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ABSTRACT

The transaction commit problem in a distributed database system is an
instance of the Weak Byzantine Generals problem. It is shown that even
under the assumption that a process can fail only by “crashing”—failing
to send any more messages—a solution to this problem that can tolerate
k failures must, in the worst case, require at least k + 1 message-passing
delays. Under this same assumption, a simple solution that exhibits the
optimal worst-case behavior is given.
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1 Introduction

In many database systems, there is a point in the processing of a transaction
when an irrevocable decision is made whether to abort or commit it—where
committing the transaction involves inserting any changes it made into the
database. For a distributed database system, this decision must be an-
nounced to all the sites affected by the transaction. We will show that
designing a fault-tolerant protocol for arriving at this decision is equivalent
to the Weak Byzantine Generals (WBG) problem introduced in [7], which is
closely related to the Byzantine Generals problem described in [6] and [8].

These Byzantine Generals problems have been studied under very weak
assumptions about the behavior of a failed process—in particular, when a
failed process can “lie” by sending contradictory information to two other
processes. Solutions have been found that work despite these weak assump-
tions. Moreover, these solutions have been shown to be optimal in certain
respects. In particular, it has been shown that a solution which handles up
to k process failures must, in the worst case, require at least k£ + 1 message-
passing delays [1, 4].

The transaction commit protocol has been studied under a much stronger
assumption about process failure—mamely, that a failed process simply “dies”
and that its death is detectable by other processes. We will call such a simple
failure a “crash”. Processes that can fail only by crashing have been called
fail-stop processes [9]. Since work on the Byzantine Generals problems has
concentrated on handling lying processes, there seems to be a general feeling
that this work is not relevant when processes fail only by crashing. The main
result of this paper is that any solution to the WBG problem, and hence any
transaction commit protocol, that can handle up to k£ crashes also requires
at least k£ + 1 message-passing delays in the worst case. Thus, restricting
failure to be simple crashes does not improve the worst-case time complexity
of transaction commit. A weaker result of this kind was obtained by Dolev
and Strong [3], who restricted processes to fail only by failing to send mes-
sages, but they allowed a failed process to continue sending messages after
it fails. A result similar to ours but somewhat weaker was also obtained
independently by V. Hadzilacos [5].

We also demonstrate a solution that can handle up to k£ crashes such
that if only f crashes actually occur, then every process will be aware of the
outcome after at most f+ 1 message-passing delays. (See [2] for a discussion
of early stopping of Byzantine Generals solutions.)



2 The WBG Problem

We assume a system consisting of n processes, numbered 1 through n, each
of which can communicate directly with every other process by sending
messages. In the weakest form of the transaction commit problem, each
process initially chooses whether the transaction should commit or abort
and then communicates with all the other processes to decide upon a final
action—either committing or aborting the transaction. The following two
conditions must be satisfied.

TC1. If no process fails and all processes initially choose the same action,
then that is the final action taken by all processes.

TC2. Any two processes that do not fail take the same final action.

One might wish to strengthen this condition—for example, by requiring
that, in the absence of failures, the transaction abort if any process initially
chooses to abort it. For our lower bound on the time complexity, it suffices
to use this weaker problem. The algorithm we give in Section 4 can be used
to obtain such a stronger condition.

The transaction commit protocol is usually stated in terms of a transac-
tion coordinator—a single process that makes the initial decision of whether
to abort or commit. Condition TC1 is then replaced by the following;:

TC2'. If no process fails, then the action taken by every process is the one
initially chosen by the transaction coordinator.

Note that TC1’ is stronger than TC1l—a protocol satisfying TC1’ a for-
tiori satisfies TC1. By considering the weaker condition TC1, we obtain a
stronger lower bound in Section 3. The algorithm in Section 4 satisfies a
condition even stronger than TC1’.

In the WBG problem, the two actions commit and abort are general-
ized to arbitrary values in some set V. Each process initially chooses an
initial “private” value, and then chooses a final “public” value after commu-
nicating with the other processes. TC1 and TC2 have the following obvious
generalizations:

WBG1. If no process fails and all processes initially choose the same private
value, then that value will be chosen by all processes as their public
value.

