
Cache Aware Optimization of
Stream Programs

Janis Sermulins, William Thies, Rodric Rabbah and
Saman Amarasinghe

LCTES
Chicago, June 2005

Streaming Computing Is Everywhere!

• Prevalent computing domain with
applications in embedded systems
– As well as desktops and high-end servers

Properties of Stream Programs

• Regular and repeating
computation

• Independent actors
with explicit communication

• Data items have short lifetimes
Adder

Speaker

AtoD

FMDemod

LPF1

Duplicate

RoundRobin

LPF2 LPF3

HPF1 HPF2 HPF3

Application Characteristics:
Implications on Caching

Whole-programSmallWorking set

Demands novel
mapping

Natural fit for
cache hierarchy

Implications

Limited lifetime
producer-consumer

Persistent array
processing

Data

Single outer loopInner loopsControl

StreamingScientific

Potential for global
reordering

Limited program
transformations

Implications

Explicit
producer-consumer

Implicit
random access

Communication

LocalGlobal Data access

Coarse-grainedFine-grainedParallelism

StreamingScientific

Application Characteristics:
Implications on Compiler

Motivating Example

A

B

C

for i = 1 to N
A();
B();
C();

end

for i = 1 to N
A();

for i = 1 to N
B();

for i = 1 to N
C();

for i = 1 to N
A();
B();

end
for i = 1 to N

C();

Working
Set Size

cache
size

inst
A B C

datainst data

A
B
C

+
+

inst data
C

A
B+C

B
C
B

B
A

B
A

B
A

Full ScalingBaseline

C
B

Motivating Example

A

B

C

for i = 1 to N
A();
B();
C();

end

for i = 1 to N
A();

for i = 1 to N
B();

for i = 1 to N
C();

for i = 1 to N
A();
B();

end
for i = 1 to N

C();

Working
Set Size

cache
size

inst
A B C

datainst data

A
B
C

+
+

inst data
C

A
B+C

B
C
B

B
A

B
A

B
A

Full ScalingBaseline
64

64

C
B
C
B

for i = 1 to N/64

end

Motivating Example

A

B

C

for i = 1 to N
A();
B();
C();

end

for i = 1 to N
A();

for i = 1 to N
B();

for i = 1 to N
C();

Working
Set Size

cache
size

inst
A B C

datainst data

A
B
C

+
+

inst data
C

A
B+C

B
C
B

B
A

B
A

B
A

Full ScalingBaseline Cache Opt

for i = 1 to N
A();
B();

end
for i = 1 to N

C();

64

64

C
B

Outline

• StreamIt
• Cache Aware Fusion
• Cache Aware Scaling
• Buffer Management
• Related Work and Conclusion

Model of Computation

• Synchronous Dataflow [Lee 92]
– Graph of autonomous filters
– Communicate via FIFO channels
– Static I/O rates

• Compiler decides on an order
of execution (schedule)
– Many legal schedules
– Schedule affects locality
– Lots of previous work on

minimizing buffer
requirements between
filters

A/D

Duplicate

LED

Detect

Band Pass

LED

Detect

LED

Detect

LED

Detect

Example StreamIt Filter

float→float filter FIR (int N) {

work push 1 pop 1 peek N {
float result = 0;
for (int i = 0; i < N; i++) {

result += weights[i] ∗ peek(i);
}
push(result);
pop();

}
}

0 1 2 3 4 5 6 7 8 9 10 11 input

output

FIR
0 1

parallel computation

StreamIt Language Overview
• StreamIt is a novel

language for streaming
– Exposes parallelism and

communication
– Architecture independent
– Modular and composable

• Simple structures
composed to creates
complex graphs

– Malleable
• Change program behavior

with small modifications

may be
any StreamIt
language construct

joinersplitter

pipeline

feedback loop

joiner splitter

splitjoin

filter

Freq Band Detector in StreamIt

Duplicate

LED

Detect

LED

Detect

LED

Detect

LED

Detect

A/D

Band pass

void->void pipeline FrequencyBand {
float sFreq = 4000;
float cFreq = 500/(sFreq*2*pi);
float wFreq = 100/(sFreq*2*pi);

add D2ASource(sFreq);

add BandPassFilter(100, cFreq-wFreq, cFreq+wFreq);

add splitjoin {

split duplicate;
for (int i=0; i<4; i++) {

add pipeline {
add Detect (i/4);

add LED (i);
}

}
join roundrobin(0);

}
}

Outline

• StreamIt
• Cache Aware Fusion
• Cache Aware Scaling
• Buffer Management
• Related Work and Conclusion

Fusion
• Fusion combines adjacent filters into a single filter

× 1

× 2

work pop 1 push 2 {
int a = pop();
push(a);
push(a);

}

work pop 1 push 1 {
int b = pop();
push(b * 2);

