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Why Approximate? 

Difficult example applications: 
– Inventory management 

   “How much X to order from 

   the supplier every day until 

   the end of the season?” 

Lots of uncertainty,  
large planning horizon 
 

– Landing damaged aircraft 

   “What’s the safest way to  

 land a damaged airplane?” 

Large expected plan length,  
possibility of a disaster 
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Formal Models: Finite-Horizon MDPs 

FH MDP is a tuple <S, A, D, T, R, s0>, where: 

• S is a finite state space 

• D is a sequence of time steps (1,2,3, …,  L) up to a finite horizon L 

• A is a finite action set 

• T: S x A x S x D [0, 1] is a transition function 

• R: S x A x S x D  R is a reward function 

• s0 is the initial state 

 

Solution:  policy  π*: S x D  A maximizing  exp. reward 
from s0 
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Formal Models: Goal-oriented MDPs 

Goal-oriented MDP is a tuple <S, A, T, C, G, s0, p>, where: 
• S is a finite state space 

• A is a finite action set 

• T: S x A x S [0, 1] is a stationary transition function 

• C: S x A x S  R+ is a stationary cost function (= -R: S x A x S  R-) 

• G is a set of absorbing cost-free goal states 

• s0 is the initial state 

• p is a penalty for entering a dead end 

 
Solution:  policy  π*: S  A minimizing expected cost     

from s0 
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Overview of the State of the Art  
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Determinization-based Techniques 

• High-level idea: 
1. Compile MDP into its determinization 
2. Generate plans in the determinization 
3. Use the plans to choose an action in the curr. state 
4. Execute, repeat 

 
• Key insight: 

– Classical planners are very fast 
 

• Key assumption: 
– The MDP is goal-oriented and in factored representation 
– I.e., MDP components are expressed in terms of state variables 
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Example Factored Goal-Oriented MDP 

• Gremlin wants to sabotage an airplane 

 
• Can use tools to fulfill its objective 

 

• Needs to pick up the tools 

 
• X  = {                                 } 

 

• G  =  
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Example Factored Goal-Oriented MDP 
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Example Factored Goal-Oriented MDP 
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Back to Determinization-based Planning: 
All-Outcome Determinization 

Each outcome of each probabilistic action  separate action 

11 

P = 9/10 

P = 1/10 



Most-Likely-Outcome Determinization 
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FF-Replan: Overview & Example 
1) Find a goal plan in 

a determinization 

13 

2) Try executing it 

in the original MDP 

    

3) Replan&repeat if  

unexpected outcome 

  

[Yoon, Fern, Givan, 2007] 



FF-Replan: Theoretical Properties 

• Super-efficient on goal-oriented MDPs w/o dead ends 
– Won two IPPCs (-2004 and -2006) against much more 

sophisticated techniques 

 

• Ignores probability of deviation from the found plan 
– Results in long-winded paths to the goal 

– Troubled by probabilistically interesting MDPs [Little, Thiebaux, 
2007] 
• There, an unexpected outcome may lead to catastrophic consequences 

 

• In particular, breaks down in the presence of dead ends 
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FF-Hindsight: Putting “Probabilistic” Back 
Into Planning 

• FF-Replan is oblivious to probabilities 
– Its main undoing 
– How do we take them into account? 

 

• Suppose you knew the future… 
– Knew would happen if you executed action a t steps from now 
– The problem would be deterministic, could easily solve it 

 

• Don’t actually know the future… 
– …but can sample several futures probabilistically 
– Solutions tell which actions are likely to start successful policies 
 

• Basic idea behind FF-Hindsight 
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FF-Hindsight: Example 
Action 

Probabilistic 
Outcome 

Time 1 

Time 2 

Goal State 
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Action 
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Dead End 
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A1 A2 A1 A2 A1 A2 A1 A2 

s0 

Slide courtesy of S. Yoon, A. Fern, R. Givan, and R. Kambhampati 

[Yoon, Fern, Givan, Kambhampati, 2010] 