WBG2. Any two processes that do not fail choose the same public value.



3 The Time Complexity of the WBG Problem

In this section, we prove our result on the worst-case time complexity of
any solution to the WBG problem. Reasoning about Byzantine Generals
problems tends to be rather subtle, and informal reasoning can easily lead
to errors. We will therefore formally define all our concepts, and give a very
detailed proof of our result. We use the following notation:

V: The set of all possible values that processes can choose.
M: The set of all possible messages that processes can send.
|S|: The cardinality of S, for any finite set S.

S*: The set of finite sequences of elements of S, for any set S. The empty
sequence is denoted by A.

s=Xt: If s = s1,...,8;, then t = s1,...,s; for some ¢ < j—ie., sis an
initial subsequence of t.

[k]: The set of integers 1,... , k, for any integer k£ > 0. Note that [0] is the
empty set, which we also denote by ¢.

[0,k]: The set of integers 0, ... , k, for any integer k > 0. Note that [0,0] =

{0}.

In any WBG algorithm, the processes first choose their initial private values,
then send messages among themselves in order to agree upon a public value.
We model the message-passing in terms of distinct rounds, where a process
does not send any round r messages until it has received all round r —
1 messages that were sent to it. It is easiest to think about this model
as describing a synchronous algorithm, where processes use some form of
synchronization external to the algorithm (such as synchronized clocks) to
decide when to begin the next round. However, the model can also represent
an asynchronous algorithm, in which the sending of a message is caused only
by the receipt of a message, or by a timeout that indicates the failure of a
message to arrive. For such an asynchronous algorithm, we simply define a
process’s round r messages to begin with the first message whose contents
depends upon either a round r — 1 message received from another process
or a timeout indicating the absence of such a round r — 1 message.

We first define a scenario to be a single execution of such an algorithm,
excluding the processes’ actual choice of their public values. We consider



scenarios in which a process can fail only by crashing—simply failing to send
any further messages. Moreover, we assume that a process can detect the
absence of a message, so it can tell if the sender crashed before sending the
message.

Definition 1 A k-round scenario S consists of the following:

o A value VAL,[S] € V, for each p € [n].
[VAL,[S] denotes the private value initially chosen by process p.]

o A set CR[S|(r), for each r € [k+1], such that CR[S](r) C
CR[S](r + 1) for all r € [k]. We let C[S] denote CR[S](k + 1).

[CR[S](r) denotes the set of processes that have crashed before sending any
round r messages. C[S] is the set of all processes that crash sometime in the
scenario.

o A sequence MSG,[S](r) € (M x [n])*, for all p € [n] and r € [k], such
that MSG,[S](r) = A if and only if p € CR[S](r).

[MSG,[S](r) = (m1,q1),...,(ms,qs) means that the i*" message sent by
process p in round r is the message m; having process ¢; as its destination.
Process p crashed before sending any messages in round r if and only if
MSG,[S](r) = A]

Note that a process p can send several different messages to the same process
during a single round. It can also send messages to itself. We are assuming
that a process which has not crashed sends at least one message during each
round. This assumption is made only to simplify our proof; without it, we
would have to distinguish a process that crashes in round r after sending
all its round r messages and one that crashes in round r 4+ 1 before sending
any messages in that round. It is not a substantive restriction because any
algorithm in which a process sends no messages during some round can be
modified by having the process send a null message to itself.
We next define some relations between scenarios.

Definition 2 For any k-round scenarios S and 7T :
o S=,T, forr € [0,k], if
(i) CR[s](S) = CR[s|(T) for all s € [r+1]
(1) VAL,[S] = VAL,[T] for all p € [n]
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(1it) MSG,[S](s) = MSG,[T](s) for all p € [n] and all s € [r].
[S =, 7 means that the two scenarios are the same through round r.]
e S=,,7, forr e [k], if:

(i) S=,1T
(i) CR[S](r + 1) U{p} = CR[T](r +1)U{p}
(1it) MSG4[S](r) = MSG,[T|(r) for all g # p.

