
Reconfigurable Component-based Middleware for Networked

Embedded Systems

Paolo Costa,1 Geoff Coulson,2 Cecilia Mascolo,3,4 Luca Mottola,1 Gian Pietro Picco,1 and

Stefanos Zachariadis3

Next generation embedded systems will be composed of large numbers of heterogeneous
devices. These will typically be resource-constrained (such as sensor motes), will use different

operating systems, and will be connected through different types of network interfaces.
Additionally, they may be mobile and/or form ad-hoc networks with their peers, and will need
to be adaptive to changing conditions based on context-awareness. Our focus in this paper is
on the provision of a middleware framework for such system environments. Our approach is

based on a small and efficient ‘middleware kernel’ which supports highly modularised and
customisable component-based middleware services that can be tailored for specific embedded
environments, and are runtime reconfigurable to support adaptivity. These services are pri-

marily communications-related but also address a range of other concerns including service
discovery and logical mobility. In the paper we provide an overview of our approach, focusing
in detail on both the middleware kernel and the services. We also discuss an application

scenario in which we are currently applying and evaluating our middleware approach.

KEY WORDS: middleware; embedded systems; reconfiguration; mobile computing.

1. INTRODUCTION

Miniature computing devices are being embed-
ded in an increasing range of objects around us
including home appliances, cars, transport infrastruc-
tures, buildings, and people. Furthermore, the net-
working of such embedded environments is enabling
advanced scenarios in which devices leverage off each
other and exhibit autonomous and coordinated
behaviour. Recent developments in wireless network-
ing are pushing these trends even further by enabling
new applicative scenarios, as witnessed by the recent
surge of interest in wireless sensor networks.

However, research into such networked embed-
ded environments has so far focused very much on
the development of miniaturised devices with increas-
ingly powerful and general capabilities. As a result,
the software fabric that ultimately makes innovative
applications possible has tended to be overlooked.
Instead, software is typically developed in an ad-hoc
fashion, with little or no provision for reusable
services and abstractions. Furthermore, even where
attempts have been made to provide such features,
the range of devices involved in networked embedded
environments inevitably leads to significant complex-
ity in appropriately configuring, deploying, and
dynamically reconfiguring the software. There is
therefore a need for dedicated middleware platforms
for networked embedded systems, with abstractions
that can span the full range of heterogeneous systems,
and which also offer consistent mechanisms with
which to configure, deploy, and dynamically recon-
figure both system and application level software.

1 Dip. di Elettronica ed Informazione, Politecnico di Milano, P.zza

L. Da Vinci 32, Milan, 20133, Italy
2 Department of Computing, Lancaster University, South Drive,

Lancaster, LA1 4WA, UK
3 Department of Computer Science, University College London,

Gower St., London, WC1 6BT, UK
4 E-mail: c.mascolo@cs.ucl.ac.uk

International Journal of Wireless Information Networks, Vol. 14, No. 2, June 2007 (� 2007)
DOI: 10.1007/s10776-007-0057-2

149
1068-9605/07/0600-0149/0 � 2007 Springer Science+Business Media, LLC

The work discussed in this paper is addressing
the need for such middleware platforms. The work is
being carried out in the context of the EU-funded
RUNES project (Reconfigurable, Ubiquitous, Net-
worked Embedded Systems), which has the general
general goal of developing an architecture for net-
worked embedded systems that encompasses dedi-
cated radio layers, networks, middleware, and
specialised simulation and verification tools.

Our middleware platform, which is at the heart
of the RUNES architecture, is radically component-
based and encapsulates the functionality provided by
its various components behind well-defined inter-
faces. This decoupling not only enables one to deploy
different variants of the same component (e.g.,
tailored to a specific device type), but also enables
dynamic reconfiguration of component instances and
their interconnections. This provides support for
dynamic adaptation to changing conditions – a
fundamental requirement in the context-aware sce-
narios typical of networked embedded systems.

