
Approximation Algorithms for
Planning Under Uncertainty

Andrey Kolobov

Computer Science and Engineering

University of Washington, Seattle

1

Why Approximate?

Difficult example applications:
– Inventory management

 “How much X to order from

 the supplier every day until

 the end of the season?”

Lots of uncertainty,
large planning horizon

– Landing damaged aircraft

 “What’s the safest way to

 land a damaged airplane?”

Large expected plan length,
possibility of a disaster

2

Formal Models: Finite-Horizon MDPs

FH MDP is a tuple <S, A, D, T, R, s0>, where:

• S is a finite state space

• D is a sequence of time steps (1,2,3, …, L) up to a finite horizon L

• A is a finite action set

• T: S x A x S x D [0, 1] is a transition function

• R: S x A x S x D  R is a reward function

• s0 is the initial state

Solution: policy π*: S x D  A maximizing exp. reward
from s0

3

Puterman, 1994

Formal Models: Goal-oriented MDPs

Goal-oriented MDP is a tuple <S, A, T, C, G, s0, p>, where:
• S is a finite state space

• A is a finite action set

• T: S x A x S [0, 1] is a stationary transition function

• C: S x A x S  R+ is a stationary cost function (= -R: S x A x S  R-)

• G is a set of absorbing cost-free goal states

• s0 is the initial state

• p is a penalty for entering a dead end

Solution: policy π*: S  A minimizing expected cost

from s0

4

Overview of the State of the Art

5

Determinization-based
techniques

Monte-Carlo planning

Heuristic search with
inadmissible

heuristics

Hybridized
planning

Hierarchical
planning

Dimensionality
reduction

Offline Online

Outline

Motivation + Overview

• Determinization-based Algorithms

• Heuristic Search with Inadmissible Heuristics

• Dimensionality Reduction

• Monte-Carlo Planning

• Hierarchical Planning

• Hybridized Planning

6

Determinization-based Techniques

• High-level idea:
1. Compile MDP into its determinization
2. Generate plans in the determinization
3. Use the plans to choose an action in the curr. state
4. Execute, repeat

• Key insight:

– Classical planners are very fast

• Key assumption:
– The MDP is goal-oriented and in factored representation
– I.e., MDP components are expressed in terms of state variables

 7

Example Factored Goal-Oriented MDP

• Gremlin wants to sabotage an airplane

• Can use tools to fulfill its objective

• Needs to pick up the tools

• X = { }

• G =

8

Example Factored Goal-Oriented MDP

9

G
e
t
S

G
e
t

W

G
e
t
H

A =

T =

C =

1.0

1

1.0

1

0.4

1

0.6

1

Preconditions

Effects/outcomes

Example Factored Goal-Oriented MDP

10

S
m
a
s
h

T
w
e
a
k

0.9 0.1

A =

T =

C =

1.0

2 1 100

Back to Determinization-based Planning:
All-Outcome Determinization

Each outcome of each probabilistic action  separate action

11

P = 9/10

P = 1/10

Most-Likely-Outcome Determinization

12

P = 4/10
G
e
t
H

P = 6/10

FF-Replan: Overview & Example
1) Find a goal plan in

a determinization

13

2) Try executing it

in the original MDP

3) Replan&repeat if

unexpected outcome

[Yoon, Fern, Givan, 2007]

FF-Replan: Theoretical Properties

• Super-efficient on goal-oriented MDPs w/o dead ends
– Won two IPPCs (-2004 and -2006) against much more

sophisticated techniques

• Ignores probability of deviation from the found plan
– Results in long-winded paths to the goal

– Troubled by probabilistically interesting MDPs [Little, Thiebaux,
2007]
• There, an unexpected outcome may lead to catastrophic consequences

• In particular, breaks down in the presence of dead ends

 14

FF-Hindsight: Putting “Probabilistic” Back
Into Planning

• FF-Replan is oblivious to probabilities
– Its main undoing
– How do we take them into account?

