
Byzantine Clock Synchronization

L e s l i e L a m p o r t 1

P . M . M e l l i a r - S m i t h 2

C o m p u t e r S c i e n c e L a b o r a t o r y

S R I I n t e r n a t i o n a l

A b s t r a c t

An informal description is given of three fault-tolerant

clock-synchronization algorithms. These algorithms work

in the presence of arbitrary kinds of failure, including "two-

faced" clocks. Two of the algorithms are derived from

Byzantine Generals solutions.

1. I n t r o d u c t i o n

Many multiprocess systems, especially process-control

systems, require processes to maintain clocks that are syn-

chronized with one another [4], [6], [11]. Physical clocks

do not keep perfect time, but can drift with respect to one

another, so the clocks must periodically be resynchronized.

For such a process to be fault-tolerant, the clock synchro-

nization algorithm must work despite faulty behavior by

some processes and clocks.

The purpose of this paper is to provide an infor-

mal, intuitive description of three fault-tolerant clock-

synchronization algorithms. We refer the reader to [7] for

the details, including a precise s ta tement of the problem, a

rigorous description of the algorithms, and a proof of their

correctness.

It is easy to construct fault-tolerant clock-synchroniza-

tion algorithms if one restricts the type of faults that are

permitted. However, it is difficult to find algorithms that
lWork supported in part by the National Science Foundation under
grant number MCS-8104459.

2Work supported in part by the National Aeronautics and Space Ad-
ministration under grant number NASA 99-34234.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Comput;ng Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 A C M 0 - 8 9 7 9 1 - 1 4 3 - 1 84 0 0 8 / 0 0 6 8 $00.75

can handle arbitrary faul ts - - in particular, faults that result

in "two-faced" clocks. Consider a three-process system in

which:

• Process l ' s clock reads 1:00

• Process 2's clock reads 2:00

• Process 3's clock is faulty in such a way that when

read by Process 1 it gives the value 0:00 and when

read by Process 2 it gives the value 3:00.

Processes 1 and 2 are in symmetr ic positions; each sees one

clock that reads an hour earlier than its own clock, and one

clock that reads an hour later. The obvious synchronization

algorithms, which are symmetric, will not cause Processes

1 and 2 to reset their clocks in a way that would bring

their values closer together. The study of this problem was

initiated by the realization, during the design of the SIFT

reliable aircraft control computer [11], that such malicious

faults can occur in practice.

The algorithms described in this paper assume that

each process can read every other process's clock. They

work in the presence of any kind of fault, including such

malicious two-faced clocks. We let a process's clock be

part of the process, so a clock failure is just one kind of

process failure. We consider only process failures, ignoring

communicat ion line failures. At worst, the failure of a com-

munication line joining two processes can be analyzed as if

it were a failure of ei ther of the processes. Communication-

line failure is briefly discussed in [7].

Our first algorithm is called an interactive convergence

algorithm, since it causes correctly working clocks to con-

verge, but the closeness with which they can be synchro-

nized depends upon how far apart they are allowed to drift

before being resynchronized. In a network of at least 3 m + 1

processes, it will handle up to m faults.

The remaining two algori thms are called interactive
consistency algorithms, so named because the nonfaulty

processes obtain mutually consistent views of all the clocks.
In these algorithms, the degree of synchronizat ion-- the

maximum difference between any two nonfaulty processes'

c locks-- depends only upon the accuracy with which pro-

68

cesses can read each other's clocks and how far clocks can
drift during the actual synchronization procedure.

The interactive consistency algorithms are derived from
two basic "Byzantine Generals" solutions presented in [5].
The first one requires at least 3m + 1 processes to handle
up to m faults. The second algorithm assumes a special

method of reading clocks, requiring the use of unforgeable
digital signatures, to handle up to m faults with as few as

2m + 1 processes. A recent algorithm of Halpern, Simons
and Strong [3], using a similar method of reading clocks,
will be better than our second Byzantine Generals solution
in almost all practical situations. However, we feel that our
algorithm is still worth describing because it makes some-
what different assumptions about how clocks are read and

because its derivation from the Byzantine Generals algo-
rithm is interesting.

