
A Unified Framework for Schedule and Storage Optimization∗

William Thies†, Frédéric Vivien§, Jeffrey Sheldon†, and Saman Amarasinghe†

†Laboratory For Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139
{thies,jeffshel,saman}@lcs.mit.edu

§ICPS/LSIIT
Université Louis Pasteur

Strasbourg, France
vivien@icps.u-strasbg.fr

Abstract

We present a unified mathematical framework for analyz-
ing the tradeoffs between parallelism and storage allocation
within a parallelizing compiler. Using this framework, we
show how to find a good storage mapping for a given sched-
ule, a good schedule for a given storage mapping, and a
good storage mapping that is valid for all legal schedules.
We consider storage mappings that collapse one dimension
of a multi-dimensional array, and programs that are in a sin-
gle assignment form with a one-dimensional schedule. Our
technique combines affine scheduling techniques with occu-
pancy vector analysis and incorporates general affine depen-
dences across statements and loop nests. We formulate the
constraints imposed by the data dependences and storage
mappings as a set of linear inequalities, and apply numerical
programming techniques to efficiently solve for the shortest
occupancy vector. We consider our method to be a first
step towards automating a procedure that finds the optimal
tradeoff between parallelism and storage space.

1 Introduction

It remains an important and relevant problem in computer
science to automatically find an efficient mapping of a se-
quential program onto a parallel architecture. Though there
are many heuristic algorithms in practical systems and par-
tial or suboptimal solutions in the literature, a theoreti-
cal framework that can fully describe the entire problem
and find the optimal solution is still lacking. The difficulty
stems from the fact that multiple inter-related costs and
constraints must be considered simultaneously to obtain an
efficient executable.

While exploiting the parallelism of a program is an im-
portant step towards achieving efficiency, gains in paral-
lelism are often overwhelmed by other costs relating to data
locality, synchronization, and communication. In particu-
lar, with the widening gap between clock speed and mem-

∗This research was done while Frédéric Vivien was a Visiting Pro-
fessor in the MIT Laboratory for Computer Science. More informa-
tion on this project can be found at http://compiler.lcs.mit.edu/aov.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
PLDI 2001, Snowbird, Utah, USA.
Copyright 2001 ACM 0-89791-88-6/97/05...$5.00.

ory latency, and with modern memory systems becoming in-
creasingly hierarchical, the amount of storage space required
by a program can have a drastic effect on its performance.
Nonetheless, parallelizing compilers often employ varying
degrees of array expansion [9, 5, 1] to eliminate element-level
anti and output dependences, thereby adding large amounts
of storage that may or may not be justified by the resulting
gains in parallelism.

Thus, compilers must be able to analyze the tradeoffs
between parallelism and storage requirements in order to
arrive at an efficient executable. In this paper, we intro-
duce a unifying mathematical framework that incorporates
both schedule constraints (restricting when statements can
be executed) and storage constraints (restricting where their
results can be stored). We consider storage mappings that
collapse one dimension of a multi-dimensional array, and
programs that are in a single assignment form with a one-
dimensional schedule. Our technique incorporates general
affine dependences across statements and loop nests, mak-
ing it applicable to many scientific applications

Using this technique, we present solutions to three im-
portant scheduling problems. Namely, we show how to de-
termine 1) a good storage mapping for a given schedule, 2)
a good schedule for a given storage mapping, and 3) a good
storage mapping that is valid for all legal schedules. Our
method is precise and practical in that it reduces to a linear
program that can be efficiently solved with standard tech-
niques. We believe that these solutions represent the first
step towards automating a procedure that finds the optimal
compromise between parallelism and storage space.

The rest of this paper is organized as follows. In Sec-
tion 2 we motivate the problem abstractly, and in Section
3 we define it concretely. Section 4 formulates the method
abstractly, and Section 5 illustrates the method with exam-
ples. Experiments are described in Section 6, related work
in Section 7, and we conclude in Section 8.

2 Abstract Problem

To motivate our approach, we consider simplified descrip-
tions of the scheduling problems faced by a parallelizing
compiler. We are given a directed acyclic graph G = (V,E).
Each vertex v ∈ V represents a dynamic instance of an in-
struction; a value will be produced as a result of executing v.
Each edge (v1, v2) ∈ E represents a dependence of v2 on the
value produced by v1. Thus, each edge (v1, v2) imposes the
schedule constraint that v1 be executed before v2, and the
storage constraint that the value produced by v1 be stored
until the execution time of v2.

1

A[][] = new int[n][m]
...
for j = 1 to m

for i = 1 to n
A[i][j] = f(A[i-2][j-1], A[i][j-1], A[i+1][j-1])

Figure 1: Original code for Example 1.

Our task is to output (Θ,m), where Θ is a function map-
ping each operation v ∈ V to its execution time, and m is
the maximum number of values that we need to store at a
given time. Parallelism is expressed implicitly by assigning
the same execution time to multiple operations. To sim-
plify the problem, we ignore the question of how the values
are mapped to storage cells and assume that live values are
stored in a fully associative map of sizem. How, then, might
we go about choosing Θ and m?

2.1 Choosing a Store Given a Schedule

The first problem is to find the optimal storage mapping for
a given schedule. That is, we are given Θ and choose m such
that 1) (Θ,m) respects the storage constraints, and 2) m is
as small as possible.

This problem is orthogonal to the traditional loop paral-
lelization problem. After selecting the instruction schedule
by any of the existing techniques, we are interested in iden-
tifying the best storage allocation. That is, with schedule-
specific storage optimization we can build upon the perfor-
mance gains of any one of the many scheduling techniques
available to the parallelizing compiler.

2.2 Choosing a Schedule Given a Store

The second problem is to find an optimal schedule for a
given size of the store, if any valid schedule exists. That is,
we are given m and choose Θ such that 1) (Θ,m) respects
the schedule and storage constraints, and 2) Θ assigns the
earliest possible execution time to each instruction. Note
that ifm is too small, there might not exist a Θ that respects
the constraints.

This is a very relevant problem in practice because of
the stepwise, non-linear effect of storage size on execution
time. For example, when the storage required cannot be
accommodated within the register file or the cache, and has
to resort to the cache or the external DRAM, respectively,
the cost of storage increases dramatically. Further, since
there are only a few discrete storage spaces in the memory
hierarchy, and their size is known for a given architecture,
the compiler can adopt the strategy of trying to restrict the
store to successively smaller spaces until no valid schedule
exists. Once the storage is at the lowest possible level, the
schedule could then be shortened, having a more continuous
and linear effect on efficiency than the storage optimization.
In the end, we end up with a near-optimal storage allocation
and instruction schedule.

2.3 Choosing a Store for all Schedules

The final problem is to find the optimal storage mapping
that is valid for all legal schedules. That is, we are given a
(possibly infinite) set Ψ = {Θ1,Θ2, . . . }, where each Θ in Ψ
respects the schedule constraints. We choose m such that
1) ∀Θ ∈ Ψ, (Θ,m) respects the storage constraints, and 2)
m is as small as possible.

A[] = new int[n]
...
for j = 1 to m

for ALL i = 1 to n
A[i] = f(A[i-2], A[i], A[i+1])

Figure 2: Transformed code for Example 1. The occupancy
vector is (0,1).

Figure 3: Iteration space diagram for Example 1. Given the
schedule where each row is executed in parallel, our method iden-
tifies (0, 1) as the shortest valid occupancy vector.