[S =;\p T means that the two scenarios are the same through round r, except
for the behavior of p during round r.]

¢ S~y p T, forr € [0,k] and p € [n], if:

(i) VAL,[S] = VAL, [T]

(it) For all w € [r] and ¢ € [n]: MSGy[S](u)|, = MSGq[T](u)lp,
where (m1,q1),. .. , (Mg, qs)|p s the subsequence consisting of all
the (mj,q;) such that q; = p.

[S ~,|p T means that the first  rounds of the two scenarios appear the same
to process p.]

o S~ T if there exists p € [n] such that p ¢ CIS]UC[T] and S ~p, T .

[S ~ T means that the two scenarios appear the same to some process that
does not fail in either of them.]

Note that the relations =, =,,,, ~,, and ~ are all symmetric and reflexive.

We next define a message-passing protocol to be the set of possible sce-

narios generated by an algorithm. We assume that the protocol is deterministic—

that is, the messages sent by a process during any round r depend only upon
the initial private value of that process and the messages it receives through
round » — 1. There are two possible sources of nondeterminism for the
message-passing protocol used by a WBG algorithm:

e The messages a process sends could depend upon the order in which
messages sent to it are received, which might vary because of random
transmission delays.

e A process could make a deliberate nondeterministic choice.



Since we are proving a nonexistence result, we can argue as follows that
the nonexistence of an algorithm employing a deterministic protocol im-
plies the nonexistence of one using a nondeterministic protocol. Given any
nondeterministic protocol, we can remove the above two sources of nonde-
terminism to obtain a deterministic one by:

e Arbitrarily fixing transmission delays to eliminate any nondeterminism
in message arrival time.

e Fixing in advance any choice made by a process.

If the algorithm works with the nondeterministic protocol, then it would
still work when the nondeterminism is removed by these restrictions. Hence,
it suffices to prove the nonexistence of an algorithm using a deterministic
message-passing protocol.

This informal reasoning can be avoided by allowing nondeterministic
protocols in our formal definition. However, there is another type of nonde-
terminism that can appear in a protocol which would make it very easy to
define a WBG algorithm:

e Allowing the process’s actions to depend upon the private value chosen
by another process.

Of course, this kind of nondeterminism cannot be implemented in a real
protocol, since there is no way for one process to know anything about
the private values of other processes except through messages that it has
received. It is rather difficult to devise a formal definition of a nondeter-
ministic protocol that allows the first two kinds of nondeterminism but not
the third. We have therefore chosen to avoid this problem and consider only
deterministic protocols.

It would perhaps be most natural to define a protocol to be an algorithm
(or formal machine) that generates scenarios. Instead, we formally define
a protocol to be the set of all possible scenarios that can be generated.
These two approaches are logically equivalent, since an algorithm can be
identified with the set of behaviors that it can produce. We have chosen to
view a protocol as a set of scenarios for the following reason. We want to
place the weakest possible constraints on a protocol because this leads to the
strongest possible lower-bound result—one that applies to the widest class of
protocols. Weakening the constraints on a protocol means allowing a larger
class of scenarios. However, specifying that an algorithm allow a larger class
of behaviors usually requires the explicit addition of nondeterminism to the



algorithm. If we were to define a protocol as an algorithm, trying to weaken
the definition would require describing a more complex algorithm. On the
other hand, with our approach, where we specify a protocol by placing
conditions on the set of scenarios, allowing a larger class of behaviors means
adding fewer conditions. This leads more naturally to the weakest possible
definition.

Definition 3 For any k > 0 and ¢ > 0, a k-round c-crash message-passing
protocol P consists of a set of k-round scenarios such that:

1. For all S € P: |C[S]| < e
[We restrict our attention to scenarios in which at most ¢ processes crash.]
2. For any values vy, ... ,v, € V there exists a scenario S € P such that:
(i) For each p € [n]: VAL,[S] = vp,.
(ii) C[S] = ¢.
[The processes can choose any initial private values, and need not fail.]