Lundelius and Lynch [8] have recently described an
interactive convergence algorithm. It requires a special
method of reading clocks, so it is difficult to compare with

our first two algorithms. However, in some situations, it can
synchronize the clocks with greater accuracy than our al-
gorithms. We discuss the various algorithms' clock-reading
methods in Section 4, and, in the conclusion, we compare
their efficiency and accuracy.

Dolev, Halpern, and Strong [2] have recently proved

that, like the original Byzantine generals problem, 3m + 1
processes are required to allow clock synchronization in the

presence of m faults if digital signatures are not used. Our
first two algorithms are thus use the minimum number of
processes.

2. A lgor i thm CON

Algorithm CON, our interactive convergence algorithm,
is the simplest of the three algorithms. It assumes that the

clocks are initially synchronized, and that they are resyn-
chronized often enough so two nonfaulty processes' clocks
never differ by more than 6. The value of 6 is chosen in ad-
vance, as explained later. We ignore for now the question
of how processes read each other's clocks.

Algorithm CON is essentially the following.

Each process reads the value of every process's
clock and sets its own clock to the average of

these values--except that if it reads a clock value
differing from its own by more than 6, then it

replaces that value by its own clock's val,te when

forming the average.

To see why this works, let us consider by how much two
nonfaulty processes' clocks can differ after they are resyn-
chronized. For simplicity, we ignore the error in reading

another process's clock and assume that all processes ex-
ecute the algorithm instantaneously at exactly the same

time.

Let p and q be nonfaulty processes, let r be any pro-
cess, and let cp, and %, be the values used by p and q,
respectively, as process r's clock value when forming the

average. If r is nonfaulty, then cp, and cq, will be equal. If
r is faulty, then %, and %, will differ by at most 36, since
cp, lies within 6 of p's clock value, Cqr lies within 6 of q's
clock value, and the clock values of p and q lie within 6 of
one another.

Let n be the total number of processes and m the num-
ber of faulty ones, and assume that n > 3rn. Processes p
and q set their clocks to the average of the n values cp, and
cq,, respectively, for i -- 1 , . . . , n. We have car = Cq, for the

n - m nonfaulty processes r, and [%, - ear] <_ 36 for the
m faulty processes r. It follows from this that the averages
computed by p and q will differ by at most (3re~n)6. The
assumption n > 3m implies (3re~n)6 < 6, so the algorithm
succeeds in bringing the clocks closer together. Therefore,
we can keep the nonfaulty processes' clocks synchronized

to within 6 of one other by resynchronizing often enough

so that clocks which are initially within (3re~n)5 seconds
of each other never drift further that 5 seconds apart.

It appears that by repeated resynchronizations, each
one bringing the clocks closer by a factor of 3re~n, this al-

gorithm can achieve any desired degree of synchronization.
However, we have ignored two factors:

I. The time taken to execute the algorithm.

2. The error in reading another process's clock.

The fact that a process does not read all other clocks
at exactly the same time means that it must average not
clock values, but differences between its clock value and the
others. When process p reads process q's clock, it records
the difference Aqa between q's clock and its own. More
precisely, Aqa = Cq - %, where Cq is the value p reads on q's
clock and % is the value it reads at the same time on its
own clock. Letting Apa = 0 and defining

Aqa if[Aqa 1< 6
Aqa -=

0 otherwise ,

process p resets its clock by adding the average of the n
values Aqa to its own clock value.

The error in reading clocks must also be taken into
account in computing Aqa. Let e be the maximum error in
reading the clock difference Aqa. If 6 is the maximum true
difference between the two clocks, then the difference read
by process p could be as great as 6 + c. Therefore, we nmst
replace 6 by 6 + e in the above definition of Aqp.