FF-Hindsight: Sampling a Future-1 
Action 

Probabilistic 
Outcome 

Time 1 

Time 2 

Goal State 
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Action 

State 

Dead End A1: 1 
A2: 0 

A1 A2 

A1 A2 A1 A2 A1 A2 A1 A2 

Slide courtesy of S. Yoon, A. Fern, R. Givan, and R. Kambhampati 

s0 



FF-Hindsight: Sampling a Future-2 
Action 

Probabilistic 
Outcome 

Time 1 

Time 2 

Goal State 
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Action 

State 

Dead End A1: 2 
A2: 1 

A1 A2 

A1 A2 A1 A2 A1 A2 A1 A2 

Slide courtesy of S. Yoon, A. Fern, R. Givan, and R. Kambhampati 

s0 



Providing Solution Guarantees 

• FF-Replan provides no solution guarantees 
– May have probabaility of reaching the goal PG = 0 on MDPs with 

dead ends, even if P*G > 0  

 

 

• FF-Hindsight provides only theoretical guarantees 
– Practical implementations too distinct from theory 

 

 

• RFF (Robust FF) provides quality guarantees in practice 
– Constructs a policy tree out of deterministic plans 
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RFF: Initialization 
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S0 G 

1. Generate either the AO or MLO determinization. Start with the 
policy graph consisting of the initial state s0 and all goal states G 

[Teichteil-Königsbuch, Infantes , Kuter, 2010] 



RFF: Finding an Initial Plan 
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S0 G 

2. Run FF on the chosen determinization and add all the states 
along the found plan to the policy graph. 



RFF: Adding Alternative Outcomes  
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S0 G 

3. Augment the graph with states to which other outcomes of the 
actions in the found plan could lead and that are not in the graph 
already. They are the policy graph’s fringe states. 



RFF: Run VI 
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S0 G 

4. Run VI to propagate heuristic values of the newly added states. 
This possibly changes the graph’s fringe and helps avoid dead ends! 



RFF: Computing Replanning Probability 
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S0 G 

5. Estimate the probability P(failure) of reaching the fringe states 
(e.g., using Monte-Carlo sampling) from s0. This is the current 
partial policy’s failure probability w.r.t. s0.  

 If P(failure) > ε 

P(failure) = ? 
 

Else, done! 



RFF: Finding Plans from the Fringe  
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S0 G 

6. From each of the fringe states, run FF to find a plan to reach 
the goal or one of the states already in the policy graph. 

Go back to step 3: Adding Alternative Outcomes 



Summary of Determinization Approaches 

• Revolutionized goal-oriented MDPs’ approximation techniques 
– Harnessed the speed of classical planners 

– Eventually, started to take into account probabilities 

 

 

• Classical planners help by quickly finding paths to a goal 
– Takes “probabilistic” MDP solvers a while to find them on their own 

 

• However… 
– Still almost completely disregard expect cost of a solution 

– Often assume uniform action costs (since many classical planners do) 

– So far, not useful on finite-horizon MDPs turned goal-oriented 
• Reaching a goal in them is trivial, need to approximate reward more directly 

– Impractical on problems with large numbers of outcomes 
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Outline 

Motivation + Overview 

Determinization-based Algorithms 

• Heuristic Search with Inadmissible Heuristics 

• Dimensionality Reduction 

• Monte-Carlo Planning 

• Hierarchical Planning 

• Hybridized Planning 
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Inadmissible Heuristic Search 

• Why? 