A solution to this problem allows us to have the mini-
mum storage requirements without sacrificing any flexibility
of our scheduling. For instance, we could first apply our stor-
age mapping, and then arrange the schedule to optimize for
data locality, synchronization, or communication, without
worrying about violating the storage constraints.

Such flexibility could be critical if, for example, we want
to apply loop tiling [10] in conjunction with storage opti-
mization. If we optimize storage too much, tiling could
become illegal; however, we sacrifice efficiency if we don’t
optimize storage at all. Thus, we optimize storage as much
as we can without invalidating a schedule that was valid
under the original storage mapping.

More generally, if our analysis indicates that certain sched-
ules are undesirable by any measure, we could add edges to
the dependence graph and solve again for the smallest m
sufficient for all the remaining candidate schedules. In this
way, m provides the best storage option that is legal across
the entire set of schedules under consideration.

3 Concrete Problem

Unfortunately, the domain of real programs does not lend
itself to the simple DAG representation as presented above.
Primarily, loop bounds in programs are often specified by
symbolic expressions instead of constants, thereby yielding a
parameterized and infinite dependence graph. Furthermore,
even when the constants are known, the problem sizes are
too large for schedule and storage analysis on a DAG, and
the executable grows to an infeasible size if a static instruc-
tion is generated for every node in the DAG.

Accordingly, we make two sets of simplifying assump-
tions to make our analysis tractable. The first concerns
the nature of the dependence graph G and the scheduling
function Θ. Instead of allowing arbitrary edge relationships
and execution orderings, we restrict our attention to affine
dependences and affine schedules. The second assumption
concerns our approach to the optimized storage mapping.
Instead of allowing a fully associative map of size m, as
above, we employ the occupancy vector as a mechanism of
storage reuse. In the following sections, we discuss these
assumptions in the context of an example.

2

Figure 4: Iteration space diagram for Example 1. Given an occupancy vector of (0, 2), our method identifies the range of valid schedules.
An affine schedule will sweep across the space, executing a line of iterations at once. If this line falls within the gray region (as on the
left), then the schedule is valid for the occupancy vector of (0, 2). If this line falls within the striped region (as on the right) then the
schedule is valid for some occupancy vector other than (0, 2). The schedule at right is invalid because the operation at the tip of the
occupancy vector (0, 2) overwrites a value before the operation at (2, 1) can consume it.

3.1 Program Domain

Primarily, we require an affine description of the depen-
dences of the program. This formulation gives an accurate
description of the dependences of programs with static con-
trol flow and affine index expressions [6] and can be esti-
mated conservatively for others. As will become clear be-
low, restricting our attention to affine dependences allows
us to model the infinite dependence graph as a finite set of
parameters, which is central to the method.

In this paper, we further assume a single-assignment
form where the iteration space of each statement exactly
corresponds with the data space of the array written by
that statement. That is, for array references appearing on
the left hand side of a statement, the expression indexing the
i’th dimension of the array is the index variable of the i’th
enclosing loop (this is formalized below). While techniques
such as array expansion [5] can be used to convert programs
with affine dependences into this form, our analysis will be
most useful in cases where an expanded form was obtained
for other reasons (e.g., to detect parallelism) and one now
seeks to reduce storage requirements.

We will refer to the example in Figure 1, borrowed from
[17]. It clearly falls within our input domain, as the depen-
dences have constant distance, and iteration (i, j) assigns
to A[i][j]. This example represents a computation where
a one-dimensional array A[i] is being updated over a time
dimension j, and the intermediate results are being stored.
We assume that only the element A[n][m] is used outside
the loop; the other values are only temporary.

3.2 Occupancy Vectors

To arrive at a simple model of storage reuse, we borrow
the notion of an occupancy vector from Strout et al. [17].
The strategy is to reduce storage requirements by defining
equivalence classes over the locations of an array. Following
a storage transformation, all members of a given equivalence
class in the original array will be mapped to the same loca-
tion in the new array. The equivalence relation is:

R~v = {(~l1,~l2) | ∃k ∈ Z s.t. ~l1 = ~l2 + k · ~v}

and we refer to ~v as the occupancy vector. We say that A′

is the result of transforming A under the occupancy vector

~v if, for all pairs of locations (~l1,~l2) in A:

R~v(~l1,~l2) ⇐⇒ ~l1 and ~l2 are stored in same location in A′

We say that an occupancy vector ~v is valid for an array A
with respect to a given schedule Θ if transforming A under
~v everywhere in the program does not change the semantics
when the program is executed according to Θ.

Given an occupancy vector, we implement the storage
transformation using the technique of [17] in which the orig-
inal data space is projected onto the hyperplane perpen-
dicular to the occupancy vector. If an occupancy vector
intersects multiple (integral) points of the data space, then
modulation must be used to distinguish these points in the
transformed array.

Occupancy vector transformations are useful for reduc-
ing storage requirements when many of the values stored
in the array are temporary. Generally, shorter occupancy
vectors lead to smaller storage requirements because more
elements of the original array are coalesced into the same
storage location. However, the shape of the array also has
the potential to influence the transformed storage require-
ments. Throughout this paper, we assume that the shapes
of arrays have second-order effects on storage requirements,
and we refer to the “best” occupancy vector as that which
is the shortest.

We are now in a position to consider our occupancy vec-
tor analysis as applied to Example 1. First, assume that we
have chosen to execute each row in parallel so as to have
the shortest schedule. What is the best storage mapping for
this schedule? Our method can identify (0, 1) as the shortest
occupancy vector for this schedule (see Figure 3), yielding
the code in Figure 2.

Secondly, consider the case where we become interested
in adding some flexibility to our scheduling. If we lengthen
the occupancy vector to (0, 2), what is the range of sched-
ules that we can consider? As illustrated in Figure 4, our
method can identify all legal affine schedules for the occu-
pancy vector of (0, 2). We could then use affine scheduling
techniques [7] to choose amongst these schedules according
to other criteria.

3.3 Affine Occupancy Vectors

Finally, we might inquire as to the shortest occupancy vector
that is valid for all affine schedules in Example 1. An affine

3

Figure 5: Iteration space diagram for Example 1. Here the hol-
low arrow denotes an Affine Occupancy Vector that is valid for
all legal affine schedules. The gray region indicates the slopes
at which a legal affine schedule can sweep across the iteration
domain.

A[] = new int[2*n+m]
...
for j = 1 to m

for i = 1 to n
A[2*i-j+m] = f(A[2*(i-2)-(j-1)+m],

A[2*i-(j-1)+m],
A[2*(i+1)-(j-1)+m])

Figure 6: Transformed code for Example 1. The AOV is (1,2).

schedule is one where each dynamic instance of a statement
is executed at a time that is an affine expression of the loop
indices, loop bounds, and compile-time constants. To ad-
dress the problem, then, we need the notion of an Affine
Occupancy Vector:

Definition 1 An occupancy vector ~v for array A is an Affine
Occupancy Vector (AOV) if it is valid with respect to every
affine schedule Θ that respects the schedule constraints of the
original program.

Note that, in contrast to the Universal Occupancy Vector of
[17], an AOV need not be valid for all schedules; rather, it
only must be valid for affine ones. Almost all the instruction
schedules found in practice are affine, since any FOR loop
with constant increment and bounds defines a schedule that
is affine in its loop indices. (This is independent of the
array references found in practice, which are sometimes non-
affine.) In this paper, we further relax the definition of an
AOV to those occupancy vectors which are valid for all one-
dimensional1 affine schedules.