A careful analysis, given in [7], shows that the algorithm
works if 6 is at least about (6m + 2)e + (3m + 1)pR, where
p is the maximum error in the rates at which the clocks

69

run and R is the length of t ime between resynchroniza-

tions. The value of 6 is the maximum difference between

two nonfaulty clocks, so this value represents the degree of
clock synchronization maintained by this algorithm, l The

value (6m + 2)c + (3m + 1)pR is the smallest value we can

safely choose for 6; any larger value will also work, yielding

a larger clock synchronization error.

3. The Interactive Consis tency Al-

gori thms

In the Algori thm CON, a process sets its clock to the

average of all clock values. Since a single bad value can skew

an average, bad clock values must be thrown away. Another

approach is to take a median instead of an average, since a

median provides a good value so long as a minority of values

are bad. However, because of the possibility of two-faced

clocks, the processes cannot simply read each other 's clocks

and take a median; they must use a more sophisticated

method of obtaining the values of other processes' clocks.

We now investigate what properties such a method must

have.

The median computed by two different processes will

be approximately the same if the sets of clock values they

obtain are approximately the same. Therefore, we want the

following condition to hold for every process r.

CC1. Any two nonfaulty processes obtain approximately

the same value for r ' s c lock--even if r is faulty.

While CC1 guarantees that all processes will compute

approximately the same clock values, it doesn ' t ensure that

the values they compute will be meaningful. For example,

CCI is satisfied if every process always obtains the value

l:00 for any process's clock. This synchronizes the clocks

by effectively stopping them all. To make sure that the pro-

cesses' clocks keep running at a reasonable rate, we make

tile following additional requirement for any process r:

CC2. If r is nonfaulty, then every nonfaulty process obtains

approximately the correct value of r 's clock.

If a majority of processes are nonfaulty, then this ensures

that the median clock value computed by any process is

approximately equal to the value of a good clock. 2

Conditions CCI and CC2 are very similar to the con-
ditions that describe the Byzantine Generals problem [5].

In this problem, some process r must send a value to all

processcs in such a way that the following two conditions

are sati~sfi~'d; .
INote that [7] shows only that at least this degree of synchronization
can be obtained; we do not know if the worst-case behavior is really
this bad. The same remark applies to the other error bounds quoted
below.

:More precisely, it is either approximately equal to a good clock's value
or else lies between the values of two good clocks.

IC1. All nonfaulty processes obtain the same value.

IC2. If process r is nonfaulty, then all nonfaulty processes
obtain the value that it sends.

Our two interactive consistency algorithms are modifi-

cations of two Byzantine Generals solutions from [5] to

achieve conditions CC1 and CC2.

3 . 1 . A l g o r i t h m C O M (m)

Our first interactive consistency algorithm, denoted

COM(m), works in the presence of up to m faulty pro-

cesses when the total number n of processes is greater than

3m. It is based upon Algori thm OM(m) of [5].

We first consider the case n -- 4, m -- l, and describe a

special case of Algori thm OM(1) in which the value being

sent is a number. In this algorithm, process r sends its

value to every other process, which in turn relays the value

to the two remaining processes. Process r uses its own

value. Every other process i has received three "copies"

of this value: one directly from process r and the other

two from the other two processes, s The value obtained by

process i is defined to be the median of these three copies.

To show that this works, we consider separately the two

cases: process r faulty and nonfaulty. First, suppose r is

nonfaulty. In this case, at least two of the copies received

by any other nonfaulty process p must equal the value sent

by r: the one received directly from r and the one relayed

by another nonfaulty process. (Since there is at most one

faulty process, at least one of the two processes that relay

the value to p must be nonfaulty.) The median of a set of

three numbers, two of which equal v, is v, so condition IC1

is satisfied. When process r is nonfaulty, IC1 implies IC2,

which finishes the proof for this ease.