– May require less space than admissible heuristic search 

 

 

• Apriori, no reason to expect an arbitrary inadmissible 
heuristic to yield a small solution 

– But, empirically, those based on determinization often do   

 

• Same algos as for admissible HS, only heuristics differ 
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The FF Heuristic 

• Taken directly from deterministic planning  
• Uses the all-outcome determinization of an MDP 

– But ignores the delete effects (negative literals in action outcomes) 
 
 
 
 

 
 
 
 

 
• hFF(s) = approximately optimal cost of a plan from s to a goal in the 

delete relaxation  
• Very fast due to using the delete relaxation 
• Very informative 
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[Hoffmann and Nebel, 2001] 
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The GOTH Heuristic 

• Designed for MDPs at the start (not adapted classical) 

 

 

• Motivation: would be good to estimate h(s) as cost of a 
non-relaxed deterministic goal plan from s 

– But too expensive to call a classical planner from every s 

– Instead, call from only a few s and generalize estimates to others 
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[Kolobov, Mausam, Weld, 2010a] 



Regressing Trajectories 
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Plan Preconditions 

32 



Nogoods 
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Nogood 

[Kolobov, Mausam, Weld, 2010a] 
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Computing Nogoods 

• Machine learning algorithm 

– Adaptively scheduled generate-and-test procedure 

 

• Fast, sound 

 

• Beyond the scope of this tutorial… 

 

 

 



Estimating State Values 

• Intuition 

– Each plan precondition cost is a “candidate” 
heuristic value  

 

• Define hGOTH(s) as MIN of all available plan precondition 
values applicable in s 

– If none applicable in s, run a classical planner and find some 

– Amortizes the cost of classical planning across many states 

• More informative than hFF 
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Open Questions in Inadmissible HS 

 

 

• Still not clear when and why determinization-based 
inadmissible heuristics appear to work well 

– Due to an experimental bias (MDPs with uniform action costs)? 

 

• Need more research to figure it out… 
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Dimensionality Reduction: Motivation 

• No approximate methods so far explicitly try to save space 

 

• Dimensionality reduction attempts to do exactly that 

– Insight:  V* and π* are functions of ~|S| parameters (states) 

– Replace it with an approximation with r  << |S| params … 

– … in order to save space 

 

• How to do it? 

– Obtain r basis functions bi, let V*(s) ≈ ∑iwi bi(s),  find wi  
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ReTrASE 

• Derives basis functions from the all-outcomes 
determinization 

– one plan precondition in GOTH => one basis function  

– bp(s) = 1 if plan precodition p holds in state s, ∞ otherwise 

 

• Sets V(s) = mini wibi(s) 

 

• Learns weights wi by running modified Bellman backups 
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Approximate Policy Iteration  

• Reminder: Policy Iteration 

– Policy evaluation 

– Policy improvement 

 

• Approximate Policy Iteration 

– Policy evaluation: compute the best linear approx. of Vπ 

– Policy improvement: same as for PI 

 

• Does API converge? 

– In theory, no; can oscillate if linear approx. for some policies coincide 

– In practice, usually, yes 
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[Guestrin, Koller, Parr, Venkataraman, 2003] 



Approximate Policy Iteration 

• Let V(s) ≈ ∑iwi bi(s), where bi's are given by the user 

 

• If a user gives a set B of basis functions, how do we pick w1, 
…, w|B| s.t. |Vπ - ∑iwi bi| is the smallest? 

 

• Insight: assume each b depends on at most z << |X| vars 

 

 

• Then, can formulate LP with only O(2z) constraints to find wi's 

– Much smaller than |S| = O(2|X|) 
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FPG 

• Directly learns a policy, not a value function 

• For each action, defines a desirability function 

 

 

 

 

 

 

• Mapping from state variable values to action “quality” 
– Represented as a neural network 

– Parameters to learn are network weights θa,1, …, θa,m for each a 
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X1 Xn … … 

fa (X1, …, Xn) 

θa,1 θa,2 θa,m-1 θa,m θa, … 

θa 

[Buffet and Aberdeen, 2006, 2009] 



FPG 

• Policy (distribution over actions) is given by a softmax 

 

 

 

 

• To learn the parameters: 

– Run trials 

– After taking each action, compute the gradient w.r.t. weights 

– Adjust weights in the direction of the gradient 

– Makes actions causing expensive trajectories to be less desirable 
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Monte-Carlo Planning: Motivation 

• Characteristics of the Inventory Management problem: 