Our approach to middleware provision com-
prises two distinct and orthogonal parts: First, we
provide a foundation layer – called the middleware
kernel – which is the runtime realisation of a simple
but well-defined software component model. Second,
we provide on top of the middleware kernel a layer of
component frameworks that offer a configurable and
extensible set of middleware and application services.
In this two-layer architecture, the software infrastru-
ture for a specific heterogenous, embedded net-
worked system is achieved by providing an
appropriate implementation or implementations of
the middleware kernel, and of the required configu-
ration of middleware (or application) services run-
ning on top of it.

The rest of the paper is organised as follows.
Section 2 illustrates an example scenario that moti-
vates and situates our work. Next, Section 3 intro-
duces the concepts at the core of our middleware
kernel. Then, in Section 4 we discuss a number of key
component framework based middleware services
that are built on top of the middleware kernel.
Related work is surveyed in Section 5. Finally, Section
6 offers our conclusions and plans for future work.

2. A REFERENCE SCENARIO

Our design and development work is grounded
in a number of networked embedded systems scenar-
ios that we employ throughout the RUNES project.

The best developed of these is a road transport
infrastructure based scenario in which a road tunnel is
instrumented with sensors and actuators to detect
and guard against potential disasters arising from
events such as fire or chemical spillage. More
specifically, the road tunnel is instrumented with a
number of sensors (e.g., temperature sensors and
sensors to detect toxic fumes) which feed back to a
control room. In addition, there are various actuators
present such as fire sprinklers and road traffic
management signs. These sensors and actuators are
interconnected using redundant network technologies
– both wired and wireless – to maximise resilience in
disaster situations. We also assume that potentially
‘dangerous’ vehices – e.g., those carrying dangerous
chemicals – carry RFID tags and are detected and
tracked within the tunnel.

In the event of a disaster occurring, the sensor
and actuator networks may become partitioned and
may thus need to reconfigure themselves to maintain
their operational status. Furthermore, sensor and
actuator devices may need to be brought under the
direct control of emergency personnel such as fire-
men, and this may require further ad-hoc networks to
be established and may additionally require that
sensors be dynamically reprogrammed – for example,
firemen may need to poll sensor devices rather than
wait for periodic push-based reports, and this may
require new software to be loaded onto the sensors.

Scenarios such as this are clearly highly hetero-
geneous. They involve a range of sensor and actuator
devices which may run different operating systems
and be programmed in different programming lan-
guages. They also clearly involve heterogenerous
networks: wired, infrastructure-based wireless, and
ad-hoc wireless. Furthermore, such scenarios are
highly dynamic – especially during disasters – and
thus require to be highly adaptive and reconfigurable.
Networks must be repaired, reconfigured and instan-
tiated; new devices must be accommodated (e.g.,
devices on vehices or attached to firemen); and new
software must be loaded onto devices. These are
precisely the types of characteristics that our middle-
ware platform is addressing.

3. THE MIDDLEWARE KERNEL

This section discusses the two main elements of
our middleware kernel, i.e., the component model on
which it is based (along with the associated notion of
component frameworks, and the supporting runtime

150 Costa et al.

that makes it possible to manage the different entities
defined in the component model at run-time.

3.1. The Component Model

The component model we propose is pictorially
represented in Figure 1.

A component is an encapsulated unit of func-
tionality and deployment that is an instantiation of a
componentType. For example, on a sensor node
equipped with several temperature sensors, each of
these can be represented by a component that gets
instantiated from a common ‘‘temperatureSensor’’
componentType. Instantiation is controlled by means
of a pattern which selects a componentType and
describes the form in which it should be instantiated.
As discussed in Section 4.1.4, componentTypes can
also represent units of code mobility.

The functionality a component provides is made
visible to other components through a set of inter-
faces that the component provides. In addition,
components can exploit functionality provided by

other components through the use of receptacles –
i.e., ‘required’ interfaces that implicitly define a
dependency relation among components. Compo-
nents may also have name-value attributes associated
with them. A sample component with a pair of
interfaces and receptacles is shown in Figure 2.

