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ABSTRACT
We propose a multi-sensor affect recognition system and
evaluate it on the challenging task of classifying interest (or
disinterest) in children trying to solve an educational puz-
zle on the computer. The multimodal sensory information
from facial expressions and postural shifts of the learner is
combined with information about the learner’s activity on
the computer. We propose a unified approach, based on a
mixture of Gaussian Processes, for achieving sensor fusion
under the problematic conditions of missing channels and
noisy labels. This approach generates separate class labels
corresponding to each individual modality. The final classifi-
cation is based upon a hidden random variable, which prob-
abilistically combines the sensors. The multimodal Gaus-
sian Process approach achieves accuracy of over 86%, sig-
nificantly outperforming classification using the individual
modalities, and several other combination schemes.

Categories and Subject Descriptors
I.5 [Computing Methodologies]: Pattern Recognition;
I.4.9 [Image Processing and Computer Vision]: Ap-
plications; J.4 [Computer Applications]: Social and Be-
havioral Sciences

General Terms
Algorithms, Design, Human Factors, Performance

1. INTRODUCTION
We present a framework to automatically extract, process
and model sequences of natural occurring non-verbal behav-
ior for recognizing affective states that occur during natural
learning situations. The framework will be a component
in computerized learning companions [1, 6] that could pro-
vide effective personalized assistance to children engaged in
learning explorations and will also help in developing theo-
retical understanding of human behavior in learning situa-
tions.
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This work tackles a number of challenging issues. While
most of the prior work on emotion recognition has focused
on posed emotions by actors, our emphasis has been on nat-
urally occurring non-verbal behaviors as it is crucial that the
system is capable of dealing with the unconstrained nature
of real data. Second, despite the advances in face analysis
and gesture recognition, the real-time sensing of non-verbal
behaviors is still a challenging problem. In this work we
demonstrate a multi-modal system that can automatically
extract non-verbal behaviors and features from face and pos-
tures, which can be used to detect affective states. Third,
training a pattern classification system needs labeled data.
Unlike the case of posed emotions, in natural data getting
the ground truth of labels is a challenging task. We discuss
how we can label the data reliably for different affective
states. Moreover, we note that there is always an uncer-
tainty about the true labels of the data. There might be
labeling noise; that is, some data points might have incor-
rect labels; thus, requiring a principled approach to handle
any labeling noise in the data. Finally, we address pattern
recognition in the multi-modal scenario, which has been ad-
dressed previously by using either data-level fusion or clas-
sifier combination schemes. In the former, a single classifier
is trained on joint features; however, the sensors might often
fail and result in missing or bad data, a frequent problem in
many multimodal scenarios, resulting in a significant reduc-
tion in the performance of the pattern recognition system.

We demonstrate an affect recognition system that addresses
all four challenges mentioned above. The goal of the sys-
tem is to classify affective states related to interest in chil-
dren trying to solve a puzzle on a computer. The system
uses real-time tracking of facial features and behaviors and
monitors postures to extract relevant non-verbal cues. The
extracted sensory information from the face, the postures
and the state of the puzzle are combined using a unified
Bayesian approach based on a mixture of Gaussian Process
classifiers where classification using each channel is learned
via Expectation Propagation [11]. The decision about the
affective state is made by combining the beliefs of each indi-
vidual expert using another meta-level classification system.
The approximate Bayesian inference in the model is very ef-
ficient as EP approximates the probability distribution over
each expert’s classification as a product of Gaussians and
can be updated very quickly. The system is evaluated on
natural data and it achieves an accuracy of over 86%, sig-
nificantly outperforming classification using the individual
modalities and several other combination schemes.



2. PREVIOUS WORK
A lot of research has been done to develop methods for in-
ferring affective states. Many researchers have used static
methods such as questionnaires, dialogue boxes, etc., which
are easy to administer but have been criticized for being
static and thus not able to recognize changes in affective
states. A more dynamic and objective approach for sensing
affect is via sensors such as cameras, microphones, wearable
devices, etc. However, most of the work on affect recognition
using the sensors focuses on deliberately expressed emotions
(happy /sad /angry etc.) by actors, and not on those that
arise in natural situations such as classroom learning. In the
context of learning there have been very few approaches for
the purpose of affect recognition. Notable among them is
Conati’s [2] work on probabilistic assessment of affect in ed-
ucational games. Also Mota and Picard [12] have described
a system that uses dynamic posture information to classify
different levels of interest in learning environments, which
we significantly extend to the multimodal scenario.

