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Abstract

Effective use of the memory hierarchy is critical for achieving
high performance on embedded systems. We focus on the class of
streaming applications, which is increasingly prevalent in the em-
bedded domain. We exploit the widespread parallelism and regular
communication patterns in stream programs to formulate a set of
cache aware optimizations that automatically improve instruction
and data locality. Our work is in the context of the Synchronous
Dataflow model, in which a program is described as a graph of
independent actors that communicate over channels. The commu-
nication rates between actors are known at compile time, allowing
the compiler to statically model the caching behavior.

We present three cache aware optimizations: 1) execution scal-
ing, which judiciously repeats actor executions to improve instruc-
tion locality, 2) cache aware fusion, which combines adjacent ac-
tors while respecting instruction cache constraints, and 3) scalar
replacement, which converts certain data buffers into a sequence
of scalar variables that can be register allocated. The optimizations
are founded upon a simple and intuitive model that quantifies the
temporal locality for a sequence of actor executions. Our imple-
mentation of cache aware optimizations in the Streamlt compiler
yields a 249% average speedup (over unoptimized code) for our
streaming benchmark suite on a StrongARM 1110 processor. The
optimizations also yield a 154% speedup on a Pentium 3 and a
152% speedup on an Itanium 2.

Categories and Subject Descriptors  D.3.4 [Programming Lan-
guages]: Processors—Optimization; code generation; compilers;
D.3.2 [Programming Languages]: Language Classifications—
Concurrent, distributed, and parallel languages; Data-flow lan-
guages

General Terms Languages, Design, Performance

Keywords Stream Programing, Streamlt, Synchronous Dataflow,
Cache, Cache Optimizations, Fusion, Embedded

1. Introduction

Efficiency and high performance are of central importance within
the embedded domain. As processor speeds continue to increase,
the memory bottleneck remains a primary impediment to attain-
ing performance. Current practices for hiding memory latency are
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invariably expensive and complex. For example, superscalar pro-
cessors resort to out-of-order execution to hide the latency of cache
misses. This results in large power expenditures (unfit for embed-
ded systems) and also increases the cost of the system. Compilers
have also employed computation and data reordering to improve
locality, but this requires a heroic analysis due to the obscured par-
allelism and communication patterns in traditional languages such
as C.

For performance-critical programs, the complexity inevitably
propagates all the way to the application developer. Programs are
written to explicitly manage parallelism and to reorder the compu-
tation so that the instruction and data working sets fit within the
cache. For example, the inputs and outputs of a procedure might be
arrays that are specifically designed to fit within the data cache on
a given architecture; loop bodies are written at a level of granular-
ity that matches the instruction cache. While manual tuning can be
effective, the end solutions are not portable. They are also exceed-
ingly difficult to understand, modify, and debug.

The recent emergence of streaming applications represents an
opportunity to mitigate these problems using simple transforma-
tions in the compiler. Stream programs are rich with parallelism and
regular communication patterns that can be exploited by the com-
piler to automatically tune memory performance. Streaming codes
encompass a broad spectrum of applications, including embedded
communications processing, multimedia encoding and playback,
compression, and encryption. They also range to server applica-
tions, such as HDTV editing and hyper-spectral imaging. It is nat-
ural to express a stream program as a high-level graph of inde-
pendent components, or actors. Actors communicate using explicit
FIFO channels and can execute whenever a sufficient number of
items are available on their input channels. In a stream graph, actors
can be freely combined and reordered to improve caching behav-
ior as long as there are sufficient inputs to complete each execution.
Such transformations can serve to automate tedious approaches that
are performed manually using today’s languages; they are too com-
plex to perform automatically in hardware or in the most aggressive
of C compilers.

This paper presents three simple cache aware optimizations for
stream programs: (i) execution scaling, (ii) cache aware fusion, and
(iii) scalar replacement. These optimizations represent a unified ap-
proach that simultaneously considers the instruction and data work-
ing sets. We also develop a simple quantitative model of caching
behavior for streaming workloads, providing a foundation to rea-
son about the transformations. Our work is done in the context of
the Synchronous Dataflow [13] model of computation, in which
each actor in the stream graph has a known input and output rate.
This is a popular model for a broad range of signal processing and
embedded applications.

Execution scaling is a transformation that improves instruction
locality by executing each actor in the stream graph multiple times
before moving on to the next actor. As a given actor usually fits
within the cache, the repeated executions serve to amortize the



cost of loading the actor from off-chip memory. However, as our
cache model will show, actors should not be scaled excessively, as
their outputs will eventually overflow the data cache. We present a
simple and effective algorithm for calculating a scaling factor that
respects both instruction and data constraints.

Prior to execution scaling, cache aware fusion combines adja-
cent actors into a single function. This allows the compiler to opti-
mize across actor boundaries. Our algorithm is cache aware in that
it never fuses a pair of actors that will result in an overflow of the
instruction cache.

As actors are fused together, new buffer management strategies
become possible. The most aggressive of these, termed scalar re-
placement, serves to replace an array with a series of local scalar
variables. Unlike array references, scalar variables can be regis-
ter allocated, leading to large performance gains. We also develop
a new buffer management strategy (called “copy-shift”) that ex-
tends scalar replacement to sliding-window computations, a do-
main where complex indexing expressions typically hinder com-
piler analysis.

Our cache aware optimizations are implemented as part of
Streamlt, a language and compiler infrastructure for stream pro-
gramming [21]. We evaluate the optimizations on three architec-
tures. The StrongARM 1110 represents our primary target; it is an
embedded processor without a secondary cache. Our other targets
are the Pentium 3 (a superscalar) and the Itanium 2 (a VLIW pro-
cessor). We find that execution scaling, cache aware fusion, and
scalar replacement each offer significant performance gains, and
the most consistent speedups result when all are applied together.
Compared to unoptimized Streamlt code, our cache optimizations
yield a 249% speedup on the StrongARM, a 154% speedup on
the Pentium 3, and a 152% speedup on Itanium 2. These numbers
represent averages over our streaming benchmark suite.

This paper is organized as follows. Section 2 gives background
information on the Streamlt language. Section 3 lays the foundation
for our approach by developing a quantitative model of caching be-
havior for any sequence of actor executions. Section 4 describes
execution scaling and cache aware scheduling. Section 5 evaluates
buffer management strategies, including scalar replacement. Sec-
tion 6 contains our experimental evaluation of these techniques in
the StreamlIt compiler. Finally, Section 7 describes related work and
Section 8 concludes the paper.

2. Streamlt

Streamlt is an architecture independent language that is designed
for stream programming. In Streamlt, programs are represented
as graphs where nodes represent computation and edges represent
FIFO-ordered communication of data over tapes.

Hierarchical Streams In Streamlt, the basic programmable unit
(i.e., an actor) is a filter. Each filter contains a work function that
executes atomically, popping (i.e., reading) a fixed number of items
from the filter’s input tape and pushing (i.e., writing) a fixed number
of items to the filter’s output tape. A filter may also peek at a given
index on its input tape without consuming the item; this makes it
simple to represent computation over a sliding window. The push,
pop, and peek rates are declared as part of the work function,
thereby enabling the compiler to construct a static schedule of
filter executions. An example implementation of a Finite Impulse
Response (FIR) filter appears in Figure 1.