When a component relies on the functionality
provided by another, the two have to be explicitly
associated with each other. This association is explic-
itly represented by a particular type of component
called a connector as shown in Figure 3(a). Connec-
tors may simply pass on calls made from the
receptacle side to the interface side, or alternatively
they may implement more advanced semantics, e.g.,
that of monitoring and intercepting communications

tnenopmoC

ytitnE

krowemarFtnenopmoC

eluspaC etubirttA

redaoL

redniB yrtsigeR

ecafretnI elcatpeceRrotcennoC

tniartsnoC *

*

*

*

*

*

*..1

*..1

*

epyTtnenopmoC

amorf

epyTrotcennoC

sdaol

setaitnatsni

nrettaP
amorf

setaitnatsni

amorf

Fig. 1. The RUNES component model.

Fig. 2. A pictorial representation of a component with interfaces

and receptacles.

151Reconfigurable Component-based Middleware

among the connected parties. To this end, connectors
may themselves support further interfaces and recep-
tacles in order to use external facilities (e.g., a
‘‘logger’’ mechanism to record data exchanged
between the connected components) or to provide
functionality to other components (e.g., to allow
other components to monitor and potentially block
communication).

Notice that the abstraction provided by connec-
tor components allows for distributed connections
across different nodes. Indeed, a particular connector
component could be implemented such that opera-
tion calls are relayed to components running on a
different machine, while the connector itself takes
care of the marshalling and unmarshalling of param-
eters and return values.

3.2. Component Frameworks

A component framework [1] (hereafter, CF) is an
abstraction used for grouping components. More
precisely, a CF is an encapsulated composition of
components that addresses some focused area of
functionality, and which accepts additional compo-
nents as run-time plug-ins, which somehow modify or
extend the CF’s behaviour. Notice that CFs are
components themselves. Because of this, a CF can
contain other CFs in a recursive manner.

In practical terms, the goal of CFs is to help
developers in composing components together accord-
ing to a set of constraints (e.g., defined in a specific
language such as OCL [2]). For instance, a component
framework can represent a network stack, and hence
require (at the very minimum) the presence of a
component implementing a ‘‘MAC’’ interface as well

as a component implementing a ‘‘routing’’ interface. A
constraint can be defined over this grouping such that
the routing component can be stacked on top of the
MAC component, but not vice-versa. Additionally, a
plug-in component implementing some form of reli-
ability on top of the routing component can be
dynamically added to the CF if it meets the set of
constraints present at the time it tries to enter the CF.

The benefits of CFs are various. Firstly, they
provide intermediate abstractions between compo-
nents and whole systems, thus acting as a scoping
mechanism. Therefore, they generally increase
understandability and maintainability of systems.
Secondly, they simplify component development
and assembly through design reuse and guidance
to developers. Finally, they enable the use of
lightweight components (plug-ins), as these can
assume shared CF-specific state and services. For
example, a plug-in component providing reliability
on top of a routing mechanism might assume that,
in the CF it is meant to be plugged into, there will
be at least a component implementing a ‘‘routing’’
interface and a component implementing a ‘‘MAC’’
interface, and that those services will be available
through known interfaces.

3.3. The Runtime

The purpose of the runtime is to provide the
machinery needed to load and unload component
types, instantiate and destroy components, and con-
nect components together. All these operations are
accessed through the interface of a particular CF
always present at every node called the capsule, whose
functionality is exported to the programmer via the
capsule API shown in Figure 4 using OMG IDL [3].

The load() and unload() operations are
responsible for dynamically loading and unloading
component types into and from the system, as well as
for verifying these processes. ComponentTypes are
described by the given ‘pattern’ which specifies a
predicate over name-value pairs attached to compo-
nentTypes.

Fig. 4. The API offered by the capsule.

(a)

(b)

Fig. 3. The connector abstraction.

152 Costa et al.

The instantiate() and destroy() opera-
tions manage the lifecycle of components. The former
takes as its parameter a componentType from which
an actual component is instantiated, whereas the
latter takes a component instance (that can possibly
be even a connector) and destroys it.

The connect() operation is responsible for
establishing connections between pairs of compo-
nents. To this end, it takes an interface/receptacle
pair, and the componentType of a connector that
express the required semantics of the connection. It
returns an instance of a connector component rep-
resenting the connection.

