is an axial moving line whose axis (x0, y0)

(the intersection of p1 = 0 and p0 = 0) is the double point on the cubic curve. The inversion
formula is provided by q(x0, y0; t) = 0, from which the existence of the singular point on a
curve segment P(t), t ∈ [0, 1] can easily be detected. The conditions are:

(h2 + h1 + h0)(h1 + 2h0) ≤ 0, (h2 + h1 + h0)h0 ≥ 0, h2
1 − 4h2h0 ≥ 0, (17)

where h2 + h1 + h0 
= 0, h2 = q2(x0, y0, w0), h1 = q1(x0, y0, w0) and h0 = q0(x0, y0, w0).

5.2. Quartic curves

For a quartic curve P(t), there are two cases to be considered. In the first case, the μ-
basis p and q have degree one and three, respectively, since μ = 1. Therefore, the quartic
curve has one singular point—a triple point (x0, y0) which can be obtained by intersecting
any two lines of the moving p, and q(x0, y0; t) = 0 gives the inversion formula. Write
q(x0, y0, w0; t, 1) := h(t) = h3t3+t2t2+h1t +h0. Then a necessary and sufficient condition for
the triple singular point to be on the curve segment P(t) (t ∈ [0, 1]) is that one of the following
conditions holds

(i) g0 = 0, g2g1 ≤ 0, g2
2 − 4g1g3 ≥ 0;

(ii) g0g1 < 0, Δ1 ≥ 0, g0Δ2 > 0, Δ3 = 0;
(iii) g0g1 < 0, g0g3 > 0, Δ2 > 0 Δ3 < 0,

(18)

where g0 = h0, g1 = h1 + 3h0, g2 = h2 + 2h1 + 3h0, g3 = h3 + h2 + h1 + h0 
= 0, and

Δ1 = 3g3g1 − g2
2, Δ2 = 9g0g3 − g1g2,

Δ3 = 4g3
1g3 − g2

1g2
2 − 18g0g1g2g3 + 4g0g3

2 + 27g2
0g2

3.

For the second case, p = p2t2 + p1t + p0 and q = q2t2 + q1t + q0 are both of degree two,
since μ = 2. In this case, P(t) has three double points, and the corresponding singularity factor
is

φ(t) = p1(a, b, c)q2(a, b, c)− p2(a, b, c)q1(a, b, c).

The x-coordinates and y-coordinates of the double points are the solutions of the cubic
polynomials fred (x) and gred(y), respectively, where

f (x) = Res(φ(t, u), c(t, u)x − a(t, u)w; t, u),

g(y) = Res(φ(t, u), c(t, u)y − b(t, u)w; t, u).
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The inversion formula is given by p = 0 or q = 0. Thus, one just needs to count the number
of roots of a quadratic polynomial in the interval [0, 1] in order to detect any singular point on
the curve segment.

5.3. Monomial curves

A degree n monomial curve is a parametric curve with a singular point of order n − 1 (which
is the only singular point of the curve). For a monomial curve, the two elements p and q of the
μ-basis are of degree one and n − 1 respectively. The singular point (x0, y0) is the intersection
of any two lines of the moving line p. The inversion formula is given by q(x0, y0; t) = 0. One
can use Sturm sequences to detect if the singular point is on a curve segment.

6. Conclusions

In this paper, we present a new approach to computing the singular points of a plane rational
curve using the implicitization matrix derived from the μ-basis of the curve. It is shown that the
singularity factors of the implicitization matrix provide all the information about the singular
points, such as the parameter values corresponding to the singular points and their orders. Based
on this result, an algorithm is presented to compute and detect the singular points. Our algorithm
only requires to solve several univariate polynomial equations of relative low degrees, whereas
previous methods either require to solve polynomial equations with two or three variables or
to compute the zeros of a polynomial of much higher degree. Thus our algorithm is not only
more efficient but also numerically more robust. Furthermore, inversion formulae for the singular
points are derived, a method is presented to determine if a singular point is ordinary or not, and
a conjecture made in Chionh and Sederberg (2001) regarding the multiplicity of singular points
is proved.

There are several related problems for further research. In order to detect whether a given
rational curve segment contains any singular point, we now first need, in general, to compute
numerically all singular points of the whole curve and then find the inversion formulae of these
singular points. This introduces numerical inaccuracy in the process. It would be an interesting
research problem to find the inversion formula and to detect if a curve segment contains any
singular point without first having to compute the singular points.

Another problem is to prove our conjecture (Conjecture 1) about the relationship between the
singularity factors of the Bézout matrix and the singular points in infinitely near neighborhoods
of other singular points.
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