The work function is invoked (fired) whenever there is sufficient
data on the input tape. For the FIR example in Figure 1, the filter
requires at least N elements before it can execute. The value of N
is known at compile time when the filter is constructed. A filter
is akin to a class in object oriented programming with the work
function serving as the main method. The parameters to a filter

float->float filter FIR Filter (int N, float[] weights) {
work push 1 pop 1 peek N {
float sum = 0;
for (int i =0; i <N i++) {
sum += peek(i) * weights[i];

pop() ;
push(sum;
}
}
Figurel. Streamlt code for an FIR filter
stream
E:
stream
...... stream
stream
S
stream
(a) pipeline (b) splitjoin (c) feedback loop

Figure2. Hierarchical streams in Streamit.

float -> float pipeline Main() { Source
add Source(); // code for Source not shown
add FIR(); FIR
add Output(); // code for Output not shown

}

Figure 3. Example pipeline with FIR filter.

it

(e.g., Nand wei ght s) are equivalent to parameters passed to a
class constructor.

In Streamlt, the application developer focuses on the hierarchi-
cal assembly of the stream graph and its communication topology,
rather than on the explicit management of the data buffers between
filters. Streamlt provides three hierarchical structures for compos-
ing filters into larger stream graphs (see Figure 2). The pipeline
construct composes streams in sequence, with the output of one
connected to the input of the next. An example of a pipeline ap-
pears in Figure 3.

The splitjoin construct distributes data to a set of parallel
streams, which are then joined together in a roundrobin fash-
ion. In a splitjoin, the splitter performs the data scattering, and
the joiner performs the gathering. A splitter is a specialized fil-
ter with a single input and multiple output channels. On every
execution step, it can distribute its output to any one of its chil-
dren in either a duplicate or a roundrobin manner. For the for-
mer, incoming data are replicated to every sibling connected to
the splitter. For the latter, data are scattered in a roundrobin man-
ner, with each item sent to exactly one child stream, in order. The
splitter type and the weights for distributing data to child streams
are declared as part of the syntax (e.g., split duplicate or
split roundrobin(wi,...,w,)). The splitter counterpart is
the joiner. It is a specialized filter with multiple input channels but
only one output channel. The joiner gathers data from its prede-
cessors in a roundrobin manner (declared as part of the syntax) to
produce a single output stream.

Streamlt also provides a feedback loop construct for introducing
cycles in the graph.



pop=1 pop=2 pop=2 pop=3
A B C

push=3 push=3 push=1 push=1

Figure4. Example pipeline.

Execution Model ~ As noted earlier, an actor (i.e., a filter, splitter,
or joiner) executes whenever there are enough data items on its
input tape. In Streamlt, actors have two epochs of execution: one
for initialization, and one for the steady state. The initialization
primes the input tapes to allow filters with peeking to execute the
very first instance of their work functions. A steady state is an
execution that does not change the buffering in the channels: the
number of items on each channel after the execution is the same
as it was before the execution. Every valid stream graph has a
steady state [13], and within a steady state, there are often many
possibilities for interleaving actor executions. An example of a
steady state for the pipeline in Figure 4 requires filter A to fire 4
times, B 6 times, C9 times, and D 3 times.

Compilation Process The Streamlt compiler derives the initial-
ization and steady state schedules [10] and outputs a C program that
includes the initialization and work functions, as well as a driver
to execute each of the two schedules. Our compilation process al-
lows the Streamlt compiler to focus on high level optimizations,
and relies on existing compilers to perform machine-specific op-
timizations such as register allocation, instruction scheduling, and
code generation—this two-step approach affords us a great deal of
portability (e.g., code generated from the StreamIt compiler is com-
piled and run on three different machines as reported in Section 6).

3. CacheModel for Streaming

From a caching point of view, it is intuitively clear that once a ac-
tor’s instruction working set is fetched into the cache, we can maxi-
mize instruction locality by running the actor as many times as pos-
sible. This of course assumes that the total code size for all actors
in the steady state exceeds the capacity of the instruction cache. For
our benchmarks, the total code size for a steady state ranges from
2 Kb to over 135 Kb (and commonly exceeds 16 Kb). Thus, while
individual actors may have a small instruction footprint, the total
footprint of the actors in a steady state exceeds a typical instruction
cache size. From these observations, it is evident that we must scale
the execution of actors in the steady state in order to improve tem-
poral locality. In other words, rather than running a actor n times
per steady state, we scale it to run m x n times. We term m the
scaling factor.

The obvious question is: to what extent can we scale the exe-
cution of actors in the steady state? The answer is non-trivial be-
cause scaling, while beneficial to the instruction cache behavior,
may overburden the data cache as the buffers between actors may
grow to prohibitively large sizes that degrade the data cache be-
havior. Specifically, if a buffer overflows the cache, then producer-
consumer locality is lost.

In this section we describe a simple and intuitive cache model
to estimate the instruction and data cache miss rates for a steady
state sequence of actor firings. The model serves as a foundation
for reasoning about the cache aware optimizations introduced in
this paper. We develop the model first for the instruction cache, and
then generalize it to account for the data cache.

3.1 Instruction Cache

A steady state execution is a sequence of actor firings S =
(ai1,...,an), and a program execution corresponds to one or more
repetitions of the steady state. We use the notation S[i] to refer to

the actor « that is fired at logical time ¢, and | S| to denote the length
of the sequence.

Our cache model is simple in that it considers each actor in
the steady state sequence, and determines whether one or more
misses are bound to occur. The miss determination is based on
the instruction reuse distance (IRD), which is equal to the number
of unique instructions that are referenced between two executions
of the actor under consideration (as they appear in the schedule).
The steady state is a compact representation of the whole program
execution, and thus, we simply account for the misses within a
steady state, and generalize the result to the whole program. Within
a steady state, an actor is charged a miss penalty if and only if the
number of referenced instructions since the last execution (of the
same actor) is greater than the instruction cache capacity.

Formally, let phase(S, ) for 1 < i < |S| represent a subse-
quence of k elements of S:

phase(S,7) = (S[i], Sl +1],...,S[i+ k —1])

where k € [1,|S]] is the smallest integer such that S[i + k] = S[i].
In other words, a phase is a subsequence of S that starts with the
specified actor (S[i]) and ends before the next occurrence of the
same actor (i.e., there are no intervening occurrences of S[i] in
the phase). Note that because the steady state execution is cyclic,
the construction of the subsequence is allowed to wrap around the
steady state’. For example, the steady state S; = (AABB) has
phase(S1, 1) = (A), phase(S1,2) = (ABB), phase(S1,3) = (B),
and phase(S1, 4) = (BAA),

Let I(a) denote the code size of the work function for actor a.
Then the instruction reuse distance is

IRD(S, i) = > I(a)

where the sum is over all distinct actors « occurring in phase(S, 7).
We can then determine if a specific actor will result in an instruction
cache miss (on its next firing) by evaluating the following step
function:

0 if IRD(S,7) < Cr; hit: no cache refill,
1 otherwise; miss: (some) cache refill.

IMISS(S,i) = { (@)
In the equation, C; represents the instruction cache size.

Using Equation 1, we can estimate the instruction miss rate
(IMR) of a steady state as:

[S]
IMR(S) = é 3 IMISS(S, ). @
i=1

The cache model allows us to rank the quality of an execution
ordering: schedules that boost temporal locality result in miss rates
closer to zero, and schedules that do not exploit temporal locality
result in miss rates closer to one.