The remaining operations are responsible for
managing attributes associated with entities. In par-
ticular, the setAttribute() operation allows
insertion and removal of attributes (with the removal
operation achieved by setting an attribute with an
undefined value); the getAttributes() operation
provides a list of all attributes associated with a
particular entity that match a given pattern; and the
getEntitites() operation retrieves the set of all
entities contained in the capsule that have attributes
matching the given pattern. These operations are also
used internally by the capsule for automatically
inserting in an internal registry information on the
operations performed up to a given moment. For
instance, when a component is instantiated, the cap-
sule might insert in the registry information on its
name, the interfaces it provides, and the receptacles it
defines.

The functionality offered by the capsule can be
internally delegated to three underlying, independent
components, i.e., a loader component, a binder com-
ponent and a registry component. In addition, notice

that the capsule itself (with its internal constituents
binder, loader and registry) is designed so that the
functionality it is meant to provide can be imple-
mented differently on different devices, e.g., this might
be realised as processes on a PDA, or as executable
binary code stored on a chip. This flexibility is key to
handling the heterogeneity of the scenarios we target.
Note, however, that RUNES system builders who
engineer systems out of existing components and CFs
only need to know the capsule API.

Finally, let us point out that, as the capsule is
itself a CF, it can contain any kind of entity, even
further capsules. In this sense, the capsule defines a
scoping mechanism very similar to set containment,
in which the capsule itself represents the outermost
scope in which all the instances of entities defined in
the system live. This concept is graphically repre-
sented in Figure 5. However, notice that a CF
regards other CFs contained in it as simple compo-
nents, i.e., it is not able to look inside the CFs it
contains and enforce its constraints on their content
as well.

4. MIDDLEWARE SERVICES

Having described the middleware kernel, we
now show how this can be leveraged to support
various middleware services – i.e., services that can
underpin application scenarios such as that
described in Section 2. In doing so, we show how
our simple component model is adequate to build a
wide range of middleware services expressed as CFs
which can be dynamically loaded, instantiated and
connected.

Fig. 5. A capsule with some CFs and components.

153Reconfigurable Component-based Middleware

In the following sub-sections we first focus in
detail on a key set of middleware services which we
have just implemented (i.e., the interaction, overlay,
advertising/discovery and logical mobility services).
We then, for completeness, provide brief descriptions
of the remaining services.

4.1. Key Middleware Services

4.1.1. Interaction Service

The interaction service CF plays the crucial role
of exporting middleware-level communications ser-
vices to applications. A middleware platform that
offers only a single ‘interaction paradigm’ (e.g.,
messaging or RPC) cannot cope with the diversity
of requirements imposed by our target application
domain. Instead, a comprehensive solution needs to
provide a wide range of interaction paradigms
including publish-subscribe, eventing, group commu-
nication, streaming, tuple-spaces, etc. To address this
requirement, the interaction CF supports plug-in
interaction paradigms (called PIPs for short). See
Figure 6.

The design of the interaction CF is guided by the
following principles:

• The selection, configuration the use of PIP
components by application developers should
be as straightforward as possible, and their
management should be based on a declarative
specification of the desired behaviour by the
application programme.

• The API of each PIP should be independent of
how it is implemented (for example, over
different network types and conditions.

• The (re-)configuration of PIPs should also be
influenced by the current environmental con-
text such as available network infrastructure
or other changing environmental conditions.

To help maintain a uniform ‘‘look-and-feel’’ for
PIP APIs, the interaction CF defines an extensible set

of generic APIs which are intended to be useful for
commonly-used families of PIPs (e.g., a family of
publish-subscribe PIPs). In cases where none of these
generic APIs is suitable for a newly-developed PIP,
the CF recommends the use of interface inheritance
wherever possible to specialise an existing API, thus
avoiding a proliferation of top-level APIs.

To enable applications to select and configure
PIPs, each PIP interface has attached to it a set of
name-value attributes that embody PIP-specific infor-
mation such as name of the PIP, its purpose,
constraints on its use and the QoS it provides.
Correspondingly, the receptacle of an application
component that wants to use a specific PIP has a set
of predicates attached to it whose terms refer to the
attributes attached to potentially-matching PIPs.
Then, when offered a receptacle by the application
(using the IConnect interface; see Figure 6), the
interaction CF selects, instantiates and configures a
suitable PIP based on matching the application’s
predicates with the attributes exported by the set of
currently installed PIPs. In addition, as well as
application attributes, predicates can refer to
dynamic attributes that represent information pro-
vided by a context engine. For example, this infor-
mation may refer to the type of network the host
machine is currently connected to.