• Suppose you knew the future…
– Knew would happen if you executed action a t steps from now
– The problem would be deterministic, could easily solve it

• Don’t actually know the future…
– …but can sample several futures probabilistically
– Solutions tell which actions are likely to start successful policies

• Basic idea behind FF-Hindsight

15

FF-Hindsight: Example
Action

Probabilistic
Outcome

Time 1

Time 2

Goal State

16

Action

State

Dead End

A1 A2

A1 A2 A1 A2 A1 A2 A1 A2

s0

Slide courtesy of S. Yoon, A. Fern, R. Givan, and R. Kambhampati

[Yoon, Fern, Givan, Kambhampati, 2010]

FF-Hindsight: Sampling a Future-1
Action

Probabilistic
Outcome

Time 1

Time 2

Goal State

17

Action

State

Dead End A1: 1
A2: 0

A1 A2

A1 A2 A1 A2 A1 A2 A1 A2

Slide courtesy of S. Yoon, A. Fern, R. Givan, and R. Kambhampati

s0

FF-Hindsight: Sampling a Future-2
Action

Probabilistic
Outcome

Time 1

Time 2

Goal State

18

Action

State

Dead End A1: 2
A2: 1

A1 A2

A1 A2 A1 A2 A1 A2 A1 A2

Slide courtesy of S. Yoon, A. Fern, R. Givan, and R. Kambhampati

s0

Providing Solution Guarantees

• FF-Replan provides no solution guarantees
– May have probabaility of reaching the goal PG = 0 on MDPs with

dead ends, even if P*G > 0

• FF-Hindsight provides only theoretical guarantees
– Practical implementations too distinct from theory

• RFF (Robust FF) provides quality guarantees in practice
– Constructs a policy tree out of deterministic plans

19

RFF: Initialization

20

S0 G

1. Generate either the AO or MLO determinization. Start with the
policy graph consisting of the initial state s0 and all goal states G

[Teichteil-Königsbuch, Infantes , Kuter, 2010]

RFF: Finding an Initial Plan

21

S0 G

2. Run FF on the chosen determinization and add all the states
along the found plan to the policy graph.

RFF: Adding Alternative Outcomes

22

S0 G

3. Augment the graph with states to which other outcomes of the
actions in the found plan could lead and that are not in the graph
already. They are the policy graph’s fringe states.

RFF: Run VI

23

S0 G

4. Run VI to propagate heuristic values of the newly added states.
This possibly changes the graph’s fringe and helps avoid dead ends!

RFF: Computing Replanning Probability

24

S0 G

5. Estimate the probability P(failure) of reaching the fringe states
(e.g., using Monte-Carlo sampling) from s0. This is the current
partial policy’s failure probability w.r.t. s0.

 If P(failure) > ε

P(failure) = ?

Else, done!

RFF: Finding Plans from the Fringe

25

S0 G

6. From each of the fringe states, run FF to find a plan to reach
the goal or one of the states already in the policy graph.

Go back to step 3: Adding Alternative Outcomes

Summary of Determinization Approaches

• Revolutionized goal-oriented MDPs’ approximation techniques
– Harnessed the speed of classical planners

– Eventually, started to take into account probabilities

• Classical planners help by quickly finding paths to a goal
– Takes “probabilistic” MDP solvers a while to find them on their own

• However…
– Still almost completely disregard expect cost of a solution

– Often assume uniform action costs (since many classical planners do)

– So far, not useful on finite-horizon MDPs turned goal-oriented
• Reaching a goal in them is trivial, need to approximate reward more directly

– Impractical on problems with large numbers of outcomes

26

Outline

Motivation + Overview

Determinization-based Algorithms

• Heuristic Search with Inadmissible Heuristics

• Dimensionality Reduction

• Monte-Carlo Planning

• Hierarchical Planning

• Hybridized Planning

27

Inadmissible Heuristic Search

• Why?