3. For any ST € P and any r € [k]: if S ~
CR[S](r + 1), then MSG,[T](r) < MSG,[S](r).

[This means that the messages sent by a process p during round r are deter-

» 7 and p ¢

mined by what it sees through round r — 1, except that p could crash during
round 7.]

4. For any S € P, any p € [n], and any r € [k| such that

MSG,[S](r) = (m1,q1),- .- , (Mg, qs)

with s > 0, there exists a scenario T € P such that:

(Z) S =r\p T
(ZZ) MSGP[T](T) = (’I?’Ll, ql), e ,(ms_l,qs_l).

[7 is the scenario that is the same as S through round r, except that in 7,
p crashes before sending the last round r message that it sent in S.]

Note that in part 3 of this definition, if p is not in CR[T|(r + 1) either,
then interchanging S and 7 shows that MSG,[S](r) and MSG,[T](r) are
equal, since they are both initial subsequences of the other. This implies
that in part 4, p must be in CR[T](r + 1).



We now come to our formal definition of a WBG algorithm. In practice,
a WBG algorithm must specify how any process chooses its public value
as a function of its initial private value and the messages it has received.
Rather than considering how this is done for every process, we define an
abstract WBG algorithm to be a single mapping from scenarios to values
which assigns to a scenario the public value chosen by every process that
does not crash in this scenario. We can do this because Condition WBG2
implies that all processes which do not crash choose the same public value.
This leads us to the following definition.

Definition 4 A k-round, c-crash abstract WBG algorithm consists of a k-
round, c-crash message-passing protocol Pand a mapping w : P — 'V such
that:

1. For anyv € V, if S € P such that C[S] = ¢ and VAL,[S] = v for all
p € [n], then w(S) = v.

[This is condition WBG1.]

2. For any S,T € P: if S ~ T then w(S) = w(7T).

[If some process does not crash in either scenario and sees the same set of
messages in both of them, then it (and hence, by WBG2, all noncrashed
processes) choose the same public value in both.]

Our main result is the following.

Theorem I If |V| > 1 and n > k+1, then there does not ezist a k-round,
k-fault abstract WBG algorithm.

The hypothesis |V| > 1 is obvious, since there would be no problem if
there were only one possible choice of public value. The hypothesisn > k+1
is needed because conditions WBG1 and WBG2 become essentially vacuous
if n — 1 processes crash. Thus, if n = k + 1, then a k-round, (k — 1)-fault
algorithm is easily transformed into a k-fault algorithm.

To prove Theorem I, we need some lemmas and additional definitions.
Part A of the following lemma states that the first r rounds of a scenario
can always be continued to a complete scenario in which no processes crash
after round r. Part B is similar, except that we can let one process fail at
the beginning of round r.

Lemma 1 For any k-round, c-crash message-passing protocol P and any
scenario S € P:



A. For any r € [0,K], there exists a scenario T € P such that:
(i) T=8
(i) C[T] = CR[T](r +1).

B. For any r € [k] and p € [n], there exists a scenario T € P such
that:

(Z) T =r\p S
(ii) p € CR[T](r).
(iii) C[T] = CR[T](r +1).

Proof: The proof of part A is by induction on r. For r = 0, we let 7 be
the scenario whose existence is guaranteed by part 2 of Definition 3, letting
vp = VAL,[S]. Assume r > 0. Applying the induction hypothesis, we can
find a scenario 7’ € P such that:

Q) T'=_18
(i)’ C[T'] = CR[T'](r).

Let D denote the set of processes p such that p ¢ CR[S|(r) and p €
CRI[S](r+1), so D is the set of processes that crash during round r of S. For
each p € D, part 3 of Definition 3 implies that MSG,[S](r) < MSG,[7"](r).
By successive application of part 4 of Definition 3, using part 3 to show that
=,_1 is maintained, we can construct a scenario 7 € P such that:

o7 =18
e C[T]=CR|T](r+1) =CR[S](r+1).
e MSG,[T|(r) = MSG,[S](r) for all p € D.