Having achieved a suitable match of applica-
tion attributes, predicates, and dynamic attributes,
the CF creates a contract that records the particular
values that were used in creating the match. If this
contract is violated during the use of the selected
PIP by any of the three parties involved (i.e., the
application, the PIP and the context engine), an
exception is raised. This can occur, for example, if
a dynamic attribute from the context engine
changes; or if the application attempts to renego-
tiate the contract by altering the predicates attached
to its receptacle. Exceptions are initially handled by
the interaction CF itself, which attempts to restore
the contract. If this attempt fails the exception is
passed on to the application.

4.1.2. An Example PIP

To exemplify the use of the interaction CF, we
now briefly examine an example publish-subscribe
PIP. Figure 7 illustrates the component configuration
of the PIP (which itself is implemented as a CF). The
PIP exports a generic publish-subscribe API that is
pre-defined by the interaction CF. The publish and
subscribe components respectively provide the meansFig. 6. Interaction CF.

154 Costa et al.

for applications to publish and subscribe to events;
the notifier component is in charge of notifying
application components about new events; the filter
engine component implements an event parser for
matching events against the subscriptions; and the
subscription table component manages the subscrip-
tion table.

It can also be observed in Figure 7 that the PIP
is underpinned by plug-in overlay networks which
provide event routing and subscription routing.
These are provided by the overlay CF (see below).
The event routing network is in charge of managing
the broker network and routing events over this
network, while the subscription routing network
manages the subscription tables deployed in the
broker network.

4.1.3. Overlay Service

The RUNES approach to the provision of
network-layer communication is to uniformly
abstract all such support as plug-in overlay networks
(see Figure 8). The benefit of this is that it allows us
to treat diverse message routing protocols in a
consistent manner whether or not the underlying

physical network supports the mechanism. This helps
greatly in accommodating the network heterogeneity
we expect to support, as illustrated in Section 2. The
overlay CF supports the instantiation of stacks of
overlay components so that new network behaviour
can be built on top of existing services.

Note that the overlay CF also employs the
contract approach mentioned above (with respect to
the interaction CF). As the overlay CF can support
stacks of overlays, the IConnect interface is used
recursively – i.e., each layer, having been instantiated,
uses IConnect to instantiate the layer below it. This
process terminates with the instantiation of some
‘‘primitive’’ layer (e.g., IP).

The CF requires that its plug-ins are each
internally structured as an CF containing (at least)
three separate elements1: a control element which
encapsulates the distributed algorithm used to estab-
lish and maintain the overlay structure; a forwarding
element which encapsulates the forwarding or routing
algorithm itself; and a state element which gives
access to generic state such as a nearest neighbour
list. For example, in the broker network from the
publish-subscribe PIP example above:

• The control component cooperates with the
control components of its peer brokers on
other hosts to build and maintain the broker
network topology. Together, these compo-
nents encapsulate the distributed algorithms
used to establish and maintain the broker
network structure.

• The forwarder component routes events over
the broker network and implements specific
event forwarding strategies (e.g., different
forwarding strategies can be provided as
pluggable forwarding components).

• The state component encapsulates key state
such as nearest broker neighbours list, con-
nected clients list (i.e., publishers, subscribers).

Fig. 8. Overlay CF.

Fig. 7. Publish–Subscribe CF.

1Apart from these, additional components can be optionally

included to extend the overlay’s behaviour, e.g., a network QoS

measurement component.

155Reconfigurable Component-based Middleware

The main benefit of this three-fold structure is
that it can naturally support fine-grained layering and
combining of multiple overlays so that, for example,
different forwarding elements can simultaneously be
in operation over the same control elements (e.g., in a
flooding overlay such as Gnutella, we might simul-
taneously employ different flooding strategies over
the same overlay topology). In addition, the use of
common architectural elements ensures that we can
represent generalised dependencies between overlays
(as we can implement overlays to well-defined com-
mon interfaces); and also we can easily perform fine-
grained reconfiguration of individual overlays; i.e.,
we can add or change the individual behaviour of an
overlay as and when the environmental context
changes.