Despite the advances in machine recognition of human emo-
tion, much of the work on machine recognition of human
emotion has relied on a single modality. Exceptions include
the work of Picard et al.[15], which achieved 81% classifica-
tion accuracy of eight emotional states of an individual over
many days of data, based on four physiological signals, and
several efforts that have combined audio of the voice with
video of the face, e.g. Huang et al. [3], who combined these
channels to recognize six different affective states. Pantic
and Rothkrantz [14] provide a survey of other audio-video
combination efforts and an overview of issues in building a
multimodal affect recognition system.

A lot of researchers have looked into the general problem of
combining information from multiple channels. A common
approach is “feature-level fusion”, where a single classifier
is trained on joint features, formed by stacking the features
extracted from all the modalities into one big vector. Often
in affect sensing scenarios, the sensors or feature extraction
might fail, resulting in data with missing channels and re-
ducing the performance of this approach. One alternate
solution is to use decision-level fusion. Kittler et al. [9] have
described a common framework for combining classifiers and
provided theoretical justification for using operators such as
vote, sum, product, maximum and minimum. One prob-
lem with these fixed rules is that it is difficult to predict
which rule would perform best. There are methods, such as
layered HMMs [13], which perform decision fusion and sen-
sor selection depending upon utility functions and stacked
classifiers. One main disadvantage of using stacked based
classification is that these methods require a large amount
of training data. Alternatively, there are mixture-of-experts
[4] and critic-driven approaches [10] where base-level experts
are combined using critics that predict how well an expert
is going to perform on the current input. In similar spirit
Toyama and Horvitz [16] demonstrate a head tracking sys-
tem that uses contextual features as reliability indicators to
select different algorithms. In an earlier work [8] we have
proposed an expert-critic system based on HMMs to com-
bine multiple modalities. In this paper we show an alter-
native fusion strategy within the Bayesian framework which
significantly beats the earlier method.

Figure 1: The overall architecture

3. THE PROPOSED FRAMEWORK
Figure 1 describes the architecture of the proposed system.
The non-verbal behaviors are sensed through a camera and
a pressure sensing chair. The camera is equipped with In-
frared (IR) LEDs for structured lighting that help in real-
time tracking of pupils and extracting other features from
the face. Similarly the data sensed through the chair is used
to extract information about the postures. Features are ex-
tracted from the activity that the subject is doing on the
computer as well, which are then sent to a multimodal pat-
tern analyzer that combines all the information to predict
the current affective state. In this paper we focus on a sce-
nario where children try to solve puzzles on a computer.

3.1 Facial Features & Head Gestures
The feature extraction module for face and head gestures is
shown in figure 2. We use an in-house built version of the
IBM Blue Eyes Camera that tracks pupils unobtrusively us-
ing two sets of IR LEDs. One set of LEDs is on the optical
axis and produces the red eye effect. The two sets of LEDs
are switched on and off to generate two interlaced images for
a single frame.The image where the on-axis LEDs are on has
white pupils whereas the image where the off-axis LEDs are
on has black pupils. These two images are subtracted to get
a difference image, which is used to track the pupils. The
pupils are detected and tracked using the difference image,
which is noisy due to the motion artifacts and other spec-
ularities. We have elsewhere described [7] an algorithm to
track pupils reliably using the noisy difference image. Once
tracked, the pupil positions are passed to an HMM based
head-nod and head-shake detection system,which provides
the likelihoods of head-nods and head-shakes. Similarly, we
have also trained an HMM that uses the radii of the visible
pupil as inputs to produce the likelihoods of blinks. Fur-
ther, we use the system described in [7] to recover shape
information of eyes and the eyebrows. Given pupil po-
sitions we can also localize the image around the mouth.
Rather than extracting the shape of the mouth we extract
two real numbers which correspond to two kinds of mouth
activities: smiles and fidgets. We look at the sum of the
absolute difference of pixels of the extracted mouth image
in the current frame with the mouth images in the last 10
frames. A large difference in images should correspond to
mouth movements, namely the fidgets. Besides a numerical
score that corresponds to fidgets, the system also uses a sup-
port vector machine (SVM) to compute the probability of
smiles. Specifically, an SVM was trained using natural ex-
amples of mouth images, to classify mouth images as smiling
or not smiling. The localized mouth image in the current