We also observe that, if tiling is legal in the original
program, then tiling is legal after transforming each array
in the program under one of its AOV’s. This follows from
the fact that two loops are tilable if and only if they can be
permuted without affecting the semantics of the program
[10]. Since each permutation of the loops corresponds to a
given affine schedule and the AOV is valid with respect to
both schedules, the AOV transformation is also valid with
respect to a tiled schedule.

Returning to our example, we find using our method
that (1, 2) is a valid AOV (see Figure 5). Any affine one-
dimensional schedule that respects the dependences in the
original code will give the same result when executed with
the transformed storage.

1A one-dimensional affine schedule assigns a scalar execution time
to each operation as an affine function of the enclosing loop indices
and symbolic constants. Multi-dimensional schedules assign vector-
valued execution times, which are ordered lexicographically; certain
programs require multi-dimensional schedules. See [7, 8, 4] for details.

4 The Method

4.1 Notation

We adopt the following notation:

• An iteration vector~i contains the values of surrounding
loop indices at a given point in the execution of the
program.

• The structural parameters ~n, of domain N , represent
loop bounds and other parameters that are unknown
at compile time, but that are fixed for any given exe-
cution of the program.

• There are ns statements S1 . . . Sns in the program.
Each statement S has an associated polyhedral do-

main DS , such that ∀~i ∈ DS , there is a dynamic in-

stance S(~i) of statement S at iteration ~i during the
execution of the program.

• With each statement S is associated a scheduling func-
tion θS which maps the instance of S on iteration ~i
to a scalar execution time. By assumption, θS is an
affine function of the iteration vector and the struc-
tural parameters: θS(~i, ~n) = ~aS ·~i +~bS · ~n + cS . The
schedule for the entire program is denoted by Θ ∈ E ,
where E is the space of all the scheduling parameters

(~aS1
,~bS1

,~cS1
), . . . , (~aSns

,~bSns
,~cSns

).

• There are np dependences P1 . . . Pnp in the program.
Each dependence Pj is a 4-tuple (Rj , Tj ,Pj , hj) where
Rj and Tj are statements, hj is a vector-valued affine
function, and Pj ⊆ DRj

is a polyhedron such that:

∀~i ∈ Pj , Rj(~i) depends on Tj(~hj(~i, ~n)) (1)

The dependences Pj are determined using an array
dataflow analysis, e.g., [6] or the Omega test [15].

• There are na arrays A1 . . . Ana in the program, and
A(S) denotes the array assigned to by statement S.
Our assumption that the data space corresponds with
the iteration space implies that for all statements S,

S(~i) writes to location ~i of A(S), and S is the only
statement writing to A. However, each array A may
still appear on the right hand side of any number of
statements, where its indices can be arbitrary affine

expressions of ~i and ~n.

• With each array A we will associate an occupancy vec-
tor ~vA that specifies the storage reuse within A. The

locations ~l1 and ~l2 in the original data space of A will
be stored in the same location following our storage

transform if and only if ~l1 = ~l2 + k ∗~vA, for some inte-
ger k. Given our assumption about the data space,
we can equivalently state that the values produced

by iterations ~i1 and ~i2 will be stored in the same lo-
cation following our storage transform if and only if
~i1 =~i2 + k ∗ ~vA, for some integer k.

4.2 Schedule Constraints

According to dependence Pj (Equation (1)), for any value of
~i in Pj , operation Rj(~i) depends on the execution of opera-

tion Tj(~hj(~i, ~n)). Therefore, in order to preserve the seman-
tics of the original program, in any new order of the com-

putations, Tj(~hj(~i, ~n)) must be scheduled at a time strictly

4

earlier than Rj(~i), for all~i ∈ Pj . We express this constraint
in terms of the scheduling function. We must have, for each
dependence Pj , j ∈ [1, np]:

∀~n ∈ N , ∀~i ∈ Pj , θRj
(~i, ~n)− θTj

(~hj(~i, ~n), ~n)− 1 ≥ 0 (2)

These dependence constraints can be solved using Farkas’
lemma as shown by Feautrier [7, 8, 4]. The result can be ex-
pressed as a polyhedron R: the set of all the legal schedules
Θ in the space of scheduling parameters E . Note that Equa-
tion (2) does not always have a solution [7]. In such a case,
one needs to use multidimensional schedules [8]. However,
in this paper, we assume that Equation (2) has a solution.

Refer to Section 5.1.1 for an example of the schedule
constraints.

4.3 Storage Constraints

The occupancy vectors induce some storage constraints. We
consider any array A. Because we assume that the data
space corresponds with the iteration space, and by definition
of the occupancy vectors, the values computed by iterations
~i and ~i+ ~vA are both stored in the same location ~l. For an
occupancy vector ~vA to be valid for a given data object A,
every operation depending on the value stored at location
~l by iteration ~i must execute no later than iteration ~i + ~vA

stores a new value at location ~l. Otherwise, following our
storage transformation, a consumer expecting to reference

the contents of ~l produced by iteration ~i could reference the

contents of ~l written by iteration ~i + ~vA instead, thereby
changing the semantics of the program. We assume that, at
a given time step, all the reads precede the writes, such that
an operation consuming a value can be scheduled for the
same execution time as an operation overwriting the value.
(This choice is arbitrary and unimportant to the method;
under the opposite assumption, we would instead require
that the consumer execute at least one step before its value
is overwritten.)

Let us consider a dependence P = (R, T, h,P). Then

operation T (~h(~i, ~n)) produces a value which will be later on

read by R(~i). This value will be overwritten by T (~h(~i, ~n) +

~vA(T)). The storage constraint imposes that T (~h(~i, ~n) +

~vA(T)) is scheduled no earlier than R(~i). Therefore, any
schedule Θ and any occupancy vector ~vA(T) respects the de-
pendence P if:

∀~n ∈ N , ∀~i ∈ Z, θT (~h(~i, ~n) + ~vA(T), ~n)− θR(~i, ~n) ≥ 0 (3)

where Z represents the domain over which the storage con-
straint applies. That is, the storage constraint applies for

all iterations ~i where ~i is in the domain of the dependence,

and where ~h(~i, ~n) + ~vA(T) is in the domain of statement T .

Formally, Z = {~i | ~i ∈ P ∧ ~h(~i, ~n) + ~vA(T) ∈ DT }. This
definition of Z is not problematic, since the intersection of
two polyhedra is defined simply by the union of the affine in-
equalities describing each, which obviously is a polyhedron.
Note, however, that Z is parameterized by both ~vA(T) and
~n, and not simply by ~n.

Equation (3) expresses the constraint on an occupancy
vector for a given dependence and a given schedule. For an
occupancy vector to be an AOV, however, it must respect all
dependences across all legal schedules. Thus, the following
constraint defines a valid AOV ~vA for each object A in the

program:

∀Θ ∈ R,∀~n ∈ N , ∀j ∈ [1, np], ∀~i ∈ Zj ,

θTj
(~hj(~i, ~n) + ~vA(Tj), ~n)− θRj

(~i, ~n) ≥ 0 (4)

See Section 5.1.1 for an illustration of the storage con-
straints.