Next, suppose that process r is faulty. Condition IC1 is

then vacuous, so we need only verify IC2. Since there is at

most one faulty process, the three processes other than r

must be nonfaulty. Each one therefore correctly transmits

the value it receives from r to the other processes. All of the

other processes thus receive the same set of copies, so they

choose the same median, showing that that IC2 is satisfied.

To modify Algori thm OM(1) for clock synchronization,

let us suppose that instead of sending a number, a process

can send copy of a clock. (We can imagine clocks being sent

from process to process, continuing to tick while in transit.)

We assume that sending a clock from one nonfaulty process

to another can per turb its value by at most some small

amount E, but leaves it otherwise unaffected. However, a

faulty process can arbitrarily change a clock's value before
sending it.

Sin case a process fails to receive a message, presumably because the
sender is faulty, it can pretend to have received any arbitrary message
from that process. See [5] for more details.

70

In Algorithm COM(1), we apply Algorithm OM(1) four
times, once for each process r. However, instead of sending
values, the processes send clocks. Exactly the same argu-
ment used above to prove ICl and IC2 proves CCI and
CC2, where "approximately" means to within O(~).

The more general Byzantine Generals solution OM(m),
which handles m faulty processes, n > 3m, involves more
rounds of message passing and additional median taking.
This algorithm can be found in [5]. Algorithm COM(rn)
is obtained from OM(m) in the same way we obtained
COM(1) from OM(1): by sending clocks instead of mes-
sages.

This completes our description of Algorithm COM(m),
except for one question: how do processes send clocks to

one another? The answer is that the processes don't send
clocks, they send clock differences. As before, when pro-
cess p reads process q's clock, it records the difference Aqp
between its clock value and q's. Process p sends a "copy"
of q's clock to another process r by sending the value Aqp,
which means "q's clock differs from mine by Aqp".

Now, suppose r receives a copy of q's clock from p in

the form of a message (from p) saying "q's clock differs
from mine by x ' . How does r relay a copy of this clock to
another process? Process r reasons as follows:

• p tells me that q's clock differs from his by x.

• I know that p's clock differs from mine by Ap,.

• Therefore, p has told me that q's clock differs from
mine by x + Ap,

In other words, when r relays a clock difference sent to him
by p, he just adds Ap, to that difference.

This completes the description of Algorithm COM(m).
A careful analysis, described in [7], reveals that this algo-

rithm keeps the clocks of different processes synchronized
to within approximately (6m + 4)e +pR, where, as before,
is the maximum error in reading a clock, p is the maximum
error in the running rate of a clock, and R is the length
of time between resynchronizations. The first term of the

error is caused by clock-reading errors that accumulate as
messages are passed around; the second term is the amount

that the clocks drift apart between resynchronizations.

3 .2 . A l g o r i t h m C S M

With no assumptions about the behavior of failed pro-
cesses, it can be shown that the Byzantine Generals prob-
lem is solvable only if n > 3m [9]. However, we can do

better than this by allowing the use of digital signatures.
More precisely, we assume that a process can generate a

message which can be copied but cannot be undetectably
altered. Thus, if r generates a signed message, and copies

of that message are relayed from process to process, the ul-
timate recipient can tell if the copy he receives is identical

to the original signed message generated by r. With digital
signatures, we are assuming that a faulty process cannot
affix the signature of another process to any message not
actually signed by that process. See [5] for a brief discussion
of how digital signatures can be generated in practice.

Algorithm SM(m) of [5] solves the Byzantine Generals
problem in the presence of up to m faults for any value of
n. ~ We first consider the case n -- 3, m = 1. In Algo-
rithm SM(1), process r sends a signed message containing
its value to the other two processes, each of which relays a
copy of this signed message to the other. Each process p
other than r winds up with a pile containing up to two prop-
erly signed messages: one received directly from process r

and another relayed by the third process. Process p may
receive fewer than two messages because a faulty process

could fail to send a message. The value process p obtains
is defined to be the largest of the values contained in this
pile of properly signed messages. (If no message is received,
then some arbitrary fixed value is chosen.)