Figure 2: Module to extract facial features.

frame is used as an input to this SVM classifier and the re-
sulting output is passed through a sigmoid to compute the
probability of smile in the current frame. The system can
extract features in real time at 27-29 frames per second on a
1.8 GhZ Pentium 4 machine. The system tracks well as long
as the subject is in the reasonable range of the camera. The
system can detect whenever it is unable to find eyes in its
field of view, which might occasionally happen due to large
head and body movements. Also, sometimes the camera can
only see the upper part of the face and cannot extract lower
facial features, which happens if the subject leans forward.
Due to these problems we often have missing information
from the face; thus, we need an affect recognition system
that is robust to such tracking failures.

3.2 The Posture Sensing Chair
Postures are recognized using two matrices of pressure sen-
sors made by Tekscan. One matrix is positioned on the
seat-pan of a chair; the other is placed on the backrest. Each
matrix is 0.10 millimeters thick and consists of a 42-by-48
array of sensing pressure units distributed over an area of
41 x 47 centimeters. A pressure unit is a variable resistor,
and the normal force applied to its superficial area deter-
mines its resistance. This resistance is transformed to an
8-bit pressure reading, which can be interpreted as an 8-bit
grayscale value and visualized as a grayscale image. Figure
3 shows the feature extraction strategy used for postures
in [12]. First, the pressure maps sensed by the chair are
pre-processed to remove noise and the structure of the map
is modeled with a mixture of Gaussians. The parameters
of the Gaussian mixture (means and variances) are used to
feed a 3-layer feed-forward neural network that classifies the
static set of postures (for example, sitting upright, leaning
back, etc.) and activity level (low, medium and high) in real
time at 8 frames per second, which are then used as posture
features by the multimodal affect classification module.

4. RECOGNIZING AFFECTIVE STATES
Table 1 shows all the features that are extracted every one
eighth of a second. We deliberately grouped them under
“channels”, separating for example the upper and lower face
features because often the upper face features were present
but not the lower. We form four different channels (table
1) and each channel corresponds to a group of features that
can go missing simultaneously depending upon which sen-

Figure 3: Module to extract posture features.

sor fails. Our strategy will be to fuse decisions from these
channels, rather than individual features, thus, preserving
some higher order statistics between different features.

Figure 4 shows the model we follow to solve the problem.
The data xp from P different channels generate soft-decisions
yp corresponding to each different channel. The variable
λ determines the channel that decides the final decision t.
Note, that λ is never observed and we have to marginalize
over λ to compute the final decision. Intuitively, this can
be thought of as weighting individual decisions yp appropri-
ately and combining them to infer the distribution over the
class label t. The weights, which corresponds to a probabil-
ity distribution over λ, depend upon the data point being
classified and are determined using another meta-level de-
cision system. While the results in this paper are obtained
with λ selecting to one channel at a time, it is possible more
generally to have it select multiple channels. The system
described in this paper uses Gaussian Process (GP) classi-
fication to first infer the probability distribution over yp for
all the channels. The final decision is gated through λ whose
probability distribution conditioned on the test point is de-
termined using another multi-label GP classification system.

We follow a Bayesian paradigm and the aim is to compute
the posterior probability of an affective label of a test point
given all the training data and the model. The next sub-
section describes the acquisition of the annotated training
data. Following that, we review GP classification using EP
and then show how to extend the idea to a Mixture of GPs in
order to handle multiple modalities in the same framework.

Table 1: Extracted features from different modali-
ties which are grouped into channels.