– Enormous reachable state space 

– High-entropy T (2|X| outcomes per action, many likely ones) 
• Building determinizations can be super-expensive 

• Doing Bellman backups can be super-expensive 

 

 

• Solution: Monte-Carlo Tree Search 

– Does not manipulate T or R explicitly – no Bellman backups  

– Relies on a world simulator – indep. of MDP description size 
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UCT: An MCTS Algorithm 

• UCT [Kocsis & Szepesvari, 2006] 
– Plans online finds best action for the current state  

– Similar to learning a policy for a multiarmed bandit 

 

 

• Success stories: 
– Go (thought impossible in ‘05, human grandmaster level at 9x9 in ‘08)  

– Klondike Solitaire (wins 40% of games) 

– General Game Playing Competition 

– Real-Time Strategy Games 

– Probabilistic Planning Competition (-2011) [Keller & Eyerich, ICAPS’12] 

– The list is growing… 
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UCT: An MCTS Algorithm 

• Rough idea: 

– Planning online, want to compute a policy for the current state 

– Have some “default” starting policy, the rollout policy 

– Repeatedly generate length-L trajectories starting at curr. state 

– Propagate reward along the trajectories 

– In the process, in states where you haven’t tried all actions, use 
the rollout policy 

– In states where you have tried all actions, use a tree policy 

– What is the rollout and the tree policy? 
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Current World State 

Rollout 
policy 

Terminal 
(reward = 1) 

1 

1 

1 

1 

At a leaf node perform a random rollout 

Initially tree is single leaf 

UCT Example 

Slide courtesy of  A. Fern 
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Current World State 

1 

1 

1 

1 

Must select each action at a node at least once 

0 

Rollout 
Policy 

Terminal 
(reward = 0) 

Slide courtesy of  A. Fern 
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UCT Example 



Current World State 
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1 
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0 

0 

Slide courtesy of  A. Fern 
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UCT Example 



Current World State 

1 

1 

1 

1 

When all node actions tried once, select action according to tree policy 

0 

0 

0 

0 

Tree Policy 

0 

Rollout 
Policy 

Slide courtesy of  A. Fern 
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UCT Example 



Current World State 

1 

1 

1 

1/2 

When all node actions tried once, select action according to tree policy 

0 

0 

0 

0 
Tree  
Policy 

0 

0 

0 

What is an appropriate 
tree policy? 
Rollout policy?  

Slide courtesy of  A. Fern 
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UCT Example 



• Rollout policy: 

– Basic UCT uses random 

 

• Tree policy: 
– Want to balance exploration and exploitation 
– Q(s,a) : average reward received in current trajectories after 

taking action a in state s 

– n(s,a) : number of times action a taken in s 

– n(s) : number of times state s encountered 

 
),(

)(ln
),(maxarg)(

asn

sn
casQs aUCT 

Theoretical constant that must  
be selected empirically in practice.  
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UCT Details 

Exploration term 



Current World State 

1 

1 

1 

1/2 

When all node actions tried once, select action according to tree policy 

0 

0 

0 

0 
Tree  
Policy 

0 

0 
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a1 a2 
),(

)(ln
),(maxarg)(

asn

sn
casQs aUCT 

Slide courtesy of  A. Fern 
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UCT Example 



• The more simulations, the more accurate 

– Guaranteed to pick suboptimal actions exponentially rarely after 
convergence (under some assumptions) 

 

• Possible improvements 

– Initialize the state-action pairs with a heuristic (need to pick a weight) 

– Think of a better-than-random rollout policy 

 

• Best student paper at ICAPS’13 is on UCT! 

