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Streaming Computing Is Everywhere!

• Prevalent computing domain with 
applications in embedded systems
– As well as desktops and high-end servers



Properties of Stream Programs

• Regular and repeating 
computation

• Independent actors 
with explicit communication

• Data items have short lifetimes
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Application Characteristics:
Implications on Caching

Whole-programSmallWorking set
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Potential for global 
reordering

Limited program 
transformations

Implications

Explicit 
producer-consumer
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random access
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Application Characteristics:
Implications on Compiler
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for i = 1 to N/64

end
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Outline

• StreamIt
• Cache Aware Fusion
• Cache Aware Scaling
• Buffer Management
• Related Work and Conclusion



Model of Computation

• Synchronous Dataflow [Lee 92]
– Graph of autonomous filters
– Communicate via FIFO channels
– Static I/O rates

• Compiler decides on an order
of execution (schedule)
– Many legal schedules
– Schedule affects locality
– Lots of previous work on 

minimizing buffer
requirements between
filters
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Example StreamIt Filter

float→float filter FIR (int N) {

work push 1 pop 1 peek N {
float result = 0;
for (int i = 0; i < N; i++) {

result += weights[i] ∗ peek(i);
}
push(result);
pop();

}
}

0 1 2 3 4 5 6 7 8 9 10 11 input

output

FIR
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parallel computation

StreamIt Language Overview
• StreamIt is a novel 

language for streaming
– Exposes parallelism and 

communication
– Architecture independent
– Modular and composable

• Simple structures 
composed to creates 
complex graphs

– Malleable
• Change program behavior 

with small modifications

may be 
any StreamIt 
language construct

joinersplitter

pipeline
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Freq Band Detector in StreamIt

Duplicate

LED

Detect

LED

Detect
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Band pass

void->void pipeline FrequencyBand {
float sFreq = 4000; 
float cFreq = 500/(sFreq*2*pi); 
float  wFreq = 100/(sFreq*2*pi);

add D2ASource(sFreq);

add BandPassFilter(100, cFreq-wFreq, cFreq+wFreq);

add splitjoin {

split duplicate;
for (int i=0; i<4; i++) {

add pipeline {
add Detect (i/4);

add LED (i);
}

}
join roundrobin(0);

}
}



Outline

• StreamIt
• Cache Aware Fusion 
• Cache Aware Scaling
• Buffer Management
• Related Work and Conclusion



Fusion
• Fusion combines adjacent filters into a single filter

× 1

× 2

work pop 1 push 2 {
int a = pop();
push( a );
push( a );

}

work pop 1 push 1 {
int b = pop();
push(b * 2);

}

work pop 1 push 2 {
int t1, t2;

int a = pop();
t1 = a;
t2 = a;

int b = t1;
push(b * 2);

int c = t2;
push(c * 2);

}

• Reduces method call overhead
• Improves producer-consumer locality
• Allows optimizations across filter boundaries 

– Register allocation of intermediate values
– More flexible instruction scheduling



Evaluation Methodology
• StreamIt compiler generates C code

– Baseline StreamIt optimizations
• Unrolling, constant propagation

– Compile C code with gcc-v3.4 with -O3 optimizations

• StrongARM 1110 (XScale) embedded processor
– 370MHz, 16Kb I-Cache, 8Kb D-Cache
– No L2 Cache (memory 100× slower than cache)
– Median user time

• Suite of 11 StreamIt Benchmarks

• Evaluate two fusion strategies: 
– Full Fusion
– Cache Aware Fusion



Results for Full Fusion

Hazard: The instruction or data working set of 
the fused program may exceed cache size!

(StrongARM 1110)



Cache Aware Fusion (CAF)

• Fuse filters so long as:
– Fused instruction working set fits the I-cache
– Fused data working set fits the D-cache

• Leave a fraction of D-cache for input and 
output to facilitate cache aware scaling

• Use a hierarchical fusion heuristic

















Full Fusion vs. CAF
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Improving Instruction Locality
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Impact of Scaling

Fast Fourier Transform



Impact of Scaling

Fast Fourier Transform



How Much To Scale?
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• Scale as much as possible
• Ensure at least 90% of filters have    

data working sets that fit into cache
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• Scale as much as possible
• Ensure at least 90% of filters have    

data working sets that fit into cache

How Much To Scale?
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Impact of Scaling

Heuristic choice is

4% from optimal

Fast Fourier Transform



Scaling Results
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Sliding Window Computation

float→float filter FIR (int N) {

work push 1 pop 1 peek N {
float result = 0;
for (int i = 0; i < N; i++) {

result += weights[i] ∗ peek(i);
}
push(result);
pop();

}
}

0 1 2 3 4 5 6 7 8 9 10 11 input

output
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Performance vs. Peek Rate

FIR

(StrongARM 1110)



Evaluation for Benchmarks

caf + scaling + modulation caf + scaling + copy-shift

(StrongARM 1110)



Results Summary

Large L2 Cache Large L2 Cache

Large Reg. File

VLIW
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• Cache optimizations
– S. Kohli, Cache Aware Scheduling of Synchronous Dataflow Programs 

(2004)



Conclusions
• Streaming paradigm exposes parallelism and 

allows massive reordering to improve locality

• Must consider both data and instruction locality
– Cache Aware Fusion enables local optimizations by 

judiciously increasing the instruction working set
– Cache Aware Scaling improves instruction locality by 

judiciously increasing the buffer requirements

• Simple optimizations have high impact
– Cache optimizations yield significant speedup over both 

baseline and full fusion on an embedded platform