Channel 1: Upper Face

Brow Shape
Eye Shape

likelihood of nod
likelihood of shake
likelihood of blink

Channel 3: Posture

Current Posture
Level of Activity

Channel 2: Lower Face

Probability of Fidget
Probability of Smile

Channel 4: Game

Level of Difficulty
State of the Game
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4.1 Collecting the Database
Data collection for affective studies is a challenging task:
The subject needs to be exposed to conditions that can elicit
the emotional state in an authentic way; if we elicit affective
states on demand, it is almost guaranteed not to bring out
genuinely the required emotional state. Affective states as-
sociated with interest and boredom were elicited through an
experiment with children aged 8 to 11 years, coming from
relatively affluent areas of the state of Massachusetts in the
USA. Each child was asked to solve a constraint satisfaction
game called Fripples Place for approximately 20 minutes
and the space where the experiment took place was a nat-
uralistic setting allowing the subject to move freely. It was
arranged with the sensor chair, one computer playing the
game and recording the screen activity, having a monitor,
standard mouse and keyboard, as well as two video-cameras:
one capturing a side-view and one the frontal view; and fi-
nally, a Blue Eyes camera capturing the face. We made the
cameras unobtrusive to encourage natural responses preserv-
ing as much as possible the original behavior. Given that
we cannot directly observe the student’s internal thoughts
and emotions, nor can children in the age range of 8 and
11 years old reliably articulate their feelings, we chose to fo-
cus on labeling affective states by observers who are teach-
ers by profession. We engaged in several iterations with
teachers to ascertain a set of meaningful labels that could
be reliably inferred from the data. The teachers were al-
lowed to look at frontal video, side video, and screen ac-
tivity, recognizing that people are not used to looking at
chair pressure patterns. Eventually, we found that teach-
ers could reliably label the states of high, medium and low
interest, bored, and a state that we call “taking a break,”
which typically involved a forward-backward postural fidget
and sometimes stretching. Working separately and without
being aware of the final purpose of the coding task, teach-
ers obtained an average overall agreement (Cohen’s Kappa)
of 78.6%. In this work, we did not use data classified as
“bored” or “other” even though teachers identified them
consistently. The bored state was dropped since teachers
only classified very few episodes as bored, and this was not
enough to develop separate training and test sets. The final
database used to train and test the system included 8 differ-
ent children with 61 samples of “high interest,” 59 samples
of “low interest” and 16 samples of “taking a break.” Each
of the samples is a maximum of 8 secs long with observa-
tions recorded at 8 samples per second. Only 50 samples
had features present from all the four modalities, whereas
the other 86 samples had the face channel missing.

4.2 Gaussian Process Classification
GP classification is related to kernel machines such as SVMs
and has been well explored in the machine learning commu-
nity. Under the Bayesian framework, given a set of labeled
data points X = {x1, ..,xn}, with class labels t = {t1, .., tn}
and an unlabeled point x∗, we are interested in the distri-
bution p(t∗|X, t,x∗). Here t∗ is a random variable denot-
ing the class label for the point x∗. The idea behind GP
classification is that the hard labels t depend upon hidden
soft-labels y = {y1, ..., yn}, which are assumed to be jointly
Gaussian with the covariance between two outputs yi and
yj specified using a kernel function applied to xi and xj .
Formally, {y1, .., yn} ∼ N (0,K) where K is a n-by-n ker-
nel matrix with Kij = k(xi,xj). The observed labels t are
assumed to be conditionally independent given the soft la-
bels y and each ti depends upon yi through the conditional
distribution:

p(ti|yi) = Φ(βyi · ti)

Here, Φ(z) =
∫ z

−∞
N (z; 0, 1) which provides a quadratic

slack for labeling errors; thus, the model should be more
robust to label noise. We are also looking at other Bayesian
techniques to handle label noise and uncertainty, which we
will report in a future publication.

Our task is to infer p(t∗|D), where D = {X, t,x∗}. We use
Expectation Propagation (EP) to first approximate P (y, y∗|D)
as a Gaussian and then use the approximate distribution
p(y∗|D) ≈ N (M∗, V ∗) to classify the test point x∗:

p(t∗|D) ∝

∫
y∗

p(t∗|y∗)N (M∗, V ∗) (1)

One of the useful byproducts of EP is the Gaussian approx-
imations of the likelihoods p(ti|yi):

p(ti|yi) ≈ t̃i = si exp(−
1

2vi

(yi · ti − mi)
2) (2)

Conceptually, we can think of EP starting with the GP prior
N (0,K) over the hidden soft labels (y, y∗) and incorporating
all the approximate terms t̃i to approximate the posterior
p(y, y∗|D) = N (M,V) as a Gaussian. For details readers
are encouraged to look at [11].