For example, in the steady state S; = (AABB), assume that the
combined instruction working sets exceed the instruction cache,
i.e, I(A) + I(B) > Cj. Then, we expect to suffer a miss at
the start of every steady state because the phase that precedes
the execution of A (at S1[1]) is phase(Si,2) with an instruction
reuse distance greater than the cache size (IRD(S1,2) > Cfi).
Similarly, there is a miss predicted for the first occurrence of actor
B since phase(Si,4) = (BAA) and IRD(S1,4) > Ci. Thus,
IMR(S1) = 2/4 whereas for the following variant So = (ABAB),
IMR(S2) = 1. In the case of Sz, we know that since the combined
instruction working sets of the actors exceed the cache size, when
actor B is fired following A, it evicts part of actor A’s instruction

L1n other words, the subsequence is formed from a new sequence S’ = S|
where | represents concatenation.



working set. Hence when we transition back to fire actor A, we have
to refetch certain instructions, but in the process, we replace parts
of actor B’s working set. In terms of our model, IRD(S2,7) > C;
for every actor in the sequence, i.e., 1 <7 < |Sa|.

Note that the amount of refill is proportional to the number of
cache lines that are replaced when swapping actors, and as such,
we may wish to adjust our cache miss step function (IMISS). One
simple variation is to allow for some partial replacement without
unduly penalizing the overall value of the metric. Namely, we can
allow the constant C; to be some fraction greater than the actual
cache size. Alternatively, we can use a more complicated miss
function with a more uniform probability distribution.

Temporal Locality In our model, the concept of improving tem-
poral instruction locality translates to deriving a steady state where,
in the best case, every actor has only one phase that is longer than
unit-length. For example, a permutation of the actors in S2 (where
all phases are of length two) that improves temporal locality will
result in .S1, which we have shown has a relatively lower miss rate.

Execution Scaling Another approach to improving temporal lo-
cality is to scale the execution of the actors in the steady state. Scal-
ing increases the number of consecutive firings of the same actor.
In our model, a scaled steady state has a greater number of unit-
length phases (i.e., a phase of length one and the shortest possible
reuse distance).

We represent a scaled execution of the steady state as S™ =
(aT,...,an"): the steady state S is scaled by m, which translates
to m — 1 additional firings of every actor. For example, scaling
S1 = (AABB) by a factor of two results in S = (AAAABBBB)
and scaling So = (ABAB) by the same amount results in S3 =
(AABBAABB);

From Equation 1, we observe that unit-length phases do not in-
crease the instruction miss rate as long as the size of the actor’s in-
struction working set is smaller than the cache size; we assume this
is always the case. Therefore, scaling has the effect of preserving
the pattern of miss occurrences while also lengthening the steady
state. Mathematically, we can substitute into Equation 2:

|s™ |
IMR(S™) = lS—{”ZIMISS(Sm,i)
=1

[S™]
1
— —— Y mIss(s™ i
m % |S] &= (87,9)

El
1 .
= S ;:1: IMISS(S, 7). €))

The last step is possible because IMISS is zero for m — 1 out of m
executions of every scaled actor. The result is that the miss rate is
inversely proportional to the scaling factor.

In Figure 5 we show a representative curve relating the scaling
factor to overall performance. The data corresponds to a coarse-
grained implementation of a Fast Fourier Transform (FFT) running
on a Pentium 3 architecture. The x-axis represents the scaling fac-
tors (with increasing values from left to right). The y-axis repre-
sents the execution time and is an indirect indicator of the miss rate
(the two measures are positively correlated). The execution time
improves in accord with our model: the running time is shortened
as the scaling factor grows larger. There is however an eventual
degradation, and as the sequel will show, it is attributed to the data
cache performance.

3.2 DataCache

The results in Figure 5 show that scaling can reduce the running
time of a program, but ultimately, it degrades performance. In this
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Figure5. Impact of execution scaling on performance.

section, we provide a basic analytical model that helps in reasoning
about the relationship between scaling and the data cache miss rate.

We distinguish between two types of data working sets. The
static data working set of an actor represents state, e.g., wei ght s
in the FIR example (Figure 1). The dynamic data working set is
the data generated by the work function and pushed onto the output
channel. Both of these working sets impact the data cache behavior
of an actor.

Intuitively, the presence of state suggests that it is prudent to
maximize that working set’s temporal locality. In this case, scaling
positively improves the data cache performance. To see that this is
true, we can define a data miss rate (DMR) based on a derivation
similar to that for the instruction miss rate, replacing Cr with Cp
in Equation 1, and I(a) with State(a) when calculating the reuse
distance. Here, Cp represents the data cache size, and State(a)
represents the total size of the static data in the specified actor.

Execution scaling however also increases the 1/0 requirements
of a scaled actor. Let pop and push denote the declared pop and
push rates of an actor, respectively. The scaling of an actor by a
factor m therefore increases the pop rate to m x pop and the push
rate to m x push. Combined, we represent the dynamic data work-
ing set of an actor a as 10(a, m) = m x (pop + push). Therefore,
we measure the data reuse distance (DRD) of an execution S with
scaling factor m as follows:

DRD(S™,i) = ) _ State(a) + 10(a, m)

where the sum is over all distinct actors a occurring in phase(S™, ¢).
While this simple measure double-counts data that are both pro-
duced and consumed within a phase, such duplication could be
roughly accounted for by setting 10" (a, m) = 10(a, m) /2.

We can determine if a specific work function will result in a
data cache miss (on its next firing) by evaluating the following step
function:

0 if DRD(S™,4) < Cp; hit: no cache refill,

DMISS(S™, 1) = ; i i
(57,9) {1 otherwise; miss: (some) cache refill.

4)
Finally, to model the data miss rate (DMR):
1 [S™]
DMR(S™) = 5 >~ DMISS(S™,4). (5)
i=1

It is evident from Equation 5 that scaling can lead to lower
data miss rates, as the coefficient 1/|S™| = 1/(m x |S]) is



inversely proportional to m. However, as the scaling factor m
grows larger, more of the DMISS values transition from 0 to 1 (they
increase monotonically with the 1/0O rate, which is proportional to
m). For sufficiently large m, DMR(S™) = 1. Thus, scaling must
be performed in moderation to avoid negatively impacting the data
locality.

Note that in order to generalize the data miss rate equation so
that it properly accounts for the dynamic working set, we must
consider the amount of data reuse within a phase. This is because
any actor that fires within phase(S,i) might consume some or all
of the data generated by S[i]. The current model is simplistic, and
leads to exaggerated 1/O requirements for a phase. We also do not
model the effects of cache conflicts, and take an “atomic” view of
cache misses (i.e., either the entire working set hits or misses).

4. Cache Optimizations

In this section we describe two cache aware optimizations that
are geared toward improving the cache behavior of streaming pro-
grams. First, we describe execution scaling which scales a steady
state to improve instruction locality, subject to the data working set
constraints of the actors in the stream graph. Second, we describe
cache aware fusion which performs a series of granularity adjust-
ments to the actors in the steady state. The fusion serves to (i) re-
duce the overhead of switching between actors, (i:) create coarser
grained actors for execution scaling, and (i:7) enable novel buffer
management techniques between fused actors (see Section 5).

4.1 Execution Scaling

We have already alluded to execution scaling in previous sections.
As the instruction cache model shows, increasing the number of
consecutive firings of the same actor leads to lower instruction
cache miss rates. However, scaling increases the data buffers that
are maintained between actors. Thus it is prudent that we account
for the data working set requirements as we scale a steady state.

Our approach is to scale the entire steady state by a single
scaling factor, with the constraint that only a small percentage of
the actors overflow the data cache. Our two-staged algorithm is
outlined in Figure 6.

First, the algorithm calculates the largest possible scaling factor
for every actor that appears in the steady state. To do this, it
calculates the amount of data produced by each actor firing and
divides the available data cache size by this data production rate.
In addition, the algorithm can toggle the effective cache size to
account for various eviction policies.