4.4 Linearizing the Constraints

Equations (3) and (4) represent a possibly infinite set of
constraints, because of the parameters. Therefore, we need
to rewrite them so as to obtain an equivalent but finite set of
affine equations and inequalities, which we can easily solve.
Meanwhile, we seek to express the schedule (2) and storage
(4) constraints in forms affine in the scheduling parameters
Θ. This step is essential for constructing a linear program
that minimizes the length of the AOV’s.

Section 5.2 contains an illustrative example of the con-
straint linearization.

4.4.1 Reduction using the vertices of polyhedra

Any nonempty polyhedron is fully defined by its vertices,
rays and lines [16], which can be computed even in the case
of parameterized polyhedra [13]. The following theorem ex-
plains how we can use these vertices, rays and lines to reduce
the size of our sets of constraints.

Theorem 1 Let D be a nonempty polyhedron. D can be
written D = P + C, where P is a polytope (bounded polyhe-
dron) and C is a cone. Then any affine function h defined
over D is nonnegative on D if and only if 1) h is nonnega-
tive on each of the vertices of P and 2) the linear part of h
is nonnegative (resp. null) on the rays (resp. lines) of C.

Although the domain of structural parameters N is an
input of this analysis and may be unbounded, all the poly-
hedra produced by the dependence analysis of programs are
in fact polytopes, or bounded polyhedra. Therefore, in or-
der to simplify the equations, we now assume that all the
polyhedra we manipulate are polytopes, except when stated
otherwise. Then, according to Theorem 1, an affine function
is nonnegative on a polyhedron if and only if it is nonneg-
ative on the vertices of this polyhedron. We successively
use this theorem to eliminate the iteration vector and the
structural parameters from Equation (3).

4.4.2 Eliminating the Iteration Vector

Let us consider any fixed values of Θ inR and ~n inN . Then,
for all j ∈ [1, np], ~vA(Tj) must satisfy:

∀~i ∈ Zj , θTj
(~hj(~i, ~n) + ~vA(Tj), ~n)− θRj

(~i, ~n) ≥ 0 (5)

which is an affine inequality in ~i (as ~hj , θTj
, and θRj

are
affine functions). Thus, according to Theorem 1, it takes its
extremal values on the vertices of the polytope Zj , denoted
by ~z1,j , . . . , ~znz ,j . Note that Zj is parameterized by ~n and
~vA(Tj). Therefore, the number of its vertices might change
depending on the domain of values of ~n and ~vA(Tj). In this
case we decompose the domains of ~n and ~vA(Tj) into subdo-
mains over which the number and definition of the vertices
do not change [13], we solve our problem on each of these
domains, and we take the “best” solution.

5

Thus, we evaluate (5) at the extreme points of Zj , yield-
ing the following:

∀k ∈ [1, nz], θTj
(~hj(~zk,j(~vA(Tj), ~n), ~n) + ~vA(Tj), ~n)

−θRj
(~zk,j(~vA(Tj), ~n), ~n) ≥ 0

(6)

According to Theorem 1, Equations (5) and (6) are equiva-

lent. However, we have replaced the iteration vector ~i with
the vectors ~zk,j , each of which is an affine form in ~n and
~vA(Tj).

4.4.3 Eliminating the Structural Parameters

Suppose N is also a bounded polyhedron. We eliminate
the structural parameters the same way we eliminated the
iteration vector: by only considering the extremal vertices
of their domain N . Thus, for any fixed value of Θ in R, j
in [1, np], and k in [1, nz] we must have:

∀~n ∈ N , θTj
(~hj(~zk,j(~vA(Tj), ~n), ~n) + ~vA(Tj), ~n)

−θRj
(~zk,j(~vA(Tj), ~n), ~n) ≥ 0

(7)

Denoting the vertices of N by (~w1, . . . , ~wnw), the above
equation is equivalent to:

∀l ∈ [1, nw], θTj
(~hj(~zk,j(~vA(Tj), ~wl), ~wl) + ~vA(Tj), ~wl)

−θRj
(~zk,j(~vA(Tj), ~wl), ~wl) ≥ 0

(8)

Case of unbounded domain of parameters. It might also
be the case that N is not a polytope but an unbounded
polyhedron, perhaps corresponding to a parameter that is
input from the user and can be arbitrarily large. In this
case, we use the general form of Theorem 1. Let ~r1, . . . , ~rnr

be the rays defining the unbounded portion of N (a line
being coded by two opposite rays). We must ensure that the
linear part of Equation (8) is nonnegative on these rays. For
example, given a single structural parameter n1 ∈ [5,∞), we
have the following constraint for the vertex n1 = 5:

θTj
(~hj(~zk,j(~vA(Tj), 5), 5) + ~vA(Tj), 5)

−θRj
(~zk,j(~vA(Tj), 5), 5) ≥ 0

and the following constraint for the positive ray of value 1:

θTj
(~hj(~zk,j(~vA(Tj), 1), 1) + ~vA(Tj), 1)

−θRj
(~zk,j(~vA(Tj), 1), 1)

−θTj
(~hj(~zk,j(~vA(Tj), 0), 0) + ~vA(Tj), 0)

+θRj
(~zk,j(~vA(Tj), 0), 0) ≥ 0

(9)

Though this equation may look complicated, in practice it
leads to simple formulas since all the constant parts of Equa-
tion (7) are going away. We assume in the rest of this paper
that N is a polytope. This changes nothing in our method,
but greatly improves the readability of the upcoming sys-
tems of constraints!

4.5 Finding a Solution

After removing the structural parameters, we are left with
the following set of storage constraints:

∀j ∈ [1, np], ∀k ∈ [1, nz], ∀l ∈ [1, nw],

θTj
(~hj(~zk,j(~vA(Tj), ~wl), ~wl) + ~vA(Tj), ~wl)

−θRj
(~zk,j(~vA(Tj), ~wl), ~wl) ≥ 0

(10)

which is a set of affine inequalities in the coordinates of the
schedule Θ, with the occupancy vectors ~vA(Tj) as unknowns.
Note that the vertices ~zk,j of the iteration domain, the ver-
tices ~wl of the structural parameters, and the components
~hj of the affine functions, all have fixed and known values.

Similarly, we can linearize the schedule constraints to
arrive at the following equations:

∀j ∈ [1, np], ∀k ∈ [1, ny], ∀l ∈ [1, nw],

θRj
(~yk,j(~wl), ~wl)− θTj

(~hj(~yk,j(~wl), ~wl), ~wl)− 1 ≥ 0
(11)

Where y1,j , . . . , yny ,j denote the vertices of Pj .

4.5.1 Finding an Occupancy Vector Given a Schedule

At this point we have all we need to determine which oc-
cupancy vectors (if any) are valid for a given schedule Θ:
we simply substitute into the simplified storage constraints
(10) the value of the given schedule. Then we obtain a set of
affine inequalities where the only unknowns are the compo-
nents of the occupancy vector. This system of constraints
fully and exactly defines the set of the occupancy vectors
valid for the given schedule. We can search this space for
solutions with any Linear Programming solver.

To find the shortest occupancy vectors, we can use as
our objective function the sum of the lengths2 of the com-
ponents of the occupancy vector. This metric minimizes
the “Manhattan” length of each occupancy vector instead
of minimizing the Euclidean length. However, minimizing
the Euclidean length would require a non-linear objective
function.