The three elements of each plug-in overlay
interact within the individual CF as shown by the
bi-directional arrows in Figure 9. The exported
interfaces and receptacles are used to express
dependencies on other overlay network implemen-
tations. The control component presents the
IControl interface with common operations to
create, join and leave an overlay network. The for-
warding component has operations to route messages
to nodes in the overlay network, send messages to
neighbour nodes, and receive any incoming messages.
The control component also exports an IForward
receptacle to allow it to forward control messages via
its own, or a different overlay’s, forwarding mecha-
nism. Similarly, the control component exports an
IDeliver interface; this is used by lower-level
overlays networks, which, when they receive a mes-
sage, pass it to the control component atop. Partic-
ular IDeliver implementations determine how to
deal with incoming messages (e.g., react to them,
forward them etc.). Finally, the forwarding compo-
nent exports an IForward receptacle that allows it
to directly forward messages using the underlying
implementation.

4.1.4. Advertising and Discovery Service

As new application components are dynamically
added to systems to provide new services, there is a
need for mechanisms to enable applications to
advertise and discover these components/services.
For instance, in the tunnel scenario of Section 2,
one may deploy a new application component able to
perform aggregation on data stored at temperature
sensors. Using the advertising and discovery service
(ADS), this new component can advertise itself to the
rest of the system so that remote nodes can be made
aware of its presence and ask for its code if they need
it (the latter functionality is provided by the logical
mobility service, described below).

There are many different ways to do advertising
and discovery, and imposing particular mechanisms
can hinder interoperability with other systems.
Hence, in the spirit of the interaction and overlay
services already discussed, we provide a dynamic and
flexible framework, which is based on work described
in [4].

The ADS CF is built around a set of interfaces
called Advertiser, Advertisable, Discovery and Com-
ponentListener. Components that wish to advertise
their presence implement the Advertisable interface
which exports a method that returns a message that
the advertisable component uses to express informa-
tion that it requires advertised.

Advertiser interfaces are used to abstract over
multiple advertising mechanisms implemented inside
so-called advertiser components. These are responsible
for accepting messages from advertisable compo-
nents, (potentially) transforming them into another
format, and then actually performing the advertise-
ment in the appropriate manner. A combination of
component availability notification and advertiser
registration enables advertisable components to reg-
ister to be notified when specific advertisers are added
to the system. Advertisable components can then
register to be advertised by them. Moreover, adverti-
sable components can express that they require
particular advertisers. Thus, the semantics of the
advertisable message are not a-priori defined but
rather depend on the advertisable component and on
the particular advertising mechanism (i.e., the adver-
tiser component) used.

Note that a component can implement both the
Advertiser and the Advertisable interfaces. This
allows for the advertising of advertising mechanisms;
in this way, for example, the existence of a multicast
advertising group can be advertised using a broadcastFig. 9. Elements of overlay plug-ins.

156 Costa et al.

advertiser. Combined with the use of logical mobility
(see below), this allows a host to dynamically acquire
a new advertising and discovery mechanism for a
network that was just detected. For example, on
approaching a Jini network [5], a node can request
and download the components that are needed to
advertise to, and use functionality from, this network.

Turning now to the ‘discovery’ side, different
discovery techniques are encapsulated within discov-
ery components which implement the Discovery
interface. There can be any number of discovery
components installed in a capsule. Discovery com-
ponents act as registries of advertisable components
located remotely. So-called RemoteComponents’ are
used to represent components which have been found
remotely. These do not directly export any function-
ality to local components; rather, they only export
methods needed to access their properties, and their
location and advertising messages. Hence, discovery
components act as collectors of RemoteComponent
references, which can be added and removed dynam-
ically as they are discovered.

Discovery components emit events representing
the availability of remote components. Local com-
ponents can register a ComponentListener with a
discovery component, to be notified when compo-
nents satisfying a given set of attributes are located.
Users of the ADS CF can use the logical mobility
service (discussed below), to dynamically deploy
advertising and discovery components, as well as
request, receive and deploy components that have
been located remotely.