– Keller, Helmert, “Trial-Based Heuristic Tree Search for Finite-Horizon 
MDPs”, presented on June, 12 after lunch 
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UCT Summary & Theoretical Properties 



• Optimizes cumulative regret 

– Total amount of regret during state space exploration 

– Appropriate in RL 

 

 
• In planning, simple regret is more appropriate 

– Regret during state space exploration is fictitious 

– Only regret of the final policy counts! 
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UCT Caveat 



BRUE: Monte-Carlo Planning 

• Modifies UCT to minimize simple regret directly 
 

• In UCT, simple regret diminishes at a polynomial rate 
in # samples 
 

• In BRUE, simple regret diminishes at an exponential 
rate 
 

• Simple modification to UCT 
– For every trajectory, sample a number K = [1,L]  
– Use random policy up to step K, tree or random afterwards 

57 

[Feldman and Domshlak, 2012] 
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Hierarchical Planning: Motivation 

• Some MDPs are too hard to solve w/o prior knowledge 

– Also, arbitrary policies for such MDPs may be hard to interpret 

 

• Need a way to bias the planner towards “good” policies 

– And to help the planner by providing guidance 

 

• That’s what hierarchical planning does 

– Given some prespecified (e.g., by the user) parts of a policy … 

– … planner “fills in the details” 

– Essentially, breaks up a large problem into smaller ones 
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Hierarchical Planning with Options 

• Suppose you have precomputed policies (options) for 
some primitive behaviors of a robot 

 

 

 

 

 

• Suppose you want to teach the robot how to dance 
– You give a hier. planner options for robot’s primitive behaviors 

– The planner computes a policy for dancing that uses options as 
subroutines 
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Task Hierarchies 

• The user breaks down a task into a hierarchy of subgoals 

 

 

 

 

 

 

• The planner chooses which subgoals to achieve at each level, 
and how 

– Subgoals are just hints 

– Not all subgoals may be necessary to achieve the higher-level goal 
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Walk up to 
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Open left 
front door 

Open right 
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Go 
outside 

Cross the 
street 

… … 



Hierarchies of Abstract Machines (HAMs) 

• More general hierarchical representation 

• Each machine is a finite-state automaton w/ 4 node types 

 

 

 

 

 

• The user supplies a HAM 

• The planner needs to decide what to do in choice nodes 
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Execute 
action a 

Call 
another 

machine H 

Choose a machine from    
{H1, … , Hn} and execute it 

Stop execution/return 
control to a higher-level 

machine 



Optimality in Hierarchical Planning 

• Hierarchy constraints may disallow globally optimal π* 

 

• Next-best thing: a hierarchically optimal policy 
– The best policy obeying the hierarchy constraints 

– Not clear how to find it efficiently 

 

• A more practical notion: a recursively optimal policy 
– A policy optimal at every hierarchy level, assuming that policies at lower 

hierarchy levels are fixed 

– Optimization = finding optimal policy starting from lowest level 

 

• Hierarchically optimal doesn’t imply recursively optimal, and v. v. 
– But hierarchically optimal is always at least as good as recursively optimal 
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Learning Hierarchies 

• Identifying useful subgoals 

– States in “successful” and not in “unsuccessful” trajectories 

– Such states are similar to landmarks 

 

• Breaking up an MDP into smaller ones 

– State abstraction (removing variables irrelevant to the subgoal) 

 

• Still very much an open problem 
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Hybridized Planning: Motivation 

• Sometimes, need to arrive at a provably “reasonable” 
(but possibly suboptimal) solution ASAP  
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Fast suboptimal planner 

Slower optimal planner 

Suboptimal policy 

Optimal policy     
(if enough time) 

Hybridize! 



Hybridized Planning 

• Hybridize MBP and LRTDP 

 

• MBP is a non-deterministic planner 

– Gives a policy guaranteed to reach the goal from everywhere 

– Very fast 

 

• LRTDP is an optimal probabilistic planner 

– Amends MBP’s solution to have a good expected cost 

 

• Optimal in the limit, produces a good policy quickly 
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[Mausam, Bertoli, Weld, 2007] 



Summary 

• Surveyed 6 different approximation families 
– Determinization-based 

– Inadmissible heuristic search 

– Dimensionality reduction 

– Monte-Carlo planning 

– Hierarchical planning 

– Hybridized planning 

 

• Address different “difficult” aspects of MDPs 

 

• Takeaway: no silver bullet 
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