We improve our heuristic slightly by minimizing the dif-
ference between the lengths of the occupancy vector compo-
nents as a second-order term in the objective function. That
is, the objective function is

obj(~v) = k ∗

dim(v)
∑

i=1

|vi|+

dim(v)
∑

i=1

dim(v)
∑

j=1

|vi − vj |

where k is large enough that the first term dominates, thereby
selecting our vector first by the length of its components and
then by the distribution of those lengths across its dimen-
sions (a more “even” distribution having a shorter Euclidean
distance.) It has been our experience that this linear objec-
tive function also finds the occupancy vector of the shortest
Euclidean distance.

For an example of this procedure, refer to Section 5.1.2.

4.5.2 Finding a Schedule Given an Occupancy Vector

At this point, we also have all we need to determine which
schedules (if any) exist for a given set of occupancy vec-
tors. Given an occupancy vector ~vA for each array A in
the program, we substitute into the linearized storage con-
straints (10) to obtain a set of inequalities where the only
unknowns are the scheduling parameters. These inequali-
ties, in combination with the linearized schedule constraints
(11) completely define the space of valid affine schedules
valid for the given occupancy vectors. Once again, we can
search this space for solutions with any Linear Programming
solver, selecting the “best” schedule as in [7].

See Section 5.1.3 for an example.

2To minimize |x|, set x = w− z, w ≥ 0, z ≥ 0, and then minimize
w+z. Either w or z will be zero in the optimum, leaving w+z = |x|.

6

A[][] = new int[n][m]
B[][] = new int[n][m]
...
for i = 1 to n

for j = 1 to m
A[i][j] = f(B[i-1][j]) (S1)
B[i][j] = g(A[i][j-1]) (S2)

Figure 7: Original code for Example 2.

j

i s2
s1

Figure 8: Dependence diagram for Example 2.

4.5.3 Finding the AOV’s

Solving for the AOV’s is more involved (follow Section 5.1.4
for an example.) To find a set of AOV’s, we need to satisfy
the storage constraints (10) for any value of the schedule Θ
within the polyhedronR defined by the schedule constraints.
To do this, we apply the Affine Form of Farkas’ Lemma
[16, 7, 4].

Theorem 2 (Affine Form of Farkas’ Lemma) Let D be a
nonempty polyhedron defined by p affine inequalities

~aj · ~x+ bj ≥ 0, j ∈ [1, p],

in a vector space E. Then an affine form Ψ is nonnegative
everywhere in D if and only if it is an affine combination of
the affine forms defining D:

∀~x ∈ E , Ψ(~x) ≡ λ0 +
∑

j

(λj(~aj · ~x+ bj)), λ0 . . . λp ≥ 0

The nonnegative constants λj are referred to as Farkas mul-
tipliers.

To apply the lemma, we note that the storage constraints are
affine inequalities in Θ which are nonnegative over the poly-
hedron R. Thus, we can express each storage constraint as
a nonnegative affine combination of the schedule constraints
defining R.

To simplify our notation, let STORAGE be the set of ex-
pressions that are constrained to be nonnegative by the lin-
earized storage constraints (10). That is, STORAGE con-
tains the left hand side of each inequality in (10). Naively,
|STORAGE| = np × nz × (nw + nr); however, several of
these expressions might be equivalent, thereby reducing the
size of STORAGE in practice.

Similarly, let SCHEDULE be the set of expressions that
are constrained to be nonnegative by the linearized schedule
constraints (11). The size of SCHEDULE is at most np ×
ny × (nw + nr).

Then, the application of Farkas’ Lemma yields these
identities across the vector space E of scheduling parame-
ters in which Θ lives:

A[] = new int[m+n]
B[] = new int[m+n]
...
for i = 1 to n

for j = 1 to m
A[i-j+m] = f(B[(i-1)-j+m]) (S1)
B[i-j+m] = g(A[i-(j-1)+m]) (S2)

Figure 9: Transformed code for Example 2. Each array has an
AOV of (1,1).

STORAGEi(~x) = λi,0+

|SCHEDULE|
∑

j=1

(λi,j ·SCHEDULEj(~x))

λi,j ≥ 0, ∀~x ∈ E , ∀i ∈ [1, |STORAGE|]

These equations are valid over the whole vector space E .
Therefore, we can collect the terms for each of the compo-
nents of x, as well as the constant terms, setting equal the
respective coefficients of these terms from opposite sides of
a given equation (cf. [7, 4] for full details). We are left with
|STORAGE| × (3×ns +1) linear equations where the only
variables are the λ’s and the occupancy vectors ~vA.

The set of valid AOV’s is completely and exactly deter-
mined by this set of equations and inequalities. To find the
shortest AOV, we proceed as in Section 4.5.1.

5 Examples

We present four examples to illustrate applications of the
method described above.

5.1 Example 1: Simple Stencil

First we derive the solutions presented earlier for the 3-point
stencil in Example 1.

5.1.1 Constraints

Let θ denote the scheduling function for the statement writ-
ing to array A. We assume that θ is an affine form as follows:

θ(i, j, n,m) = a ∗ i+ b ∗ j + c ∗ n+ d ∗m+ e

There are three dependences in the stencil, each from the
statement unto itself. The access functions describing the

dependences are ~h1(i, j, n,m) = (i−2, j−1), ~h2(i, j, n,m) =

(i, j − 1), and ~h3(i, j, n,m) = (i + 1, j − 1). Because these
dependences are uniform–that is, they do not depend on the
iteration vector–we can simplify our analysis by considering
the dependence domains to be across all values of i and j.
Thus, the schedule constraints are:

θ(i, j, n,m)− θ(i− 2, j − 1, n,m)− 1 ≥ 0
θ(i, j, n,m)− θ(i, j − 1, n,m)− 1 ≥ 0
θ(i, j, n,m)− θ(i+ 1, j − 1, n,m)− 1 ≥ 0

However, substituting the definition of θ into these equa-
tions, we find that i, j, n, and m are eliminated. This is
because the constraints are uniform. Thus, we obtain the
following simplified schedule constraints, which are affine in
the scheduling parameters:

2 ∗ a+ b− 1 ≥ 0
b− 1 ≥ 0
−a+ b− 1 ≥ 0

7

imax = a.length
jmax = b.length
kmax = c.length
D[][][] = new int[imax][jmax][kmax]
...
for i = 1 to imax

for j = 1 to jmax
for k = 1 to kmax

if (i==1) or (j==1) or (k==1) then
D[i][j][k] = f(i,j,k) (S1)

else
D[i][j][k] = (S2)

min(D[i-1][j-1][k-1] + w(a[i],b[j],c[k]),
D[i][j-1][k-1] + w(GAP,b[j],c[k]),
D[i-1][j][k-1] + w(a[i],GAP,c[k]),
D[i-1][j-1][k] + w(a[i],b[j],GAP),
D[i-1][j][k] + w(a[i],GAP,GAP),
D[i][j-1][k] + w(GAP,b[j],GAP),
D[i][j][k-1] + w(GAP,GAP,c[k]))

Figure 10: Original code for Example 3, for multiple sequence
alignment. Here f computes the initial gap penalty and w com-
putes the pairwise alignment cost.