For notational convenience, we pretend that r sends
a signed message to itself, which it does not relay. It is

easy to see that the piles of messages received by the three
processes satisfy the following two properties.

SM1. For any two nonfaulty processes p and q: every value
in p's pile is also in q's.

SM2. If process r is nonfaulty, then every nonfaulty pro-
cess's pile has at least one properly signed message,

and every properly signed message has the same
value.

Note that SMI holds for p or q equal to r because of our
assumption that r sends a properly signed message to itself.
Condition IC1 follows immediately from property SM1,
and condition IC2 follows immediately from property SM2,

proving that SM(1) is a Byzantine Generals solution.

In the general Algorithm SM(m), messages are copied
and relayed up to m times, with each relaying process
adding its signature. When a process p receives a mes-
sage with fewer than m signatures, p signs the message,
copies it, and relays it to every process that has not al-
ready signed the message. The reader can either verify for
himself or find the proof in [5] that the stacks of messages
received by the processes satisfy conditions SMI and SM2.
(Again, we assume that r sends a signed message to itself,
so SM1 is satisfied when p or q equals r.) Hence, defining
the value obtained by a process to be the largest value in its
pile gives an algorithm that solves the Byzantine Generals
problem.

To turn the Byzantine Generals solution SM(m) into
the clock-synchronization Algorithm CSM(m), we again
send clocks instead of messages. Moreover, we allow pro-
cesses to sign the clocks that they send. As before, we
4The problem is vacuous if there are more than n - 2 faults.

71

assume that a clock's value is perturbed by at most some
small amount c when sent by a nonfaulty process. How-
ever, instead of allowing a faulty process to set a clock to
any value when relaying it, we assume that the process can

turn the clock back but not ahead. More precisely, we as-
sume that, when relaying a clock, a faulty process can set

it back arbitrarily far, but can set it ahead by at most E.

We now use the same relaying procedure as in Algo-
rithm SM(m) to send copies of r's clock to all processes.
For simplicity, we assume that all clocks run at exactly the
same rate, except for the perturbations they receive when
being relayed, s Each process keeps a copy of every prop-
erly signed clock, so after all the relaying has ended, it has
a pile of copies of r 's clock. (We assume that r keeps a

signed copy of its own clock.) Since a nonfaulty process
perturbs a clock's value by at most E when relaying it, the
same reasoning used to prove SM1 and SM2 shows that the
following properties are true of these piles of copies of r's

clock.

CSM1. For any two nonfaulty processes p and q : if p has
a properly signed clock with value c, then q has a

properly signed clock whose value is within me of
C.

CSM2. If process r is nonfaulty and its clock has the value
c, then every other process has at least one properly
signed clock whose value is within ~ of c, and every

properly signed clock that it has reads no later than
c+m~.

The value that a process obtains for r 's clock is defined to be
the fastest clock in its pile. Conditions conditions CC1 and
CC2 then follow immediately from CSM1 and CSM2, where
"approximately" means to within O(m~). Hence, this pro-
vides a fault-tolerant clock-synchronization algorithm.

To finish the description of Algorithm CSM(rn), we
must describe how clocks can be signed and relayed in such
a way that they are disturbed by at most ~ when relayed

by a nonfaulty clock and can be set forward at most e by a
faulty one. As in Algorithm SM(m), we require a method
for generating unforgeable signed messages.

We first assume that processes and transmission lines

are infinitely fast, so a message can be relayed from pro-
cess to process in zero time. We use this assumption to
construct a method of relaying clocks for which e equals
zero. The message that r sends, and that all the processes
relay, is r 's clock value cr. The message c, acts like a clock
whose value is now c,. A nonfaulty process relays this value
in zero time, so the clock is sent with no perturbation. A
SRemoving this assumpt ion adds a te rm of order pS to the max imum

difference between the clocks, where S is the t ime taken to execute the

a lgor i thm and p the m a x i m u m er ror in the clock rates. In most cases

this t e rm is much smaller than the difference due to the pe r tu rba t ion

faulty process cannot change the value of the clock, since
the value is contained in a signed message; all it can do is
delay sending the value. This is equivalent to stopping the
clock while holding it, which is tantamount to turning the
clock back. Hence, the assumption about sending clocks is
satisfied, with zero perturbation.