If p ¢ D, then either p € CR[S|(r) = CR[T](r) or p ¢ CR[S|(r +1) =
CR[T](r +1). In both these cases, we have MSG,[T](r) = MSG,[S](r)—in
the first case, since they both equal A by Definition 1, and in the second
case by part 3 of Definition 3. Hence, MSG,[T](r) = MSG,[S](r) for all p,
which shows that 7 =, §. This completes the proof of part A.

To prove part B, we first repeatedly apply part 4 of Definition 3 to get
a scenario 7' € P with 7' =\, § and MSG,[7"](r) = A, using part 3 to
show that the =\, relation is maintained at each step. We then apply part
A to 7’ to find the required scenario 7. 1



Definition 5 A k-round scenario S is r-regular if:
(i) |CR[S](s)| < s—1 for all s € [r+1]
(ii) C[S] = CR[S](r +1).

Thus, an r-regular scenario is one in which at most s — 1 processes have
crashed by the end of each round s < r + 1, and no processes crash after-
wards.

Lemma 2 For any k-round message-passing protocol P, any r € [k], and
any r-reqular scenarios S, T € P:

A IfS=,T then S=T.

B. If C[S] = C[T], S ~yp T for all p ¢ C[S], and |C[S]| < n, then
S~T.

Proof: The proof of part A is by backwards induction on r. For r =
k, it is immediate from the definition. Assume r < k. Since § =, 7,
CR[S](r +1) = CR[T|(r + 1). The regularity of S and 7 then implies that
CRI[S|(r + 2) = CR[T|(r + 2) = CR[S](r + 1), so for each p € [n] either:

1. p € CR[S](r+1)NCR[T](r + 1), or
2. p & CR[S](r 4+ 2) UCR[T](r +2).

In the first case, we have MSG,[S](r + 1) = MSG,[T](r +1) = A. In
the second case, part 3 of Definition 3 implies that MSG,[S|(r + 1) =
MSGy,[T](r 4+ 1). This shows that S =,1; 7, and we can now apply the
induction hypothesis to show that & = 7, finishing the proof of part A.

To prove part B, we prove the stronger result that for any r, s € [k] with
s >r: if S and 7 are r-regular, S =,_; 7, |C[S]| = [C[T]| and S ~, T
for all p ¢ C[S], then S ~ 7. The proof is by backwards induction on s.
For s = k, it follows immediately from the definition of ~. Assume s < k.
Since r < s, the assumption of r-regularity implies that CR[S](s + 2) =
CRIS](s + 2) and for all p € [Kk], either:

(i) p € CR[S](s +2), or
(ii) p € CR[S](s +1).
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In the first case, we have MSG,[S](s + 1) = MSG,[7](s + 1) by part 3 of
Definition 3 (since each is a subsequence of the other), and in the second
case we have MSG,[S](s+1) = MSG,[T](s+1) = A by Definition 1. Hence,
we can conclude that & ~,, ), 7 for all p € [k], and the result now follows
from the induction hypothesis. 1l

Definition 6 The relation ~ on P is defined to be the reflexive transitive
closure of ~, 1.e., the smallest transitively closed relation such that

(i) S~ S
(ii) S ~ T implies S ~ T.
The heart of our proof is the following result.

Lemma 3 For any k-round, k-crash message-passing protocol P with k <
n—1, any p € [n], r € [k] and r-regular scenarios S, T € P: if S =\, T
and p € CR[T](r) then S~ T.

Proof: Let MSG,[S](r) = (m1,q1),... ,(ms,qs). The proof will be by
double induction on r and s—forward induction on s and backwards induc-
tion on 7. This involves proving the following cases:

1. s =0, for any r;
2. r = k, assuming the lemma holds for s — 1;
3. r < k, assuming the lemma holds for » + 1 with any s, and for r,s — 1.

For the first case, s = 0, we see that Definition 1 implies S =, 7, and the
result follows from part A of Lemma, 2.