Now let ~vA = (vi, vj) denote the AOV that we are seeking
for array A. Then the storage constraints are as follows:

θ(i− 2 + vi, j − 1 + vj , n,m)− θ(i, j, n,m) ≥ 0
θ(i+ vi, j − 1 + vj , n,m)− θ(i, j, n,m) ≥ 0
θ(i+ 1 + vi, j − 1 + vj , n,m)− θ(i, j, n,m) ≥ 0

Simplifying the storage constraints as we did the schedule
constraints, we obtain the linearized storage constraints:

a ∗ vi + b ∗ vj − 2 ∗ a− b ≥ 0
a ∗ vi + b ∗ vj − b ≥ 0
a ∗ vi + b ∗ vj + a− b ≥ 0

5.1.2 Finding an Occupancy Vector

To find the shortest occupancy vector for the schedule that
executes the rows in parallel, we substitute θ(i, j, n,m) = j
into the linearized schedule and storage constraints. Mini-
mizing |vi + vj | with respect to these constraints gives the
occupancy vector of (0, 1) (see Figure 3).

5.1.3 Finding a Schedule

To find the set of schedules that are valid for the occupancy
vector of (0, 2), we substitute vi = 0 and vj = 2 into the
linearized schedule and storage constraints. Simplifying the
resulting constraints yields:

b ≥ 1− 2 ∗ a
b ≥ 1 + a
b ≥ 2 ∗ a

Inspection of these inequalities reveals that the ratio a/b
has a minimum value of −1/2 and a maximum value that
asymptotically approaches 1/2, thus corresponding to the
set of legal affine schedules depicted in Figure 5 (note that
in the frame of the figure, however, the schedule’s slope is
−a/b.)

5.1.4 Finding an AOV

To find an AOV for A, we apply Farkas’ Lemma to rewrite
each of the linearized storage constraints as a non-negative

imax = a.length
jmax = b.length
kmax = c.length
D[][] = new int[imax+jmax][imax+kmax]
...
for i = 1 to imax

for j = 1 to jmax
for k = 1 to kmax

if (i==1) or (j==1) or (k==1) then
D[jmax+i-j][kmax+i-k] = f(i,j,k) (S1)

else
D[jmax+i-j][kmax+i-k] = (S2)

min(D[jmax+(i-1)-(j-1)][kmax+(i-1)-(k-1)] + w(a[i],b[j],c[k]),
D[jmax+i-(j-1)][kmax+i-(k-1)] + w(GAP,b[j],c[k]),
D[jmax+(i-1)-j][kmax+(i-1)-(k-1)] + w(a[i],GAP,c[k]),
D[jmax+(i-1)-(j-1)][kmax+(i-1)-k] + w(a[i],b[j],GAP),
D[jmax+(i-1)-j][kmax+(i-1)-k] + w(a[i],GAP,GAP),
D[jmax+i-(j-1)[kmax+i-k] + w(GAP,b[j],GAP),
D[jmax+i-j][kmax+i-(k-1)] + w(GAP,GAP,c[k]))

Figure 11: Transformed code for Example 3, using the AOV of
(1,1,1). The new array has dimension [imax+jmax][imax+kmax],
with each reference to [i][j][k] mapped to [jmax+i-j][kmax+i-k].

affine combination of the linearized schedule constraints:




a ∗ vi + b ∗ vj − 2 ∗ a− b
a ∗ vi + b ∗ vj − b

a ∗ vi + b ∗ vj + a− b



 =





λ1,1 λ1,2 λ1,3 λ1,4

λ2,1 λ2,2 λ2,3 λ2,4

λ3,1 λ3,2 λ3,3 λ3,4











1
2 ∗ a+ b− 1

b− 1
−a+ b− 1







λi,j ≥ 0, ∀i ∈ [1, 3], ∀j ∈ [1, 4]

Minimizing |vi + vj | subject to these constraints yields an
AOV (vi, vj) = (1, 2), which is smaller than the shortest
UOV of (0, 3) [17].

To transform the data space of array A according to this
AOV ~v, we follow the approach of [17] and project the orig-
inal data space onto the line perpendicular to ~v. Choosing
~v⊥ = (2,−1) so that ~v · ~v⊥ = 0, we transform the original
indices of (i, j) into ~v⊥ · (i, j) = 2 ∗ i− j. Finally, to ensure
that all data accesses are non-negative, we addm to the new
index, such that the final transformation is from A[i][j] to
A[2∗i−j+m]. Thus, we have reduced storage requirements
from n ∗m to 2 ∗ n+m. The modified code corresponding
to this mapping is shown in Figure 6.

5.2 Example 2: Two-Statement Stencil

We now consider an example adapted from [12] where there
is a uniform dependence between statements in a loop (see
Figures 7 and 8). Letting θ1 and θ2 denote the schedul-
ing functions for statements 1 and 2, respectively, we have
following schedule constraints:

θ1(i, j, n,m)− θ2(i− 1, j, n,m)− 1 ≥ 0
θ2(i, j, n,m)− θ1(i, j − 1, n,m)− 1 ≥ 0

and the following storage constraints:

θ2(i− 1 + vB,i, j + vB,j , n,m)− θ1(i, j, n,m) ≥ 0
θ1(i+ vA,i, j − 1 + vA,j , n,m)− θ2(i, j, n,m) ≥ 0

We now demonstrate how to linearize the schedule con-
straints. We observe that the polyhedral domain of the itera-
tion parameters (i, j) has vertices at (1, 1), (n, 1), (1,m), (n,m),

8

A[][] = new int[n][m]
B[] = new int[n]
...
for i = 1 to n

for j = 1 to n
A[i][j] = B[i-1]+j (S1)

B[i] = A[i][n-i] (S2)

Figure 12: Original code for Example 4.

j

i s2
s1

Figure 13: Dependence diagram for Example 4.

so we evaluate the schedule constraints at these points to
eliminate (i, j):

θ1(1, 1, n,m)− θ2(0, 1, n,m)− 1 ≥ 0
θ2(1, 1, n,m)− θ1(1, 0, n,m)− 1 ≥ 0
θ1(n, 1, n,m)− θ2(n− 1, 1, n,m)− 1 ≥ 0
θ2(n, 1, n,m)− θ1(n, 0, n,m)− 1 ≥ 0
θ1(1,m, n,m)− θ2(1− 1,m, n,m)− 1 ≥ 0
θ2(1,m, n,m)− θ1(1,m− 1, n,m)− 1 ≥ 0
θ1(n,m, n,m)− θ2(n− 1,m, n,m)− 1 ≥ 0
θ2(n,m, n,m)− θ1(n,m− 1, n,m)− 1 ≥ 0

Next, we eliminate the structural parameters (n,m). As-
suming n and m are positive but arbitrarily large, the do-
main of these parameters is an unbounded polyhedron:
(n,m) = (1, 1) + j ∗ (0, 1) + k ∗ (1, 0), for positive integers j
and k. We must evaluate the above constraints at the ver-
tex (1, 1), as well as the linear part of the constraints for the
rays (1, 0) and (0, 1). Doing so yields 24 equations, of which
we show the first 3 (which result from substituting into the
first of the equations above):

θ1(1, 1, 1, 1)− θ2(0, 1, 1, 1)− 1 ≥ 0
θ1(1, 1, 1, 0)− θ2(0, 1, 1, 0)− θ1(1, 1, 0, 0) + θ2(0, 1, 0, 0) ≥ 0
θ1(1, 1, 0, 1)− θ2(0, 1, 0, 1)− θ1(1, 1, 0, 0) + θ2(0, 1, 0, 0) ≥ 0

Expanding the scheduling functions as θx(i, j, n,m) = ax +
bx ∗ i+ cx ∗ j+ dx ∗n+ ex ∗m, the entire set of 24 equations
can be simplified to:

d1 = d2

e1 = e2
a1 + b1 + c1 − a2 − c2 + (b1 − b2)n− 1 ≥ 0
a1 + 2b1 + c1 − a2 − b2 − c2 − 1 ≥ 0
a2 + b2 + 2c2 − a1 − b1 − c1 − 1 ≥ 0
a2 + 2c2 − a1 − c1 + (b2 − b1)n− 1 ≥ 0

These equations constitute the linearized schedule constraints.
In a similar fashion, we could linearize the storage con-
straints, and then apply Farkas’ lemma to find the shortest
AOV’s of ~vA = ~vB = (1, 1). Due to space limitations, we
do not derive the entire solution here. The code that results
after transformation by these AOV’s is shown in Figure 9.