}

work pop 1 push 2 {
int t1, t2;

int a = pop();
t1 = a;
t2 = a;

int b = t1;
push(b * 2);

int c = t2;
push(c * 2);

}

• Reduces method call overhead
• Improves producer-consumer locality
• Allows optimizations across filter boundaries

– Register allocation of intermediate values
– More flexible instruction scheduling

Evaluation Methodology
• StreamIt compiler generates C code

– Baseline StreamIt optimizations
• Unrolling, constant propagation

– Compile C code with gcc-v3.4 with -O3 optimizations

• StrongARM 1110 (XScale) embedded processor
– 370MHz, 16Kb I-Cache, 8Kb D-Cache
– No L2 Cache (memory 100× slower than cache)
– Median user time

• Suite of 11 StreamIt Benchmarks

• Evaluate two fusion strategies:
– Full Fusion
– Cache Aware Fusion

Results for Full Fusion

Hazard: The instruction or data working set of
the fused program may exceed cache size!

(StrongARM 1110)

Cache Aware Fusion (CAF)

• Fuse filters so long as:
– Fused instruction working set fits the I-cache
– Fused data working set fits the D-cache

• Leave a fraction of D-cache for input and
output to facilitate cache aware scaling

• Use a hierarchical fusion heuristic

Full Fusion vs. CAF

Outline

• StreamIt
• Cache Aware Fusion
• Cache Aware Scaling
• Buffer Management
• Related Work and Conclusion

Improving Instruction Locality

A

B

C

for i = 1 to N
A();
B();
C();

end

for i = 1 to N
A();

for i = 1 to N
B();

for i = 1 to N
C();

Working
Set Size

cache
size

inst
A B C

inst

A
B
C

+
+

Full ScalingBaseline
cache miss cache hit

miss rate = 1 / Nmiss rate = 1

Impact of Scaling

Fast Fourier Transform

Impact of Scaling

Fast Fourier Transform

How Much To Scale?

A

B

C A CB
no

scaling
scale
by 3

scale
by 4

• Scale as much as possible
• Ensure at least 90% of filters have

data working sets that fit into cache

scale
by 5

Data
Working
Set Size

state I/Ocache
size

Our Scaling
Heuristic:

A CB A CB A CB

• Scale as much as possible
• Ensure at least 90% of filters have

data working sets that fit into cache

How Much To Scale?

Our Scaling
Heuristic:

A

Data
Working
Set Size

statecache
size

I/O

B

Impact of Scaling

Heuristic choice is

4% from optimal

Fast Fourier Transform

Scaling Results

Outline

• StreamIt
• Cache Aware Fusion
• Cache Aware Scaling
• Buffer Management
• Related Work and Conclusion

Sliding Window Computation

float→float filter FIR (int N) {

work push 1 pop 1 peek N {
float result = 0;
for (int i = 0; i < N; i++) {

result += weights[i] ∗ peek(i);
}
push(result);
pop();

}
}

0 1 2 3 4 5 6 7 8 9 10 11 input

output

FIR
0 1 2 3

Performance vs. Peek Rate

FIR

(StrongARM 1110)

Evaluation for Benchmarks

caf + scaling + modulation caf + scaling + copy-shift

(StrongARM 1110)

Results Summary

Large L2 Cache Large L2 Cache

Large Reg. File

VLIW

Outline

• StreamIt
• Cache Aware Fusion
• Cache Aware Scaling
• Buffer Management
• Related Work and Conclusion

Related work
• Minimizing buffer requirements

– S.S. Bhattacharyya, P. Murthy, and E. Lee
• Software Synthesis from Dataflow Graphs (1996)
• AGPAN and RPMC: Complimentary Heuristics for Translating DSP Block Diagrams

into Efficient Software Implementations (1997)
• Synthesis of Embedded software from Synchronous Dataflow Specifications (1999)

– P.K.Murthy, S.S. Bhattacharyya
• A Buffer Merging Technique for Reducing Memory Requirements of Synchronous

Dataflow Specifications (1999)
• Buffer Merging – A Powerful Technique for Reducing Memory Requirements of

Synchronous Dataflow Specifications (2000)
– R. Govindarajan, G. Gao, and P. Desai

• Minimizing Memory Requirements in Rate-Optimal Schedules (1994)

• Fusion
– T. A. Proebsting and S. A. Watterson, Filter Fusion (1996)

• Cache optimizations
– S. Kohli, Cache Aware Scheduling of Synchronous Dataflow Programs

(2004)

Conclusions
• Streaming paradigm exposes parallelism and

allows massive reordering to improve locality

• Must consider both data and instruction locality
– Cache Aware Fusion enables local optimizations by

judiciously increasing the instruction working set
– Cache Aware Scaling improves instruction locality by

judiciously increasing the buffer requirements

• Simple optimizations have high impact
– Cache optimizations yield significant speedup over both

baseline and full fusion on an embedded platform