In practice, processes and transmission lines are not
infinitely fast. Instead, we assume that a message received
by a nonfaulty process will be copied, signed, sent, and
received at its destination in time "74-E, for some constant '7.
By counting the signatures affixed to a message, a process
knows how many times the message has been relayed, so it
can correct the clock value in the message by adding the
appropriate multiple of "7. The net effect is to introduce
an error of at most ~ each time the message is relayed.
The detailed analysis of [7] shows that this algorithm can
maintain clocks synchronized to within about (m+6)E+pR,
where once again p is the maximum error in the clock rate

and R is the interval between resynchronizations.

4. Reading Clocks

To synchronize their clocks, processes have to read each

other's clock values. Errors in reading those values limit the
closeness with which clocks can be synchronized. We let E

denote the worst-case error in reading a clock value. The
degree of closeness with which an algorithm can synchro-

nize clocks depends upon e, and it is tempting to use tfiis
dependence ~ as a measure for comparing different clock-
synchronization algorithms--the algorithm that can syn-
chronize to within the smallest factor of e being the best.

Such comparisons can be misleading. Different algo-
rithms require different methods of reading clocks, and
these different methods can yield very different values for
E. Algorithms CON and COM can use any method of
clock reading, so they can always be implemented with
the smallest possible value of ~. However, this is not true
of Algorithm CSM or the algorithms of Lundelius [8] and

Halpern [3].

In practice, the value of ~ is determined primarily by

the system level at which clock reading takes place. The
value of E can be quite small if clock reading is performed by
the operating system. For example, c is a few microseconds
in SIFT [ll]. However, if clock reading is done by a high-
level program in a multiprogramming environment, E can

be tenths of a second or more.

In Algorithm CSM and the algorithms of Lundelius and
Halpern, one process reads another's clock by" determining
the arrival time (on its own clock) of a message. Thus, E is
the maximum uncertainty in the elapsed time between the
generation and receipt of the message. The algorithms dif-
fer in how the messages are generated. In the Lundelius al-

72

, gorithm [8], they are simply sent by a process when its own

clock reaches a certain value. However, in Algori thm CSM

and the Halpern algorithm, some of the messages are gen-

erated in response to the arrival of other messages, and the

generation of these messages requires a nontrivial compu-

tation. Thus, of these three algorithms, Lundelius's is more

likely to be implementable at a lower system level.

Comparison of these three algorithms with Algorithms

CON and COM is difficult, since the lat ter two algorithms

make no assumptions about how clocks are read. However,

the following theoretical observations seem to be relevant.

It is likely that, at some level, for process p to read the

clock of another process q, p must measure the arrival t ime

of a message sent by q. This "message" might be a sin-

gle voltage change traveling along a wire. Since p and q

are asynchronous, q's message must be stored in a buffer,

which p reads to determine if the message has arrived. The

frequency with which p checks the buffer introduces a fun-

damental source of e r ro r - -when when p sees a message, it

knows only that the message arrived some time since it last

read the buffer. Thus, the t ime between successive reads of

the buffer provides a lower bound on ~.

The best that a process can do to reduce the t ime be-

tween successive reads is to do nothing but repeatedly read

the buffer. Therefore, E cannot be smaller than the time

needed to read a message buffer. Moreover, the following

clock-reading procedure seems to indicate that this bound

is theoretically achievable. To read process q's clock, pro-

cess p sends q a request message, then continually examines

the buffer looking for q's reply. Process q eventually replies

to this message by sending p a message with its current

clock value. In principle, it should be possible to determine

the time it takes q generate the message, as well as the

travel t ime of the message, with arbitrary accuracy. Then,

is equal to the error in p's determination of when the mes-

sage arrived, which is the time it takes to read the buffer.