A[] = new int[n]
B = new int
...
for i = 1 to n

for j = 1 to n
A[i] = B+j (S1)

B = A[i] (S2)

Figure 14: Transformed code for Example 4. The AOV’s for A
and B are (1,0) and 1, respectively.

5.3 Example 3: Multiple Sequence Alignment

We now consider a version of the Needleman-Wunch se-
quence alignment algorithm [14] to determine the cost of
the optimal global alignment of three strings (see Figure 10).
The algorithm utilizes dynamic programming to determine
the minimum-cost alignment according to a cost function w
that specifies the cost of aligning three characters, some of
which might represent gaps in the alignment.

Using θ1 and θ2 to represent the scheduling functions
for statements 1 and 2, respectively, we have the following
schedule constraints (we enumerate only three constraints
for each pair of statements since the other dependences fol-
low by transitivity):

θ2(i, j, k, x, y, z)− θ1(i− 1, j, k, x, y, z)− 1 ≥ 0
for i = 2, j ∈ [2, y], k ∈ [2, z]
θ2(i, j, k, x, y, z)− θ1(i, j − 1, k, x, y, z)− 1 ≥ 0
for i ∈ [2, x], j = 2, k ∈ [2, z]
θ2(i, j, k, x, y, z)− θ1(i, j, k − 1, x, y, z)− 1 ≥ 0
for i ∈ [2, x], j ∈ [2, y], k = 2
θ2(i, j, k, x, y, z)− θ2(i− 1, j, k, x, y, z)− 1 ≥ 0
for i ∈ [3, x], j ∈ [2, y], k ∈ [2, z]
θ2(i, j, k, x, y, z)− θ2(i, j − 1, k, x, y, z)− 1 ≥ 0
for i ∈ [2, x], j ∈ [3, y], k ∈ [2, z]
θ2(i, j, k, x, y, z)− θ2(i, j, k − 1, x, y, z)− 1 ≥ 0
for i ∈ [2, x], j ∈ [2, y], k ∈ [3, z]

Note that each constraint is restricted to the subset of the
iteration domain under which it applies. That is, S2 de-
pends on S1 only when i, j, or k is equal to 2; otherwise, S2

depends on itself. This example illustrates the precision of
our technique for general dependence domains.

The storage constraints are as follows:

θ2(i− 1 + vi, j + vj , k + vk, x, y, z)− θ2(i, j, k, x, y, z) ≥ 0
for i ∈ [3, x], j ∈ [2, y], k ∈ [2, z]
θ2(i+ vi, j − 1 + vj , k + vk, x, y, z)− θ2(i, j, k, x, y, z) ≥ 0
for i ∈ [2, x], j ∈ [3, y], k ∈ [2, z]
θ2(i+ vi, j + vj , k − 1 + vk, x, y, z)− θ2(i, j, k, x, y, z) ≥ 0
for i ∈ [2, x], j ∈ [2, y], k ∈ [3, z]

There is no storage constraint corresponding to the depen-
dence of S2 on S1 because the domain Z of the constraint
is empty for occupancy vectors with positive components,
and occupancy vectors with a non-positive component do
not satisfy the above constraints. That is, for the first
dependence of S2 on S1, the dependence domain is P =
{(2, j, k) | j ∈ [2, y] ∧ k ∈ [2, z]} while the existence domain
of S1 is DS1

= {(i, j, k) | i ∈ [1, x]∧j ∈ [1, y]∧k ∈ [1, z]∧(i =
1∨j = 1∨k = 1)}. Then, the domain of the first storage con-
straint is Z = {(i, j, k) | (i, j, k) ∈ P∧(i−1, j, k)+~vA ∈ DS1

}.
Now, Z is empty given that ~vA has positive components, be-
cause if (i, j, k) ∈ P then i = 2, but if (i−1, j, k)+~vA ∈ DS1

then i− 1 + vA,i = 1, or equivalently i+ vA,i = 2. Thus for
Z to be non-empty, we would have 2 + vA,i = 2, which con-
tradicts the positivity assumption on vA,i. The argument is
analogous for other dependences of S2 on S1.

9

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70

S
pe

ed
up

Processors

Example 2 Speedup

Transformed
Original

Figure 15: Speedup vs. number of processors for Example 2.

Applying our method for this example yields an AOV of
(1, 1, 1). The transformed code under this occupancy vector
is just like the original, except that the array is of dimension
[imax+jmax][imax+kmax] and element [i][j][k] is mapped to
[jmax+i-j][kmax+i-k].

5.4 Example 4: Non-Uniform Dependences

Our final example is constructed to demonstrate the applica-
tion of our method to non-uniform dependences (see Figures
12 and 13). Let θ1 and θ2 denote the scheduling functions
for statements S1 and S2, respectively. Then we have the
following schedule constraints:

θ1(i, j, n)− θ2(i− 1, n)− 1 ≥ 0
θ2(i, n)− θ1(i, n− i, n)− 1 ≥ 0

and the following storage constraints:

θ2(i− 1 + vB , n)− θ1(i, j, n) ≥ 0
θ1(i+ vA,i, n− i+ vA,j , n)− θ2(i, n) ≥ 0

Applying our method to these constraints yields the AOV’s
~vA = (1, 0) and vB = 1. The transformed code is shown in
Figure 14.

6 Experiments

We performed preliminary experiments that validate our
technique as applied to two of our examples. The tests were
carried out on an SGI Origin 2000, which uses MIPS R10000
processors with 4MB L2 caches.

For Example 2, the computation was divided into di-
agonal strips. Since there are no data dependences be-
tween strips, the strips can be assigned to processors with-
out requiring any synchronization [12]. Figure 15 shows the
speedup gained on varying numbers of processors using both
the original and the transformed array. Both versions show
the same trend and do not significantly improve past 16
processors, but the transformed code has an advantage by a
sizable constant factor.

Example 3 was parallelized by blocking the computation,
and assigning rows of blocks to each processor. As shown
in Figure 16, the transformed code again performs substan-
tially better than the original code. With the reduced work-
ing set of data in the transformed code, the speedup is super-
linear in the number of processors due to improved caching.

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

Example 3 Speedup

Transformed
Original

Figure 16: Speedup vs. number of processors for Example 3.

7 Related Work

The work most closely related to ours is that of [17], which
considers schedule-independent storage mappings using the
Universal Occupancy Vector (UOV). While an AOV is valid
only for affine schedules, a UOV is valid for any legal execu-
tion ordering. Consequently, sometimes there exist AOV’s
that are shorter than any UOV since the AOV must be valid
for a smaller range of schedules. While the analysis of [17] is
limited to a stencil of dependences involving only one state-
ment within a perfectly nested loop, our method applies to
general affine dependences across statements and loop nests.
Moreover, our framework goes beyond AOV’s to unify the
notion of occupancy vectors with known affine scheduling
techniques.