Second, it chooses the largest factor that allows a fraction p
of the steady state actors to be scaled safely (i.e., the cache is
adequate for their 1/0 requirements). For example, the algorithm
might calculate ma = 10, mg = 20, mc = 30, and mp = 40,
for four actors in some steady state. That is, scaling actor A beyond
10 consecutive iterations will cause its dynamic 1/O requirements
to exceed the data cache. Therefore, the largest m that allows
p = 90% of the actors to be scaled without violating the cache
constraints is 10. Similarly, to allow for the safe scaling of p = 75%
of the actors, the largest factor we can choose is 20.

In our implementation, we use a 90-10 heuristic. In other words,
we set p = 90%. We empirically determined this value via a series
of experiments using our benchmark suite; see [18] for detailed
results.

Note that our algorithm adjusts the effective cache size that is
reserved for an actor’s dynamic working set (i.e., data accessed
via pop and push). This adjustment allows us to control the
fraction of the cache that is used for reading and writing data—and
affords some flexibility in targeting various cache organizations.
For example, architectures with highly associative and multilevel
caches may benefit from scaling up the effective cache size (i.e.,

/I Returns a scaling factor for steady state S
Il - ¢ is the data cache size
Il - av is the fraction of ¢ dedicated for I/O
I - p is the desired percentile of all actors to be
/I satisfied by the chosen scaling factor (0 < p < 1)
calculateScalingFactor (S, ¢, a, p) {
createarray M of size |S]|
for i=1t0 |5 {
a = S[i]
Il calculate effective cache size
¢ = a x (c— State(a))
I/ calculate scaling factor for a such
// that /O requirements are close to ¢’
M[i] = round(c’ / 10(a, 1))

sort M into ascending numerical order
i=[(1-p)x|S]]
return M i

Figure 6. Our heuristic for calculating the scaling factor.

« > 1), whereas a direct mapped cache that is more prone to
conflicts may benefit from scaling down the cache (i.e., « < 1). In
our implementation, we found o« = 2/3 to work well. However, we
note that the optimal choice for the effective cache size is a complex
function of the underlying cache organization and possibly the
application as well; this is an interesting issue that warrants further
investigation.

4.2 CacheAware Fusion

In Streamlt, the granularity of actors is determined by the applica-
tion developer, according to the most natural representation of an
algorithm. When compiling to a cache-based architecture, the pres-
ence of a large number of actors exacerbates the transition overhead
between work functions. It is the role of the compiler to adjust the
granularity of the stream graph to mitigate the execution overhead.

In this section we describe an actor coarsening technique we
refer to as cache aware fusion (CAF). When two actors are fused,
they form a new actor whose work function is equivalent to its
constituents. For example, let an actor A fire n times, and an actor
B fire 2n times per steady state: S™ = (A"B"B™). Fusing A and
B results in an actor F that is equivalent to one firing of A and two
firings of B; F fires n times per steady state (S™ = (F™)). In other
terms, the work function for actor F inlines the work functions of A
and B.

When two actors are fused, their executions are scaled such that
the output rate of one actor matches the input rate of the next. In
the example, A and B represent a producer-consumer pair of filters
within a pipeline, with filter A pushing two items per firing, and
B popping one item per firing. The fusion implicitly scales the
execution of B so that it runs twice for every firing of A.

Fusion also reduces the overhead of switching between work
functions. In our infrastructure, the steady state is a loop that in-
vokes the work functions via method calls. Thus, every pair of
fused actors eliminates a method call (per invocation of the actors).
The impact on performance can be significant, but not only because
method calls are removed: the fusion of two actors also enables the
compiler to optimize across function boundaries. In particular, for
actors that exchange only a few data items, the compiler can allo-
cate the data streams to registers. The data channel between fused
actors is subject to special buffer management techniques as de-
scribed in the next section.



voi d- >voi d pi pel i ne BufferTest {
add Source();
add FIR();

}

void->float filter Source {
wor k push 1 {
push( ... );
}
}

float->void filter FIR {
int PEEK = 4;
wor k pop 1 peek PEEK {
float result = O;
for (int i=1; i<PEEK; i++) {
result += i*peek(i);

}
pop();
print(result);
}
}

Figure7. Original Streamlt code for the buffer test.

There are, however, downsides to fusion. First, as more and
more actors are fused, the instruction footprint can dramatically
increase, possibly leading to poor use of the instruction cache. Sec-
ond, fusion increases the data footprint when the fused actors main-
tain state (e.g., coefficient arrays and lookup tables). Our fusion al-
gorithm is cache aware in that it is cognizant of the instruction and
data sizes.

The CAF algorithm uses a greedy fusion heuristic to determine
which filters should be fused. It continuously fuses actors until the
addition of a new actor causes the fused actor to exceed either the
instruction cache capacity, or a fraction of the data cache capacity.
For the former, we estimate the instruction code size using a simple
count of the number of operations in the intermediate representa-
tion of the work function. For the latter, we allow the state of the
new fused actor to occupy up to 50% of the data cache capacity.

The algorithm leverages the hierarchical nature of the stream
graph, starting at the leaf nodes and working upward. For pipeline
streams, the algorithm identifies the connection in the pipeline with
the highest steady-state /O rate, i.e., the pair of filters that com-
municate the largest number of items per steady state. These two
filters are fused, if doing so respects the instruction and data cache
constraints. To prevent fragmentation of the pipeline, each fused
filter is further fused with its upstream and downstream neighbors
so long as the constraints are met. The algorithm then repeats this
process with the next highest-bandwidth connection in the pipeline,
continuing until no more filters can be fused. For splitjoin streams,
the CAF algorithm fuses all parallel branches together if the com-
bination satisfies the instruction and data constraints. Partial fusion
of a splitjoin is not helpful, as the child streams do not communi-
cate directly with each other; however, complete fusion can enable
further fusion in parent pipelines.

5. Buffer Management

A salient characteristic of stream programs is the use of FIFO chan-
nels to communicate between parallel components. Such channels
make explicit the communication between actors, allowing exe-
cution to proceed in parallel or out-of-order so long as items are
produced before they are consumed. FIFO channels also provide
a natural abstraction for the programmer, as complex modules can
be assembled from a set of small, reusable components. For these
reasons, it is important to optimize the performance of communi-

voi d->void filter BufferTest {
int PEEK = 4;
float[4] BUFFER;
int push_index = 0;
int pop_index = 0;

prework {
for (int i=0; i<PEEK-1; i++) {
BUFFER] push_i ndex++] = ... ;

}

wor k {
/1 run Source
BUFFER[ push_i ndex] = ... ;
push_i ndex = (push_index+1) & 3;
/1 run FIR
float result = 0;
for (int i=1; i<PEEK;, i++) {

result += i *BUFFER] (pop_i ndex+i) & 3];

pop_i ndex = (pop_i ndex+1) & 3;
print(result);

}

}

Figure 8. Fused buffer test using modulation buffer management.

cation channels. An efficient implementation enables a high-level
abstraction for composing actors without sacrificing performance.

Buffer management in Streamlt is more involved than some
other stream languages, due to the peek operation. The peek op-
eration allows an actor to access an item on its input channel with-
out removing the item from the channel (removal is done via the
pop operation). The peek functionality is very important for com-
ponents such as FIR (Finite Impulse Response) actors that access
data over a sliding window. Because a given data item is accessed
by multiple iterations of the actor, there must be a persistent buffer
that stores items across executions. In the context of a uniprocessor,
efficient buffer management translates to efficient maintenance and
addressing of this buffer in memory. On a parallel system, buffers
can also be implemented using network links.