(Actually, p must wait only a fixed length of time for q's re-

ply, since q might be faulty, so there must also be a t imeout

tegt in q's "waiting loop".)

Algorithm CSM and the Lundelius and Halpern algo-

rithms require a process p to measure the arrival t ime of

me~sages sent concurrently by different processes. Fault-
tolerance requires that p maintain a separate buffer for

messages from different processes, since a faulty process

could "jam" communication to a shared buffer by contin-

ually sending messages. If a process is implemented by a

single processor, then it must cyclically scan all its input

bu[h,rs. Thus, (is at least n times the time needed to read

a ~ingle buffer, where n is the number of processes. Thus,
the limiting value of ~ for these algorithms is n times as

great as the limiting value for Algorithms CON and COM,

which can use an?' method of clock reading.

By r(,gulating when processes send their messages, AI-

gorithm CSM can be modified so every process waits for

only a single message at a time. For example, fixed time

slots can be allocated to each communicat ion link, with

each message sent at the beginning of the first available

t ime slot after its generation. The t ime between successive

slots just has to be greater than the maximum difference be-

tween processes' clocks. This adds a known delay to every

message, which does not significantly affect the accuracy

of the algorithm. It should be possible to modify the Lun-

delius algorithm in a similar way. However, this trick does

not seem to work for the Halpern algorithm, since the algo-

r i thm relies on the ability to receive messages concurrently

from different processes.

5. C o n c l u s i o n

We have presented three clock-synchronization algo-

ri thms and noted that they keep the clocks synchronized

to within the following tolerances, where m is the degree of

fault tolerance, E is the maximum error in reading a clock,

p is the maximum error in the clock rate, and R is the time

between successive resynchronizations.

Algori thm CON: (6m + 2)~ + (3m + 1)pR
Algori thm COM: (6m + 4)c + pR
Algori thm CSM: (m + 6)e + pR

(Note that the expression for Algori thm CON is more com-

plicated because it is an inteFactive convergence algorithm.)

Algori thm CON is the simplest, requiring only that

each process read every other process's clock. It appears

to be slightly bet ter than Algori thm COM if one is inter-

ested in maintaining the closest possible synchronization,

without regard to how frequently resynchronization is per-

formed. However, Algori thm CON requires much more fre-

quent resynchronization than the other two, by an asymp-

totic factor of 3m + 1, to maintain the same degree of

synchronization.e

The corresponding synchronization error for the Hal-

pern algorithm [3] is 2E + pR. While Lundelius and Lynch

do not give the synchronization error for their algorithm in

a comparable form, it appears to have the value 4c + 4pR.
(As in Algorithm CON, the extra factor appears in front of
the pR term because this is an interactive convergence algo-

rithm.) However, as we have indicated, the values of c are

not the same for the different algorithms. Algorithms CON

and COM have the smallest value of E, since they can use

any method of clock reading. The values of e for the other

three algorithms c o u l d b e larger in some circumstances.
6While the above numbers are simply the best bounds on the synchro-
nization errors that we have been able to find and do not necessarily
reflect the actual worst-cause performance of the algorithms, we believe
that it is in the nature of an interactive convergence algorithm to re-
quire more frequent resynchronization than an interactive consistency
algorithm.

73

Our two interactive consistency algorithms are based
upon particular Byzantine Generals solutions. Dolev [1] has
generalized Algorithm OM of [5] to the case in which pro-
cesses cannot send messages directly to all other processes.
His algorithm is similar enough to Algorithm OM that it
can be transformed into a clock-synchronization algorithm
by the same method we used to transform Algorithm OM
into Algorithm COM, thereby yielding a generalization of
Algorithm COM to the case when a process cannot read
every other process's clock. The intuitive reasoning used
above works the same way. However, we have not analyzed
the resulting algorithm to determine its precise properties.