Another related approach to storage management for
parallel programs is that of [3, 2, 11]. Given an affine sched-
ule, [11] optimizes storage first by restricting the size of each
array dimension and then by combining distinct arrays via
renaming. This work is extended in [3, 2] to consider storage
mappings for a set of schedules, towards the end of capturing
the tradeoff between parallelism and storage.

However, these techniques utilize a storage mapping where,
in an assignment, each array dimension is indexed by a loop
counter and is modulated independently (e.g. A[i mod n][j
mod m]). This is distinct from the occupancy vector map-
ping, where the data space of the array is projected onto a
hyperplane before modulation (if any) is introduced. The
former mapping–when applied to all valid affine schedules–
does not enable any storage reuse in Examples 2 and 3,
where the AOV did. However, with a single occupancy vec-
tor we can only reduce the dimensionality of an array by one,
whereas the other mapping can introduce constant bounds
in several dimensions. In the future, we hope to extend our
method to find multiple occupancy vectors, thereby enabling
storage reuse along multiple array dimensions.

Memory reuse in the context of the polyhedral model
is also considered in [18]. This approach uses yet another
storage mapping, which utilizes array transformations on
the data space to achieve the effect of multiple occupancy
vectors applied at once. However, the mapping does not
have any modulation, so it could not duplicate the effect of
an occupancy vector that intersects multiple integral points
of the iteration space. Also, the technique assumes that the
schedule is given.

10

8 Conclusion

We have presented a mathematical framework that unifies
the techniques of affine scheduling and occupancy vector
analysis. Within this framework, we showed how to deter-
mine a good storage mapping for a given schedule, a good
schedule for a given storage mapping, and a good storage
mapping that is valid for all legal schedules. Our technique
is general and precise, allowing inter-statement affine de-
pendences and efficiently solving for the shortest occupancy
vector using standard numerical programming methods.

We consider this research to be the first step towards
automating a procedure that finds the optimal tradeoff be-
tween parallelism and storage space. This question is very
relevant in the context of array expansion, where the cost of
extra array dimensions must be weighed against the schedul-
ing freedom that they provide. Additionally, our framework
could be applied to single-assignment functional languages
where all storage reuse must be orchestrated by the com-
piler. In both of these applications, and even for compil-
ing to uniprocessor systems, understanding the interplay be-
tween scheduling and storage is crucial for achieving good
performance.

However, since finding an exact solution for the “best”
occupancy vector is a very complex problem, our method
relies on several assumptions to make the problem tractable.
We ignore the shape of the data space and assume that the
shortest occupancy vector is the best; further, we minimize
the Manhattan length of the vector, since minimizing the
Euclidean length is nonlinear. Also, we restrict the input
domain to programs where 1) the data space matches the
iteration space, 2) only one statement writes to each array,
3) the schedule is one-dimensional and affine, and 4) there
is an affine description of the dependences. It is with these
qualifications that our method finds the “best” solution.

In future work, we aim to relax some of the assumptions
about the input domain. Perhaps most relevant is the case
of arbitrary affine references on the left hand side, since it
would not only widen the input domain, but would allow
the reduction of multiple array dimensions via application
of successive occupancy vectors. Many of these extensions
are difficult because, in their straightforward formulations,
the constraints become nonlinear. We consider it to be an
open question to formulate these extensions as linear pro-
gramming problems.

It will also be valuable to consider more general storage
mappings. The occupancy vector method as it stands now
can only decrease the dimensionality of an array by one,
and the irregular shape of the resulting data space could be
hard to embed in a rectilinear array in a storage-efficient
way. However, other storage mappings [11, 18] we discussed
also have their limitations. The perfect storage mapping
would allow variations in the number of array dimensions,
while still capturing the directional and modular reuse of the
occupancy vector and having an efficient implementation;
it should also lend itself to efficient storage reuse between
distinct arrays.

9 Acknowledgements

We would like to thank Kath Knobe for her helpful com-
ments and suggestions. We appreciate the support of the
MARINER project at Boston University for giving us access
to its Scientific Computing Facilities. This work was partly
supported by NSF Grant CCR0073510, DARPA grant DBT63-
96-C-0036, and a graduate fellowship from Siebel Systems.

References

[1] D. Barthou, A. Cohen, and J. Collard. Maximal static
expansion. In Principles of Programming Languages,
pages 98–106, San Diego, CA, Jan. 1998.

[2] A. Cohen. Parallelization via constrained storage map-
ping optimization. Lecture Notes in Computer Science,
1615:83–94, 1999.

[3] A. Cohen and V. Lefebvre. Optimization of stor-
age mappings for parallel programs. Technical Report
1998/46, PRiSM, U. of Versailles, 1988.

[4] A. Darte, Y. Robert, and F. Vivien. Scheduling and
Automatic Parallelization. Birkhäuser Boston, 2000.

[5] P. Feautrier. Array expansion. In ACM Int. Conf. on
Supercomputing, pages 429–441, 1988.

[6] P. Feautrier. Dataflow analysis of array and scalar ref-
erences. Int. J. of Parallel Programming, 20(1):23–51,
1991.

[7] P. Feautrier. Some efficient solutions to the affine
scheduling problem. part I. one-dimensional time. Int.
J. of Parallel Programming, 21(5):313–347, Oct. 1992.

[8] P. Feautrier. Some efficient solutions to the affine
scheduling problem. part II. multidimensional time. Int.
J. of Parallel Programming, 21(6):389–420, Dec. 1992.

[9] P. Feautrier, J.-F. Collard, M. Barreteau, D. Barthou,
A. Cohen, and V. Lefebvre. The interplay of expan-
sion and scheduling in paf. Technical Report 1998/6,
PRiSM, U. of Versailles, 1988.

[10] F. Irigoin and R. Triolet. Supernode partitioning. In
Proc. 15th Annual ACM Symp. Principles of Prog. Lan-
guages, pages 319–329, San Diego, CA, Jan. 1988.

[11] V. Lefebvre and P. Feautrier. Automatic storage man-
agement for parallel programs. Parallel Computing,
24(3–4):649–671, May 1998.

[12] A. Lim and M. Lam. Maximizing parallelism and min-
imizing synchronization with affine transforms. In Pro-
ceedings of the 24th Annual ACM SIGPLAN-SIGACT
Symp. on Principles of Prog. Languages, Jan. 1997.

[13] V. Loechner and D. K. Wilde. Parameterized polyhe-
dra and their vertices. Int. J. of Parallel Programming,
25(6):525–549, Dec. 1997.

[14] S. B. Needleman and C. D. Wunsch. A general method
applicable to the search of similarities in the amino acid
sequence of two proteins. Journal of Molecular Biology,
48:443–453, 1970.

[15] W. Pugh. The Omega test: a fast and practical in-
teger programming algorithm for dependence analysis.
Communications of the ACM, 8:102–114, Aug. 1992.

[16] A. Schrijver. Theory of Linear and Integer Program-
ming. John Wiley and Sons, New York, 1986.

[17] M. M. Strout, L. Carter, J. Ferrante, and B. Simon.
Schedule-independent storage mapping for loops. In
Architectural Support for Programming Languages and
Operating Systems, pages 24–33, 1998.

[18] D. Wilde and S. Rajopadhye. Memory reuse analysis
in the polyhedral model. Parallel Processing Letters,
7(2):203–215, June 1997.

11