In this section, we explore two basic strategies for buffer man-
agement in stream programs. The first strategy, termed modula-
tion, implements a traditional circular buffer that is indexed by
wraparound head and tail pointers. The second strategy, termed
copy-shift, avoids modulo operations by shifting the buffer con-
tents after each execution. We demonstrate that, while a naive im-
plementation of copy-shift can be 2x to 3x slower than modula-
tion, optimizations that utilize execution scaling can boost the per-
formance of copy-shift to be significantly faster than modulation
(51% speedup on StrongARM, 48% speedup on Pentium 3, and
5% speedup on Itanium 2).

Our study is done in the context of a synthetic benchmark,
shown in Figure 7. The benchmark is a pipeline consisting of
a simple source and an FIR actor. On each iteration, the source
pushes a single item. The FIR actor calculates a weighted sum over
PEEK items of the input, then pops a single item from the channel.
In our experiments, we vary the PEEK value from 1 to 128 items.

5.1 Modulation

Figure 8 illustrates a fused version of the benchmark using mod-
ulation for buffer management. For simplicity, we illustrate each
buffer management strategy as a source-to-source transformation in
Streamlt. Each fused actor contains a pr ewor k function in which
the source actor executes several times to prime the communication
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Figure 9. Performance of buffer manage-
ment strategies on a StrongARM.
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Figure 10. Performance of buffer manage-
ment strategies on a Pentium 3.
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Figure 11. Performance of buffer manage-
ment strategies on an Itanium 2.

void->void filter BufferTest {

int PEEK = 4; int PEEK = 4;
float[3] BUFFER; float[3] BUFFER
prework { prework {

for (int i=0; i<PEEK-1; i++) { for (int i=0;

BUFFER[i] = ... ; BUFFER[i] = ...
}

} }
work { wor k {

float[4] TEMP_BUFFER; fl oat

int push_index = 3; fl oat
int pop_index = O; fl oat
f1 oat

/1 copy from BUFFER to TEMP_BUFFER

void->void filter BufferTest {

TEMP_BUFFER _0;
TEMP_BUFFER_1;
TEMP_BUFFER_2;
TEMP_BUFFER_3;

i <PEEK-1; i++) {

void->void filter BufferTest {
int PEEK = 4;
float[3] BUFFER

prewor k {
for (int i=0; i<PEEK-1; i++) {
BUFFER[i] = ... ;
}
}

wor k {
float[32] TEMP_BUFFER;
int push_index = 3;
int pop_index = O;

/1 copy from BUFFER to TEMP_BUFFER

for (int i=0; i<3; i++) { /1 copy from BUFFER to TEMP_BUFFER for (int i=0; i<3; i++) {
TEMP_BUFFER[i] = BUFFER[i]; TEMP_BUFFER 0 = BUFFER[ 0] ; TEMP_BUFFER[i] = BUFFER[i];
} TEMP_BUFFER_1 = BUFFER[ 1] ; }
TEMP_BUFFER_2 = BUFFER] 2] ;

/1 run Source
TEMP_BUFFER] push_i ndex++] = ... /1 run Source
TEMP_BUFFER_3
/1l run FIR
float result = 0;
for (int i=1; i<PEEK; i++) {

result += i*TEMP_BUFFER[ pop_i ndex+i];

/1l run FIR

pop_i ndex++;

print(result); print(result);

/1 copy from TEMP_BUFFER t o BUFFER

for (int i=0; i<3; i++) { BUFFER[ 0] =
BUFFER[i] = TEMP_BUFFER[i +1]; BUFFER[ 1] =
BUFFER[ 2] =
} }
} }

Figure 12. Copy-shift strategy.
replacement.

channel with initial items, as well as a wor k function that repre-
sents the steady-state execution.

The modulation scheme uses a traditional circular-buffer ap-
proach. Three variables are introduced: a BUFFER to hold all
items transfered between the actors, a push_i ndex to indicate
the buffer location that will be written next, and a pop_i ndex to
indicate the buffer location that will be read next (i.e., the location
corresponding to peek( 0) ). The communication primitives are
translated as follows:

push(val ); ==> BUFFER] push_index] = val;

push_i ndex = (push_index + 1) % BUF_SI ZE;
pop(); ==> pop_index = (pop_index + 1) % BUF_SI ZE;
peek(i) ==> BUFFER] (pop_i ndex + i) % BUF_SI ZE]

float result = 0O;

result += 1*TEMP_BUFFER 1;
result += 2*TEMP_BUFFER 2;
result += 3*TEMP_BUFFER 3;

/1 copy from TEMP_BUFFER t o BUFFER
TEMP_BUFFER 1;

TEMP_BUFFER 2; }
TEMP_BUFFER _3;

/1 run Source 16 times

for (int k=0; k<16; k++) {
TEMP_BUFFER] push_i ndex++] = ...

}

/1 run FIR 16 tinmes

for (int k=0; k<16; k++) {
float result = 0O;
for (int i=1; i<PEEK; i++) {

result += i *TEMP_BUFFER[ pop_i ndex+i ] ;

pop_i ndex++;
print(result);

/1 copy from TEMP_BUFFER t o BUFFER

for (int i=0; i<3; i++) {
BUFFER[i] = TEMP_BUFFER[i +16] ;

}

Figure 13. Copy-shift with scalar- }

}

Figure 14. Copy-shift with execution scal-
ing.

The Streamlt compiler converts the modulo operations to bitwise-
and operations by scaling the buffer to a power of two. Note that
if there are no peek operations, then the buffer will be empty
following each execution of the downstream actor. In this case, the
indices can be reset to zero at the start of each execution and the
modulo operations can be eliminated. However, in our example the
FIR actor performs peeking, so the modulo operations are needed.

Experimental setup. Figures 9, 10 and 11 illustrate the per-
formance of various buffer management strategies on a 137 Mhz
StrongARM 1110, a 600 Mhz Pentium 3 and a 1.3 Ghz Itanium 2,
respectively. The figures illustrate the execution time per 107 out-
puts for the synthetic benchmark (Figure 7) across a range of PEEK
values. To ensure a fair comparison with the scalar replacement
optimization (Section 5.3), all loops in the original actor are fully
unrolled.



Evaluation. The time required for the modulation strategy in-
creases linearly with the peek rate. This is expected, as there is a
constant overhead per peek operation. Relative to the other strate-
gies, modulation performs noticeably better on the Itanium 2. We
attribute this to the six integer units on the Itanium 2; since there
is not much additional work in this benchmark, it can likely pro-
cess the modulo operations in parallel with other operations using
software pipelining.

5.2 Copy-Shift

The copy-shift strategy, illustrated in Figure 12, shifts the live
items to the front of the buffer at the beginning of each execution.
Because each execution starts writing to and reading from the
buffer at the same location, there is no need for the indices to
wraparound and the modulo operations can be eliminated. This
benefit is compounded by additional optimizations enabled by the
copy-shift approach, as described in the subsequent sections.

However, the cost of this strategy comes in the copying op-
erations: at the start of each execution, (peek — pop) items are
copied from the persistent BUFFER to the beginning of a local
TEMP_BUFFER. Subsequent operations reference TEMP_BUFFER,
and the live items are copied back to the BUFFER upon comple-
tion. While these two variables could also be combined into a sin-
gle buffer, keeping them separate results in a smaller live data set
when the actor is not executing.