Many other Byzantine Generals solutions have been
found that improve in some way upon the ones in [5]--
usually by reducing the number of messages. Our two in-
teractive consistency algorithms generate about n ra+l mes-
sages, while there are more recent algorithms in which the
number of messages is polynomial in n and m. A survey
of these results can be found in [10]. All the current algo-
rithms that do not use signed messages require more rounds
of message passing than Algorithm OM.

One should compare these message requirements with
those of the known algorithms not based upon Byzantine
Generals solutions--namely, Algorithm CON and the algo-
rithms of Halpern and Lundelius. The last two require, in
the worst case, about n: messages. Algorithm CON does
not require any message passing per se, just the reading of
every clock by each process. If this is done by sending clock
values in messages, then it too requires about n 2 messages.

Process-control systems, which we see as the main ap-
plication of our clock-synchronization algorithms, use a
small number of processes, so the number of messages is
not prohibitive. However, the number of rounds of message
passing is significant, since it increases the time needed to
perform the clock synchronization. Therefore, for process-
control applications, Algorithm OM is the best Byzantine
Generals algorithm not using signed messages, so it is the
best candidate for converting to a clock-synchronization al-
gorithm.

In any event, our method of constructing Algo-
rithm COM depends very strongly on the nature of Algo-
rithm OM. Other Byzantine Generals solutions might lead
to clock synchronization algorithms that are better than Al-
gorithm COM in some applications, but we don't know how
to construct such algorithms. Neither do we not know how
to construct clock-synchronization algorithms from signed-
message Byzantine Generals solutions other than Algo-
rithm SM. However, the Halpern algorithm, which is not
derived from a Byzantine Generals solution, seems to make
this an uninteresting problem.

REFERENCES

[1] D. Dolev. The Byzantine Generals Strike Again.
Journal of Algorithms 8, l (1982), 14-30.

[2] D. Dolev, J. Halpern. and H. R. Strong. On the Pos-
sibility and Impossibility of Achieving Clock Synchro-
nization. Proceedings of the Sixteenth Annual ACM
STOC Conference (May 1984).

[3] J. Halpern, B. Simons and R. Strong. Fault-Tolerant
Clock Synchronization. Proceedings of the Third An-
nual ACM Symposium on Principles of Distributed
Computing (August 1984)]these proceedings].

[4] L. Lamport. The Implementation of Reliable Dis-
tributed Multiprocess Systems. Computer Networks
2 (1978), 95-114.

[5] L. Lamport, R. Shostak and M. Pease. The Byzantine
Generals Problem. ACM Trans. on Prog. Lang. and
Sys. 4, 3 (July 1982), 382-401.

[6] L. Lamport. Using Time Instead of Timeout for
Fault-tolerant Distributed Systems. ACM Trans. on
Prog. Lang. and Sys. 6, 2 (April 1984), 254-280.

[7] L. Lamport and P. M. Melliar-Smith. Synchroniz-
ing Clocks in the Presence of Faults. Submitted to
Journal of the ACM.

[8] A New Fault-tolerant Algorithm for Clock Synchroni-
zation. Proceedings of the Third Annual A CM Sympo-
sium on Principles of Distributed Computing (August
1984)]these proceedings].

[9] M. Pease, R. Shostak and L. Lamport. Reaching
Agreement in the Presence of Faults. Journ. ACM.
27, 2 (Apr. 1980), 228-234.

[10] H. R. Strong and D. Dolev. Byzantine Agree-
ment. Intellectual Leverage for the Information Soci-
ety (Compcon). IEEE Computer Society Press, New
York, 77-82.

[11] J. Wensley et. al. SIFT: Design and Analysis of a
Fault-Tolerant Computer for Aircraft Control. Pro-
ceedings of the IEEE 66, 10 (Oct. 1978).

74