4.3 Mixture of GPs for Sensor Fusion
Given n data points x̄1, .., x̄n, obtained from P different sen-
sors, our approach follows a mixture of GP model described
in figure 4. Let every ith data point be represented as x̄i =

{x(1)
i , ..,x

(P )
i }, and the soft labels as ȳi = {y(1)

i , .., y
(P )
i }.

Given λi ∈ {1, .., P}, the random variable that determines
the channel for each point’s classification, the classification
likelihood can be written as:

P (ti|ȳi, λi = j) = P (ti|y
(j)
i ) = Φ(βti · y

(j)
i )

Given a test point x̄∗, let X̄ = {x̄1, .., x̄n, x̄∗} denote all the

training and the test points. Further, let Ȳ = {y(1), ..,y(P )},
denote the hidden soft labels corresponding to each chan-
nel of all the data including the test point. Let, Q(Ȳ) =∏P

p=1 Q(y(p)) and Q(Λ) =
∏n

i=1 Q(λi), denote the approx-

imate posterior over the hidden variables Ȳ and Λ, where
Λ = {λ1, .., λn} are the switches corresponding only to the n

labeled data points. Let p(Ȳ) and p(Λ) be the priors with

p(Ȳ) =
∏P

p=1 p(y(p)), the product of GP priors and p(Λ)
uniform. Our algorithm aims to compute good approxima-
tions Q(Ȳ) and Q(Λ) to the real posteriors by iteratively
optimizing the variational bound:

F =

∫
Ȳ,Λ

Q(Ȳ)Q(Λ) log(
p(Ȳ)p(Λ)p(t|X̄, Ȳ,Λ)

Q(Ȳ)Q(Λ)
) (3)
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Figure 5: Plots comparing accuracy of Mixture GP with GP (a)-(b) and SVM (c)-(d) where the latter
methods use feature fusion. In (a) and (c) only the subset of data where all modes are intact is used. In (b)
and (d) all the data is used, as described in the text. There are 100 points on each graph and each point is
(accuracy SVM/GP, accuracy Mixture GP) and corresponds to one test run. Circle width is proportional
to the number of points having that coordinate. Points above the diagonal indicate where Mixture GP was
more accurate. While Mixture GP is better (a) or comparable (c) on average when all the modes are intact,
it is particularly better when there are noisy and missing channels (b) and (d).

Once we have the posterior over the switches, Q(λi) ∀i ∈
[1..n], we first infer the switches for the test data x̄∗ using a
meta-level GP based classification system. For this, we do
a multi-label P -way classification using the GP algorithm
described in 4.2 with Λ̂ = arg maxΛ Q(Λ) as labels. Specif-
ically, for an unlabeled point x̄∗, P different classifications
are done where each classification provides us with q∗

r , where
r ∈ {1, .., P}, and equals the probability that channel r was
chosen to classify x̄∗. The posterior Q(λ∗ = r) is then set

to
q∗r∑

P
p=1

q∗p
. In our experiments, to perform this multi-label

P -way classification, we clubbed all the channels together
using -1 as observations for the modalities that were miss-
ing. Note, that we are not limited to using all the channels
clubbed together; but, various combinations of the modal-
ities can be used including other indicator and contextual
variables. Once we have the posterior over the switch for
the test data, Q(λ∗), we can infer the class probability of an
unlabeled data x̄∗ using:

p(t∗|X̄, t) =

∫
Ȳ,λ∗

p(t∗|Ȳ, λ∗)Q(λ∗)Q(Ȳ) (4)

The main feature of the algorithm is that the classification
using EP is required only once and the bound in equation 3
can be optimized very quickly using the Gaussian approxi-
mations provided by EP. For details please refer to [5].

5. EMPIRICAL EVALUATION
We performed experiments on the collected database using
the framework to classify the state of interest (65 samples)
vs. uninterest (71 samples). The experimental methodology
was to use 50% of the data for training and use the rest for
testing. Besides the comparison with the individual modal-
ities, we also compare the mixture of GP with the HMM
based expert-critic scheme [8] and a naive feature level fu-
sion. In the naive feature level fusion, the observations from
all the channels are stacked to form a big vector and these
vectors of fused observations are then used to train and test
the classifiers. However, in our case this is not trivial as we
have data with missing channels. We test a naive feature
level fusion where we use -1 as a value of all those observa-
tions that are missing, thus, fusing all the channels into one
single vector.