– May require less space than admissible heuristic search

• Apriori, no reason to expect an arbitrary inadmissible
heuristic to yield a small solution

– But, empirically, those based on determinization often do

• Same algos as for admissible HS, only heuristics differ

28

The FF Heuristic

• Taken directly from deterministic planning
• Uses the all-outcome determinization of an MDP

– But ignores the delete effects (negative literals in action outcomes)

• hFF(s) = approximately optimal cost of a plan from s to a goal in the

delete relaxation
• Very fast due to using the delete relaxation
• Very informative

29

[Hoffmann and Nebel, 2001]

x1

x2, ┐x4

┐x3, x5 x1

x2, ┐x4 x2, ┐x4

┐x3, x5

The GOTH Heuristic

• Designed for MDPs at the start (not adapted classical)

• Motivation: would be good to estimate h(s) as cost of a
non-relaxed deterministic goal plan from s

– But too expensive to call a classical planner from every s

– Instead, call from only a few s and generalize estimates to others

30

[Kolobov, Mausam, Weld, 2010a]

Regressing Trajectories

31

Plan
preconditions

 = 1

 = 2

Precondition
costs

Plan Preconditions

32

Nogoods

33

Nogood

[Kolobov, Mausam, Weld, 2010a]

34

Computing Nogoods

• Machine learning algorithm

– Adaptively scheduled generate-and-test procedure

• Fast, sound

• Beyond the scope of this tutorial…

Estimating State Values

• Intuition

– Each plan precondition cost is a “candidate”
heuristic value

• Define hGOTH(s) as MIN of all available plan precondition
values applicable in s

– If none applicable in s, run a classical planner and find some

– Amortizes the cost of classical planning across many states

• More informative than hFF

35

Open Questions in Inadmissible HS

• Still not clear when and why determinization-based
inadmissible heuristics appear to work well

– Due to an experimental bias (MDPs with uniform action costs)?

• Need more research to figure it out…

36

Outline

Motivation + Overview

Determinization-based Algorithms

Heuristic Search with Inadmissible Heuristics

• Dimensionality Reduction

• Monte-Carlo Planning

• Hierarchical Planning

• Hybridized Planning

37

Dimensionality Reduction: Motivation

• No approximate methods so far explicitly try to save space

• Dimensionality reduction attempts to do exactly that

– Insight: V* and π* are functions of ~|S| parameters (states)

– Replace it with an approximation with r << |S| params …

– … in order to save space

• How to do it?

– Obtain r basis functions bi, let V*(s) ≈ ∑iwi bi(s), find wi

38

ReTrASE

• Derives basis functions from the all-outcomes
determinization

– one plan precondition in GOTH => one basis function

– bp(s) = 1 if plan precodition p holds in state s, ∞ otherwise

• Sets V(s) = mini wibi(s)

• Learns weights wi by running modified Bellman backups

39

[Kolobov, Mausam, Weld, 2009]

Approximate Policy Iteration

• Reminder: Policy Iteration

– Policy evaluation

– Policy improvement

• Approximate Policy Iteration

– Policy evaluation: compute the best linear approx. of Vπ

– Policy improvement: same as for PI

• Does API converge?

– In theory, no; can oscillate if linear approx. for some policies coincide

– In practice, usually, yes

40

[Guestrin, Koller, Parr, Venkataraman, 2003]

Approximate Policy Iteration

• Let V(s) ≈ ∑iwi bi(s), where bi's are given by the user

• If a user gives a set B of basis functions, how do we pick w1,
…, w|B| s.t. |Vπ - ∑iwi bi| is the smallest?

• Insight: assume each b depends on at most z << |X| vars

• Then, can formulate LP with only O(2z) constraints to find wi's

– Much smaller than |S| = O(2|X|)

 41

FPG

• Directly learns a policy, not a value function

• For each action, defines a desirability function

• Mapping from state variable values to action “quality”
– Represented as a neural network

– Parameters to learn are network weights θa,1, …, θa,m for each a
42

X1 Xn … …

fa (X1, …, Xn)

θa,1 θa,2 θa,m-1 θa,m θa, …

θa

[Buffet and Aberdeen, 2006, 2009]

FPG

• Policy (distribution over actions) is given by a softmax

• To learn the parameters:

– Run trials

– After taking each action, compute the gradient w.r.t. weights

– Adjust weights in the direction of the gradient

– Makes actions causing expensive trajectories to be less desirable

43

Outline

Motivation + Overview

Determinization-based Algorithms

Heuristic Search with Inadmissible Heuristics

Dimensionality Reduction

• Monte-Carlo Planning

• Hierarchical Planning

• Hybridized Planning

44

Monte-Carlo Planning: Motivation

• Characteristics of the Inventory Management problem:

– Enormous reachable state space

– High-entropy T (2|X| outcomes per action, many likely ones)
• Building determinizations can be super-expensive

• Doing Bellman backups can be super-expensive

• Solution: Monte-Carlo Tree Search

– Does not manipulate T or R explicitly – no Bellman backups

– Relies on a world simulator – indep. of MDP description size

45

UCT: An MCTS Algorithm

• UCT [Kocsis & Szepesvari, 2006]
– Plans online finds best action for the current state

– Similar to learning a policy for a multiarmed bandit

• Success stories:
– Go (thought impossible in ‘05, human grandmaster level at 9x9 in ‘08)

– Klondike Solitaire (wins 40% of games)

– General Game Playing Competition

– Real-Time Strategy Games

– Probabilistic Planning Competition (-2011) [Keller & Eyerich, ICAPS’12]

– The list is growing…

46

UCT: An MCTS Algorithm

• Rough idea:

– Planning online, want to compute a policy for the current state

– Have some “default” starting policy, the rollout policy

– Repeatedly generate length-L trajectories starting at curr. state

– Propagate reward along the trajectories

– In the process, in states where you haven’t tried all actions, use
the rollout policy

– In states where you have tried all actions, use a tree policy

– What is the rollout and the tree policy?

47

Current World State

Rollout
policy

Terminal
(reward = 1)

1

1

1

1

At a leaf node perform a random rollout

Initially tree is single leaf

UCT Example

Slide courtesy of A. Fern
48

Current World State

1

1

1

1

Must select each action at a node at least once

0

Rollout
Policy

Terminal
(reward = 0)

Slide courtesy of A. Fern
49

UCT Example

Current World State

1

1

1

1

Must select each action at a node at least once

0

0

0

0

Slide courtesy of A. Fern
50

UCT Example

Current World State

1

1

1

1

When all node actions tried once, select action according to tree policy

0

0

0

0

Tree Policy

0

Rollout
Policy

Slide courtesy of A. Fern
51

UCT Example

Current World State

1

1

1

1/2

When all node actions tried once, select action according to tree policy

0

0

0

0
Tree
Policy

0

0

0

What is an appropriate
tree policy?
Rollout policy?

Slide courtesy of A. Fern
52

UCT Example

• Rollout policy:

– Basic UCT uses random

• Tree policy:
– Want to balance exploration and exploitation
– Q(s,a) : average reward received in current trajectories after

taking action a in state s

– n(s,a) : number of times action a taken in s

– n(s) : number of times state s encountered

),(

)(ln
),(maxarg)(

asn

sn
casQs aUCT 

Theoretical constant that must
be selected empirically in practice.

53

UCT Details

Exploration term

Current World State

1

1

1

1/2

When all node actions tried once, select action according to tree policy

0

0

0

0
Tree
Policy

0

0

0

a1 a2
),(

)(ln
),(maxarg)(

asn

sn
casQs aUCT 

Slide courtesy of A. Fern
54

UCT Example

• The more simulations, the more accurate

– Guaranteed to pick suboptimal actions exponentially rarely after
convergence (under some assumptions)

• Possible improvements

– Initialize the state-action pairs with a heuristic (need to pick a weight)

– Think of a better-than-random rollout policy

• Best student paper at ICAPS’13 is on UCT!

– Keller, Helmert, “Trial-Based Heuristic Tree Search for Finite-Horizon
MDPs”, presented on June, 12 after lunch

55

UCT Summary & Theoretical Properties

• Optimizes cumulative regret

– Total amount of regret during state space exploration

– Appropriate in RL

• In planning, simple regret is more appropriate

– Regret during state space exploration is fictitious

– Only regret of the final policy counts!