We next consider the second case: r = k. Applying part 4 of Defini-
tion 3, we obtain a scenario S" such that &' =, S and MSG,[S](r) =
(m1,q1),- -+ 5 (Ms—1,qs-1). Tt is clear that &’ ~y, S for all ¢ # ¢,. Since
|C[S]| < k < n — 1, there is at least one ¢ ¢ C[S]U{¢s,p} = C[S'|U{gs},
so 8" ~ S. Since &’ =p\p 7, we can apply the lemma for s — 1 to conclude

that S’ ~ T, and the result now follows from the transitivity of ~ .
Finally, we consider the third case: r < k. We first apply part B of
Lemma 1 to obtain a scenario S®) € P such that

o S =1y S

11



o ClSW] = CRISW](r +2) = CRIS(r +2) U{p}

This implies that S is (r + 1)-regular. We also have |C[S(V]| < r, since
C[S™M] = C[7] and T is r-regular. We apply the lemma for r + 1 to deduce
that S £ S.

We next apply part B of Lemma 1 to obtain a scenario & 2 ¢ P with:

[ ) 8(2) :T-i-l\CIs 8(1)

o C[S@] = CR[SP|(r +2) = CR[SD](r + 2) U{gs }-

Since SW) is (4 1)-regular, and |C[SM]| < r, we see that S©@) is (r + 1)-
regular. We can then apply the lemma for r + 1 to conclude that S <
SH XS 508 LS.

We next apply apply part 4 of Definition 3 to obtain a scenario & G ep
such that:

e SB =n\p S@)
e CR[S®](r+ 1) = CR[SP](r 4 1) (since p € CR[SP]())

. MSGP[S(?’)](T) = (m1,q1),-..,(Ms—1,qs—1)-

Note that the first r rounds of S@ and S®) are identical except that process
p crashes one message sooner in S®) — before it sends its last message to ¢s.
However, g, is in CR[S@](r +2) = CR[S®)](r +2). We can therefore apply
part B of Lemma 2 to conclude that S® ~ S@. Since S@ < S, we have
SB LS.

Finally, since p sends only s — 1 messages during round r of S®), we can
apply the lemma for r, s — 1 to conclude that S© X 7, which then gives the
desired result 7 ~ S. 1

We now prove Theorem I by assuming the existence of a k-round, k-fault
WBG algorithm and deriving a contradiction. Let P and w be the protocol
and mapping w : P — V comprising the abstract WBG algorithm. Let u
and v be two distinct elements in V, and let SU) be the scenario in P such
that C[SY)] = ¢ and

v ifp<j

VAL [SY)] = { u if p>j

The existence of the scenarios SU) is guaranteed by part 2 of Definition 3.

By part 1 of Definition 4, we have w(S©®)) = u # v = w(S™). Hence,
there exists some p € [n] such that w(S®~Y) # w(S®). By part B of
Lemma 1, there exists a 1-regular scenario 7 € P such that

12



o T =y Sr-1)

o C[T] = {p},

and a l-regular scenario 7’ € P such that
e 7' =1y S

e C[T'] = {p}.

By Lemma 3, we have 7 ~ S®=1 and 7/ X S®. However, in 7 and
7', all processes except p choose the same initial private value. Part 3 of
Definition 3 implies that MSG,[7](1) = MSG,[7T'](1) for all ¢ # p, and
MSG,[T](1) = MSG,[7T'](1) = A. We therefore have 7 ~y), 7', so we
can apply part B of Lemma 1 to conclude that 7 ~ 7', which implies
Se=1) L 8@ However, it follows from part 2 of Definition 4 that this
implies w(S®~Y) = w(S®)), which is the required contradiction. i

4 A Byzantine Generals Solution

In the ordinary Byzantine Generals Problem, there is a distinguished pro-
cess, which we take to be process 1, with a private value. The goal is for
every process to choose a value, which we call its “public” value, so the
following two conditions are satisfied:

BG1. If process 1 does not fail, then every process that does not fail chooses
process 1’s private value as its public value.

BG2. Any two processes that do not fail choose the same public value.

Of course, BG2 is the same as WBG2. Condition BG1 generalizes TC1’
to an arbitrary set of values (instead of just commit and abort) and, more
important, strengthens it to apply even when some processes fail. Given a
solution to the Byzantine Generals problem, it is easy to construct a solu-
tion to the Weak Byzantine Generals problem, and hence to the transaction
commit problem. However, the converse is not the case—the Byzantine
Generals problem is in some sense harder than the Weak Byzantine Gen-
erals problem. We refer the reader to [6] for more details of the Byzantine
Generals problem, and to [7] for a discussion of how it differs from the WBG
problem.