The communication primitives are translated as follows:

push(val); ==> TEMP_BUFFER] push_i ndex] = val;
push_i ndex = push_index + 1;

pop(); ==> pop_i ndex = pop_i ndex + 1;

peek(i) ==> TEMP_BUFFER] pop_i ndex + i]

Compared to the modulation scheme, the copy-shift strategy refer-
ences the TEMP_BUFFERand does not perform modulo operations.
Evaluation. As shown in Figures 9, 10 and 11, the unoptimized
copy-shift strategy is the slowest strategy that we evaluate. Though
the cost per peek operation is smaller than the modulation scheme,
the copying overhead per iteration also grows with the peek rate
and cancels out any savings; overall, copy-shift performs from 2x
to 3x slower than modulation. The following sections describe
optimizations that can justify taking the copy-shift approach.

5.3 Copy-Shift with Scalar Replacement

The first optimization enabled by the copy-shift scheme is dubbed
scalar replacement. In contrast to the modulation scheme, the copy-
shift approach can result in array operations that access the same
location on every execution of the actor. The idea behind scalar re-
placement is to fully unroll the loops in the actor, thereby resolving
each array index to an integer literal. Then, since each location is
fully resolved at compile time, an n-length array can be replaced
by a set of n scalar variables: one for each item in the buffer. This
transformation is illustrated in Figure 13.

Scalar replacement offers several performance benefits. Scalar
variables can be register allocated, and as local variables they are
subject to a range of dataflow optimizations (constant propagation,
copy propagation, dead code elimination, etc.). Replacing array
operations with scalars also eliminates array index calculations.
Despite these benefits, scalar replacement is nearly impossible to
do in a general-purpose language such as C because array contents
might be aliased with other pointers. Streamlt arrays represent
values that are independent in memory, thereby facilitating this
optimization.

Note that scalar replacement can only be applied when array
indices can be resolved to compile-time constants. In the presence

of unpredictable control flow within an actor, or if the loops are too
large to fully unroll, then scalar replacement does not apply.

Evaluation. Compared to an unoptimized copy-shift strategy,
Figures 9, Figures 10 and 11 illustrate that scalar replacement
offers modest gains on our synthetic benchmark. At the maximum
peek rate of 128, the StrongARM and Pentium 3 offer speedups
of 16% and 26%, respectively; these speedups are roughly uniform
across all peek rates. On the Itanium 2, speedups range from 5%
to 58% depending on the peek rate. We conjecture that scalar
replacement is more critical for small actors that perform only a few
operations. Due to the high communication-to-computation ratio in
such actors, there could be large gains from register-allocating and
copy-propagating the temporary variables.

5.4 Copy-Shift with Execution Scaling

A final optimization of the copy-shift strategy uses execution scal-
ing to dramatically decrease the overhead associated with copying
the buffer contents on each iteration. In any actor, the number of
items inspected on one execution and saved for the next execution
is (peek — pop). This represents the number of items copied by the
copy-shift scheme. However, this cost can be amortized by scal-
ing the number of executions of the downstream actor in the fused
code. By enclosing the body of the actor in a loop, the peek and
pop rates can be made arbitrarily large, while (peek — pop) remains
constant.

Thus, execution scaling reduces the fraction of time spent copy-
ing to an arbitrarily small level. In our study, we scale the execu-
tions of an actor until (peek — pop) < i pop. In the synthetic
benchmark, this implies that each actor body executes 16 times be-
fore the buffer contents are shifted. The code resulting from this
transformation is shown in Figure 14.

Note that due to the large loops introduced by execution scaling,
it cannot be used in combination with scalar replacement. If the
loops were unrolled to resolve the array indices, there could be a
negative impact on the instruction cache.

Evaluation. As shown in Figures 9 and 10, the copy-shift ap-
proach with execution scaling performs significantly better than
modulation on the StrongARM and Pentium 3. At the maximum
peek rate of 128, the StrongARM exhibits a 51% speedup while
the Pentium 3 shows a 48%. These speedups make sense, as each
peek operation is cheaper due to the eliminated modulo operations
(implemented as bitwise-and in the modulation scheme), while the
overhead from copying is reduced to a fraction of the original copy-
shift approach.

The gains are less substantial on Itanium 2, where the speedup
at peek = 128 is only 5% (Figure 11). We attribute this to the rela-
tively high performance of the modulation approach on Itanium 2;
due to the six parallel integer units, the bitwise-and operation may
not increase the critical path. This balance might be different in pro-
grams with higher integer workloads within the actors. Still, copy-
shift with execution scaling does no worse than modulation (on any
architecture), and execution scaling always offers a large speedup
over the original copy-shift approach.

55 Summary

We conclude that copy-shift with execution scaling is the best
buffer management strategy for actors that utilize peeking. This is
somewhat surprising because the unoptimized copy-shift strategy
has large overheads that result in a slowdown relative to a circu-
lar buffer with modulation. However, by leveraging the flexibility
of the parallel stream graph to perform execution scaling, the over-
heads are amortized. Compared to a plain circular buffer strategy,
there are significant improvements on StrongARM (51% speedup)
and Pentium 3 (48% speedup), and respectable performance (5%
speedup) on Itanium 2.



[ Benchmark [ Description [#of Actors|
bitonic bitonic sort of 64 integers 972
fir finite impulse response (128 taps) 132
fft-fine fine grained 64-way FFT 267
fft-coarse coarse grained 64-way FFT 26
3gpp 3GPP Radio Access Protocol 105
beanf or mer beamformer with 64 channels and 1 beam 197
mat mul t matrix multiplication 48
fnradio FM Radio with 10-way equalizer 49
filterbank filterbank program (8 bands, 32 taps / filter) 53
filterbank2 [ independent filterbank (3 bands, 100 taps / filter) 37
of dm Orthogonal Frequency Division Multiplexor [20] 16

Table 1. Evaluation benchmark suite.

6. Experimental Evaluation

In this section we evaluate the merits of the proposed cache aware
optimizations and buffer management strategies. We use three dif-
ferent architectures: a 137 MHz StrongARM 1110, a 600 MHz Pen-
tium 3 and a 1.3 GHz Itanium 2. The StrongARM results reflect
performance for an embedded target; it has a 16 Kb L1 instruc-
tion cache, an 8 Kb L1 data cache, and no L2 cache. The Stron-
gARM also has a separate 512-byte minicache (not targeted by our
optimizations). The Pentium 3 and Itanium 2 reflect desktop per-
formance; they have a 16 Kb L1 instruction cache, 16 Kb L1 data
cache, and 256 Kb shared L2 cache.

Our benchmark suite (see Table 6) consists of 11 Streamlt ap-
plications. They are compiled with the StreamIt compiler which ap-
plies the optimizations described in this paper, as well as aggressive
loop unrolling (by a factor of 128 for all benchmarks) to facilitate
scalar replacement (Section 5). The Streamlt compiler outputs a
functionally equivalent C program that is compiled with gcc (v3.4,
-03) for the StrongARM and for the Pentium 3 and with ecc (v7.0,
-03) for the Itanium 2. Each benchmark is then run five times, and
the median user time is recorded.

As the StrongARM does not have a floating point unit, we con-
verted all of our floating point applications (i.e., every application
except for bi t oni c) to operate on integers rather than floats. In
practice, a detailed precision analysis is needed in converting such
applications to fixed-point. However, as the control flow within
these applications is very static, we are able to preserve the com-
putation pattern for the sake of benchmarking by simply replacing
every floating point type with an integer type.