All the experiments were done using GP classification as
the base classifiers and for completeness we also perform
comparisons with SVMs. Both, GP classification and SVMs
used RBF kernels and the hyperparameters for GP clas-
sification (σ, β) were selected by evidence maximization.
For SVMs we used the leave-one-out validation procedure
to select the penalty parameter C and the kernel width σ.
We randomly selected 50% of the points and computed the
hyper-parameters for both GPs and SVMs for all individual
modalities and the naive feature level fusions. This process
was repeated five times and the mean values of the hyperpa-
rameters were used in our experiments. Table 2 shows the

Table 2: Recognition rates (standard deviation in
parenthesis) averaged over 100 runs.

GP SVM

Upper Face 66.81%(6.33) 69.84%(6.74)
Lower Face 53.11%(9.49) 57.06%(9.16)
Posture 81.97%(3.67) 82.52%(4.21)
Game 57.22%(4.57) 58.85%(5.99)
Mix of GP 86.55%(4.24) -

results for individual modalities using GP classification and
SVMs. These numbers were generated by averaging over 100
runs and we report the mean and the standard deviation.
We can see that the posture channel can classify the modali-
ties best, followed by features from the upper face, the game
and the lower face. Although, the performance obtained us-
ing GP classification is similar to SVMs and slightly worse
for upper and the lower face, we find that extension of GP
to a mixture boosts the performance and leads to signifi-
cant gains over SVMs. The Mix of GP also outperformed
fixed rule based decision fusion of the individual SVM and
GP classifiers. The readers are requested to look at [5] for
similar results.

Next, we compare the Mix of GP to feature level fusion
while restricting the training and testing database to the
points where all the channels are available. The restriction
results in a significant decrease in the available data (only
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Figure 6: Performance comparison of the proposed
Mixture of GP approach on the affect dataset with
naive feature level fusions and the HMM based
expert-critic framework. Each point was generated
by averaging over 100 runs. Non overlapping of er-
ror bars, the standard errors scaled by 1.64, indi-
cates 95% significance of the performance difference.

50 total datapoints) and the mix of GP obtained an average
accuracy of 75.01% ± 1.15 over 100 runs, whereas the accu-
racy using feature level fusion was 73.77%±1.22. When we
perform naive feature level fusion using all the data, with-
out any restriction and using -1 for the channels that were
missing, we get a significant gain in average accuracy to
82.93%±0.81. However, the Mix of GP outperforms all of
these significantly with an average accuracy of 86.55%±0.55
(see figure 6 for significance). Figure 5(a) and (b) show that
the Mixture of GP not only beats feature level fusion on the
subset of data where all channels are present, but also signif-
icantly beats it when incomplete data can be used. Similar
results are obtained comparing to SVMs and are graphically
shown in figure 5 (c) and (d). Figure 6 graphically demon-
strates the performance gain obtained by the Mix of GP
approach over the feature level fusions and the HMM based
expert critic framework as implemented in [8] with FACS
features. The points in figure 6 were generated by averaging
over 100 runs. The non-overlapping error bars, standard er-
rors scaled by 1.64, signify 95% confidence in performance
difference. The Mix of GP uses all the data and can handle
the missing information better than naive fusion methods;
thus, it provides a significant performance boost.

In our earlier work [8, 5], we had used manually encoded
FACS based Action Units (AU) as features extracted from
the face. The accuracy of 66.81 ± 6.33 obtained while per-
forming GP classification with automatically extracted up-
per facial features was significantly better than the accuracy
of 54.19 ± 3.79 obtained with GP classification that used
the manually coded upper AUs. The difference is due to
two factors. First, the set of automatically extracted upper
facial features is richer than the AUs. Second, the AUs were
manually encoded by just one FACS expert, thus, resulting
in features prone to noise.

6. CONCLUSION
In this paper, we proposed a Mixture of Gaussian Processes
approach to classifying interest in a learning scenario us-
ing multiple modalities under the challenging conditions of
missing channels and uncertain labels. Using information
from upper and lower face, postures and task information,
the proposed multisensor classification scheme outperformed
several sensor fusion schemes and obtained a recognition rate

of 86%. Future work includes incorporation of active learn-
ing and application of this framework to other challenging
problems with limited labeled data.
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