In this section, we give a simple algorithm that solves the Byzantine
Generals problem under the assumption that a process can fail only by
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crashing. It is a (k + 1)-round algorithm that works in the presence of up to
k crashes, which by Theorem I is the optimal worst-case time complexity.
Moreover, we show that if only f processes actually do crash, then every
process chooses its public value by the end of round f + 1, and sends no
messages after round f + 2. The algorithm is described informally; we leave
a formal definition of the message-passing protocol to the reader. Since
process 1 could crash before sending any message, there has to be some
default value in V' chosen in that case. We let null denote that value.

Algorithm BG
Round 1: Process 1 sends its value to every process.

Round r, 1 <r < k+ 1: Fach process does the following:

1. If it received a value from any process in round r — 1, then it:
e takes that value to be its public value;
e sends that value to every process;
o stops (executes no further round).
2. Otherwise, if every other process either:
(i) sent it an “I don’t know” message in round r — 1, or
(ii) crashed before the beginning of round r—1 (as detected by the
failure to receive any round r — 2 message from that process)
then it:
e takes null to be its public value;
e sends the value null to every process;
® stops.

3. Otherwise, it sends the message “I don’t know” to every process.

After Round k + 1: Fach process (that has not stopped) does the fol-
lowing:

1. If it received a value from any process during round k + 1, then
it takes it as its public value.

2. Otherwise, it chooses null as its public value.
Theorem II Algorithm BG satisfies conditions BG1 and BG2 if at most
k processes fail, and if a process can fail only by crashing. If at most f

processes crash, then every process chooses its public value at or before the
beginning of round f + 2, and stops by the end of round f + 2.
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Proof: If process 1 does not crash, then it successfully sends its value
to every process during round 1, and every process that does not crash will
then choose this value as its public value at the beginning of round 2. This
proves condition BG1.

To prove BG2, we must show that if a process ¢ that does not crash
chooses a public value w, then any other process j that does not crash
chooses the same public value. We may obviously assume that they do not
both choose the value null, so we suppose that i chooses the value w # null.
Since processes can fail only by crashing, no process sends the value w
without receiving it from some other process—except for process 1, which
can send its private value w in round 1. Hence, process 7 must either choose
w or null as its public value. We show that it cannot choose the value null.

Assume that ¢ chooses its public value w as the result of receiving a
message sent during round r. During each round s < r, some process must
have sent the value w to at least one other process. Hence, for each round
s < r, there is at least one process that neither sent an “I don’t know”
message during round s nor crashed during a previous round. This implies
that j could not have chosen the value null during any round up to or
including round r + 1. If » < k + 1, then ¢ must send the value w during
round r 4+ 1, and that value must be received by j because neither ¢ nor j
crash. Hence, in this case, j must choose the value w during round r + 1. If
r =k + 1, then during each of the k£ 4+ 1 rounds a different process sent the
value w to all processes. By hypothesis, at most k£ processes crash. Hence,
some process that did not crash sent the value w to all processes. Since j
did not crash, it must have received that value and must have chosen it as
its public value. This completes the proof of condition BG2.

Finally, assume that f processes crash, where f < k. A process chooses a
value after any round in which it does not observe the failure of a process—
i.e., during any round in which it receives a message from every process
that it did not previously observe to have failed. Since there are at most f
crashes, this must happen by the end of round f + 1. Once it chooses its
value, a process stops after sending its next round of messages. Il

If only f < k processes crash, Algorithm BG lets every process chooses
its public value by the beginning of round f + 2, which may also be con-
sidered the end of round f + 1. Theorem I implies that no algorithm can
do better than this. However, one might hope to find any algorithm that
avoids sending any round f + 2 messages. It can be shown that this is im-
possible. The proof is essentially the same as the proof of Theorem I, and
will be omitted. Our algorithm is therefore optimal in terms of the number

15



of rounds that it takes to stop.
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