We also made an additional modification in compiling to the
StrongARM: our execution scaling heuristic scales actors until their
output fills 100% of the data cache, rather than 2/3 of the data cache
as described in Section 4. This modification accounts for the 32-
way set-associative L1 data cache in the StrongARM. Due to the
high degree of associativity, there is a smaller chance that the actor
outputs will repeatedly evict the state variables of the actor, thereby
making it worthwhile to further fill the data cache. This observation
yields up to 25% improvement on some benchmarks.

Overall Speedup The overall speedups offered by our techniques
are illustrated in Figure 15 (StrongARM), Figure 16 (Pentium 3),
and 16 (Itanium 2). These graphs have two bars: one for “full fu-
sion”, in which all actors are fused into a single function (with
scalar replacement), and one labeled CAF+scal i ng+buffer,
representing all of our optimizations (cache aware fusion, execu-
tion scaling, and buffer optimizations) applied together. We in-
clude the comparison to full fusion because it represents a sim-
ple approach for eliminating function call overhead and optimiz-
ing across actor boundaries; while this fusion strategy utilizes our
scalar replacement optimization, it remains oblivious to instruc-
tion and data locality. Performance is normalized to unoptimized
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Figure 17. Summary of results on an Itanium 2

Streamlt, in which no actors are fused (but there is still unrolling
by 128). On the right of each graph, both arithmetic and geometric
means are shown for the benchmarks. We usually speak in terms of
the arithmetic means as they are more intuitive (and also yield more
conservative speedups), though we refer to the geometric mean for
an unambiguous reference on close results.



On StrongARM (Figure 15), our cache optimizations offer a
249% average speedup over the baseline and a 162% average
speedup over full fusion. Scalar replacement is responsible for
much of the gains that both strategies offer over the baseline. Cache
optimizations always perform better than the baseline, and they
perform better than full fusion in all cases except for 3gpp, where
they yield a 45% slowdown. This slowdown is due to conservative
code size estimation: the compiler predicts that the fused version
of 3gpp will not fit into the instruction cache, thereby prevent-
ing fusion. However, due to optimizations by gcc, the final code
size is smaller than expected and does fit within the cache. While
such inaccuracies could be improved by adding feedback between
the output of gcc and our code estimation, each fusion possibility
would need to be evaluated separately as the fusion boundary af-
fects the impact of low-level optimizations (and thus the final code
size).

The speedups offered by cache optimizations over a full fusion
strategy are more modest for the desktop processors: 34% aver-
age speedup on Pentium 3 (Figure 16) and essentially zero speedup
(6% by the arithmetic mean, -8% by the geometric mean) on Ita-
nium 2 (Figure 17). Out of the 11 benchmarks, cache optimizations
perform as well or better than full fusion for 7 benchmarks on the
Pentium 3 and 5 benchmarks on the Itanium 2. Performance on
any architecture is a tradeoff between two factors: 1) the benefit of
data and instruction locality, and 2) the benefit of fusion, which re-
duces memory accesses due to improved register allocation across
actor boundaries. Compared to the StrongARM, the Pentium 3 and
Itanium 2 offer an L2 cache (as well as a larger L1 data cache),
thereby lessening the impact of locality-enhancing cache optimiza-
tions. However, the fusion benefit remains a significant factor; for
example, using Intel VTune on the Pentium 3, we measured that full
fusion offers a 50% reduction in memory accesses over the cache-
optimized version. This effect may be pronounced on the Itanium 2
due to the larger number of registers on that architecture (128 gen-
eral, 128 floating point). While fusion benefits are also present on
the StrongARM, cache optimizations are more important on that
processor due to the large penalty for cache misses.

The cache aware fusion algorithm can be adjusted to account for
the caching hierarchy on desktop machines. Specifically, if cache
aware fusion is modified to allow fused actors to consume up to one
half of the L2 cache (rather than L1 cache), then the performance
of the cache optimizations is closer or equal to full fusion, for cases
it was previously trailing on the Pentium 3 or the Itanium 2 (data
not shown). The only benchmark that is negatively impacted by this
change is of dm where two large actors are fused despite a very low
communication to computation ratio, thereby lessening the impact
of eliminated memory accesses while nonetheless worsening the
instruction locality.

Impact of Each Optimization To better understand the overall
speedups, we assess the individual performance impact of execu-
tion scaling, cache aware fusion, and buffer management optimiza-
tions. These results are illustrated in Figures 18, 19 and 20 for the
StrongARM, Pentium 3, and Itanium 2, respectively. There are four
bars per benchmark; as in the previous analysis, all performance is
normalized to unoptimized Streamlt (with 128-way unrolling). The
first bar, labeled scal i ng, applies only execution scaling. The
second bar, labeled CAF, applies only cache aware fusion, includ-
ing scalar replacement across the fused actors. The third bar, la-
beled CAF+scal i ng, first applies cache aware fusion with scalar
replacement and then applies execution-scaling to the granularity-
adjusted actors. The fourth bar, labeled CAF+scal i ng+buf f er,
additionally applies buffer management optimizations (detailed
later); this bar is equivalent to the “best” cache-optimized per-
formance illustrated in Figures 15, 16, and 17.
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Figure 18. Impact of each optimization on a StrongARM.
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Figure 20. Impact of each optimization on an Itanium 2.

Execution scaling improves performance over unoptimized
Streamlt, with average speedups of 145% for StrongARM, 58%
for Pentium 3, and 57% for Itanium 2. The 90-10 heuristic works
quite well (see [18] for full details) and there is only one in-
stance where scaling results in a performance degradation. The
granularity-adjusted 3gpp on StrongARM has a 17% slowdown
due to scaling (compare CAF to CAF+scal i ng in Figure 15).



This is possibly due to items in flight between the granularity-
adjusted actors overwriting the state of an executing actor in the
data cache. Since StrongARM has no L2 cache then such eviction
can be quite expensive.

Independently, cache aware fusion also improves performance
by 84% on StrongARM, 101% on Pentium 3 and a 103% on the Ita-
nium 2. cache aware fusion degrades performance only for fi | -
t er -bank2 (by 6% on StrongARM). When we combine cache
aware fusion with execution scaling, the performance consistently
improves. The speedup of CAF+scal i ng over baseline is 241%
on StrongARM, 146% on Pentium 3 and 144% on Itanium 2.

However, after coarsening the actors with cache aware fusion,
scaling results in less additional speedup than it did relative to the
baseline. The speedup of CAF+scal i ng over CAF is 86% for
StrongARM, 22% for Pentium 3 and only 20% for Itanium 2. This
is because some actors are implicitly scaled by fusion to match
input/output rates of successive actors within a fused block.

Note that the of md benchmark does not benefit from fusion
or scaling. This is because of nd has few actors, some of which
consume and produce a total of 16-66 Kb data; consequently, exe-
cution scaling does not apply. Also there is limited opportunity to
fuse actors within of d, as there are actors that have an instruc-
tion size of 9 Kb and fusing them with other actors would exceed
the instruction cache.

The last bar, CAF+scal i ng+buf f er, illustrates the benefit
of buffer management optimizations for filters that peek. As de-
tailed in Section 5, such filters demand specialized buffer man-
agement, as they reuse items on the input tape across succes-
sive iterations. In our benchmark suite, peeking occurs only in the
last four applications (i.e., f nr adi o, fil terbank,filter-
bank?2 and of dm). Thus, the CAF+scal i ng bar is equivalent
to CAF+scal i ng+buf f er for all benchmarks from bi t oni ¢
through mat nul t .