56

UCT Caveat

BRUE: Monte-Carlo Planning

• Modifies UCT to minimize simple regret directly

• In UCT, simple regret diminishes at a polynomial rate
in # samples

• In BRUE, simple regret diminishes at an exponential
rate

• Simple modification to UCT
– For every trajectory, sample a number K = [1,L]
– Use random policy up to step K, tree or random afterwards

57

[Feldman and Domshlak, 2012]

Outline

Motivation + Overview

Determinization-based Algorithms

Heuristic Search with Inadmissible Heuristics

Dimensionality Reduction

Monte-Carlo Planning

• Hierarchical Planning

• Hybridized Planning

58

Hierarchical Planning: Motivation

• Some MDPs are too hard to solve w/o prior knowledge

– Also, arbitrary policies for such MDPs may be hard to interpret

• Need a way to bias the planner towards “good” policies

– And to help the planner by providing guidance

• That’s what hierarchical planning does

– Given some prespecified (e.g., by the user) parts of a policy …

– … planner “fills in the details”

– Essentially, breaks up a large problem into smaller ones

59

Hierarchical Planning with Options

• Suppose you have precomputed policies (options) for
some primitive behaviors of a robot

• Suppose you want to teach the robot how to dance
– You give a hier. planner options for robot’s primitive behaviors

– The planner computes a policy for dancing that uses options as
subroutines

60

Task Hierarchies

• The user breaks down a task into a hierarchy of subgoals

• The planner chooses which subgoals to achieve at each level,
and how

– Subgoals are just hints

– Not all subgoals may be necessary to achieve the higher-level goal

61

Get into the car

Walk up to
the car

Open left
front door

Open right
front door

Go
outside

Cross the
street

… …

Hierarchies of Abstract Machines (HAMs)

• More general hierarchical representation

• Each machine is a finite-state automaton w/ 4 node types

• The user supplies a HAM

• The planner needs to decide what to do in choice nodes

62

Execute
action a

Call
another

machine H

Choose a machine from
{H1, … , Hn} and execute it

Stop execution/return
control to a higher-level

machine

Optimality in Hierarchical Planning

• Hierarchy constraints may disallow globally optimal π*

• Next-best thing: a hierarchically optimal policy
– The best policy obeying the hierarchy constraints

– Not clear how to find it efficiently

• A more practical notion: a recursively optimal policy
– A policy optimal at every hierarchy level, assuming that policies at lower

hierarchy levels are fixed

– Optimization = finding optimal policy starting from lowest level

• Hierarchically optimal doesn’t imply recursively optimal, and v. v.
– But hierarchically optimal is always at least as good as recursively optimal

63

Learning Hierarchies

• Identifying useful subgoals

– States in “successful” and not in “unsuccessful” trajectories

– Such states are similar to landmarks

• Breaking up an MDP into smaller ones

– State abstraction (removing variables irrelevant to the subgoal)

• Still very much an open problem

64

Outline

Motivation + Overview

Determinization-based Algorithms

Heuristic Search with Inadmissible Heuristics

Dimensionality Reduction

Monte-Carlo Planning

Hierarchical Planning

• Hybridized Planning

65

Hybridized Planning: Motivation

• Sometimes, need to arrive at a provably “reasonable”
(but possibly suboptimal) solution ASAP

66

Fast suboptimal planner

Slower optimal planner

Suboptimal policy

Optimal policy
(if enough time)

Hybridize!

Hybridized Planning

• Hybridize MBP and LRTDP

• MBP is a non-deterministic planner

– Gives a policy guaranteed to reach the goal from everywhere

– Very fast

• LRTDP is an optimal probabilistic planner

– Amends MBP’s solution to have a good expected cost

• Optimal in the limit, produces a good policy quickly

67

[Mausam, Bertoli, Weld, 2007]

Summary

• Surveyed 6 different approximation families
– Determinization-based

– Inadmissible heuristic search

– Dimensionality reduction

– Monte-Carlo planning

– Hierarchical planning

– Hybridized planning

• Address different “difficult” aspects of MDPs

• Takeaway: no silver bullet

68