The buffer optimization applied in Figures 15, 16, and 17 is
termed cut peek. In this optimization, the cache aware fusion
algorithm is modified so that two adjacent filters are never fused
if the downstream filter performs any peeking (i.e., it has peek >
pop). Following execution scaling, the live items are copied to the
start of the buffer once per scaled execution (using the copy-shift
strategy, Section 5), thereby reducing the overhead of copying live
items. Optimized buffer management offers the largest gains for
filterbank2: 45% on StrongARM, 38% on Pentium 3, and
36% on Itanium 2. This is due to a large peek rate (100 items)
in addition a large scaling factor of 300 that amortizes the cost of
copying items.

While we found that cut peek is, on average, the best buffer
management strategy across the three platforms, we also evaluated
several others. For f nr adi o, up to a 5% improvement is offered
by a strategy called peekscal e, in which (prior to other opti-
mizations) filters with peek > pop are scaled to perform several
executions at once. As scaling is performed, the pop and peek rates
increase but peek — pop remains constant; scaling continues un-
til the pop rate is at least 4 x (peek — pop). Like cut peek, this
serves to amortize the overhead of copy-shift, but it can also ham-
per the execution scaling optimization. Because certain other ac-
tors in the graph must fire more frequently to compensate for the
scaled peeking filter, there is less room for global execution scal-
ing. The only other case where peekscal e is the best strategy is
for of dmon StrongARM, where there is a 7% improvement over
cut peek. Finally, on the fi | t er bank benchmark, highest per-
formance results from unoptimized copy-shift buffer management.
We also evaluated buffer management using modulation for index-
ing, but this did not yield the best performance for any benchmark
or platform.

7. Related Work

There is a large body of literature on scheduling synchronous
dataflow (SDF) graphs to optimize various metrics [4, 5]. The
work most closely related to ours is a recent study by Kohli [11]
on cache aware scheduling of SDF graphs, implemented as part
of the Ptolemy framework for simulating heterogeneous embedded
systems [12]. Kohli develops a Cache Aware Scheduling (CAS)
heuristic for an embedded target with a software-managed scratch-
pad instruction cache. His algorithm greedily decides how many
times to execute a given actor based on estimates of the data cache
and instruction cache penalties associated with switching to the
next actor. In contrast, our algorithm considers the buffering re-
quirements of all filters in a given container and increases the mul-
tiplicity so long as 90% of buffers are contained within the data
cache. Kohli does not consider buffer management strategies, and
the evaluation is limited to one 6-filter pipeline and an assortment
of random SDF graphs. An empirical comparison of our heuristics
on a common architectural target would be an interesting direction
for future work.

It is recognized that there is a tradeoff between code size and
buffer size when determining an SDF schedule. Most techniques
to date have focused on “single appearance schedules” in which
each filter appears at only one position in the loop nest denoting
the schedule. Such schedules guarantee minimal code size and fa-
cilitate the inlining of filters. There are a number of approaches to
minimizing the buffer requirements for single-appearance sched-
ules (see [4] for a review). While it has been shown that obtain-
ing the minimal memory requirements for general graphs is NP-
complete [3], there are two complimentary heuristics, APGAN
(Pairwise Grouping of Adjacent Nodes) and RPMC (Recursive Par-
titioning by Minimum Cuts), that have been shown to be effective
when applied together [3]. Buffer merging[15, 16] represents an-
other technique for decreasing buffer sizes, which could be inte-
grated with our approach in the future.

Govindarajan et al. develop a linear programming framework
for determining the “rate-optimal schedule” with the minimal
memory requirement [7]. A rate-optimal schedule is one that takes
advantage of parallel resources to execute the graph with the max-
imal throughput. However, the technique is specific to rate-optimal
schedules and can result in a code size explosion, as the same node
is potentially executed in many different contexts.

The work described above is related to ours in that minimizing
buffer requirements can also improve caching behavior. However,
our goal is different in that we aim to improve spatial and temporal
locality instead of simply decreasing the size of the live data set.
In fact, our scaling transformation actually increases the size of the
data buffers, leading to higher performance across our benchmark
suite. Our transformations also take into account the size of the
instruction and data caches to select an appropriate scaling and
partitioning for the stream graph.

Proebsting and Watterson [17] give a fusion algorithm that in-
terleaves the control flow graphs of adjacent filters. However, their
algorithm only supports synchronous get and put operations;
Streamlt’s peek operation necessitates buffer management be-
tween filters.

There are a large number of stream programming languages;
see [19] for a review. The Brook language [6] extends C to include
data-parallel kernels and multi-dimensional streams that can be ma-
nipulated via predefined operators. Synchronous languages such as
Esterel [2] and LUSTRE [8] also target the embedded domain, but
they are more control-oriented than Streamlt and are less amenable
to compile-time optimizations. Benveniste et al. [1] also provides
an overview of dataflow synchronous languages. Sisal (Stream and
Iteration in a Single Assignment Language) is a high-performance,



implicitly parallel functional language [9]. We are not aware of any
cache aware optimizations in these stream languages.

There is a large body of work covering cache miss equations,
and an equally large body of work concerned with analytical mod-
els for reasoning about data reuse distances and cache behavior.
The model introduced in this paper is loosely based on the notion
of stack reuse distances [14]. Our model is especially tailored to
streaming computations, and unique in leveraging the concept of a
steady state execution.

8. Conclusions

In this paper, we present a simple yet highly effective methodology
for running streaming programs on common cache-based architec-
tures. The work shows that we can exploit the abundant parallelism
in streaming codes to improve the behavior of the cache hierarchy
and deliver significant performance improvements on existing ma-
chines. We evaluate our methodology on three architectures: the
embedded StrongARM processor, the superscalar Pentium 3, and
the VLIW Itanium 2.

Our optimizations are simple but yield surprisingly big sav-
ings in performance. First, we introduce execution scaling, which
increases the execution frequency of every actor in the stream
graph. Intuitively, scaling improves instruction locality because it
increases the amount of reuse from the instruction cache. Concomi-
tantly, it leads to performance gains of 145% on the StrongARM,
58% on the Pentium 3, and 57% on the Itanium 2. It is worthy to
note that execution scaling is a departure from past optimization
strategies for streaming programs, which try to minimize buffer re-
quirements. Our scaling transformation actually increases the size
of the data buffers between actors.

We also showed that scaling presents a tradeoff between in-
struction locality and data locality. Using a simple cache model,
we show how scaling impacts the instruction and data caches. The
model serves to motivate a heuristic for calculating the scaling fac-
tor. The heuristic, which accounts for the size of the instruction and
data caches, works quite well in practice.

This paper also introduces cache aware fusion. The fusion op-
timization helps to reduce the data requirements of a program, and
can reduce the total number of memory requests by as much as
50%. The fusion of actors in the stream graph is carried out ju-
diciously, and our algorithms are sensitive to the instruction and
data working sets of the coarsened execution units, as well as their
impact on the cache hierarchy. Cache aware fusion leads to perfor-
mance gains of 84% on the StrongARM, 101% on the Pentium 3,
and 103% on the Itanium 2.

Cache aware fusion also enables a set of novel buffer manage-
ment strategies for handling the streams of data between actors.
Due to the static nature of stream programs, we can often apply
scalar replacement to remove array references, and thus communi-
cation between fused actors is done through registers, rather than
through memory. To allow scalar replacement to apply to sliding
window computations, we introduce a copy-shift buffer manage-
ment policy that out-performs a traditional rotating buffer.

In summary, the application of execution scaling, cache aware
fusion, and our new buffer management strategies, can improve
performance of Streamlt programs by 249% on the StrongARM,
154% on the Pentium 3, and 152% on the Itanium 2.
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