4.1.5. Logical Mobility Service

‘Logical mobility’ refers to the ability to
change the configuration of the software of a
distributed system by transferring logical units (in
our case, primarily ComponentTypes) between
nodes. Logical mobility has been repeatedly argued
[6–8] to have great potential in the engineering of
mobile systems. In summary, the arguments are as
follows:

• It allows applications to update their code-
base, and hence acquire new functionality.

• It may permit interoperability with remote
applications and environments, which had not
been envisioned at design time.

• It potentially achieves the efficient use of peer
resources, as computationally expensive cal-
culations can be offloaded to the environment.

• It facilitates the efficient use of local resources,
as infrequently-used functionality can be
removed to free some of the limited memory
that mobile devices are equipped with. The
functionality may potentially be retrieved later
when needed.

• It can be used to encapsulate, request and
transfer functionality between nodes; hence it
is a tool that can be used to create adaptable
systems.

• By allowing functionality to be retrieved
locally, it allows for autonomous operation
instead of relying on an externally provided
service.

The main purpose of our logical mobility service
(LMS) is to allow the system to dynamically recon-
figure by acquiring functionality from its peers. This
component framework is based on work reported in
[4].

The Logical Mobility Unit: A logical mobility unit
(LMU) (see Figure 10) is defined as the minimal unit
of transfer. An LMU is a container that can
encapsulate various constructs and representations
of code and data2. As such, an LMU is, in part, a
composition of an arbitrary number of logical mobil-
ity entities (LMEs). The LMU provides operations
that permit inspection of contents. This allows a
recipient to inspect an LMU before using it.

The LMU can potentially encapsulate a Handler
which can be instantiated, and the resulting object
used by the recipient to deploy and manipulate the
contents of the LMU. This can allow sender-custo-
mised deployment and binding. The Handler concept
is taken from [9].

An LMU also encapsulates a set of attributes.
These are used to describe the LMU they are
associated with – e.g., in terms of logical (software)
or physical (hardware) dependencies, digital signa-
tures and even end-user textual descriptions. As such,
they are useful in managing the heterogeneity of the
target environment.

Transferring LMUs: Deployer components handle the
sending and receiving of LMUs and offer function-
ality such as the following: serialising and deserialis-

2Note that Figure 10 presents the framework as an object-

oriented one. In implementations in which classes and objects

are not available, other constructs (such as dynamic libraries) are

used.

157Reconfigurable Component-based Middleware

ing the LMU; checking incoming LMUs for mali-
cious code; checking whether a target host is trusted
to send sensitive code; handling namespace conflicts
with incoming LMUs; and eploying incoming LMUs.
Note that some of this functionality can be imple-
mented in various ways (such as proof carrying code
and digital signatures) and is optional.

Deployers offer an API that allows sending and
receiving LMUs. If it is available, they can interact
with the ADS CF to allow the requesting and
deploying of RemoteComponents.

Deploying LMUs: When transferring an LMU to a
target host, we need to define where, logically, the
LMU will be deployed. In terms of the RUNES
middleware, a valid logical target is a component. As
such, the LMS defines an adaptable component as a
component that can receive LMUs at runtime. We
represent these components as components that
implement the Adaptable interface.

By default, LMUs are deployed in capsules – this
allows components to be encapsulated in LMUs and
deployed dynamically. If this is not the intent of the
sender, alternative components can be specified. This
allows for adapting individual components with
another codebase.

4.2. Other Key Middleware Services

We now briefly describe some other component
frameworks that play key roles in the RUNES
middleware platform.

Local OS Service As already mentioned, our
component model can ‘‘reach down’’ into layers
belonging to the operating system. This way, we
provide a unified abstraction on top of which
mechanisms ranging from MAC layers up to appli-
cation components can be realised. To this end, the
local OS service aims at providing a collection of
services that realise an abstraction layer over oper-
ating system functionalities. For instance, compo-
nents implementing different scheduling policies or
memory management techniques can be provided
within this CF. As intra-layer integration is of
paramount importance on constrained embedded
devices [10], having operating system functionalities
exported thorugh the same abstraction used to
develop applications clearly fosters the exploitation
of information provided by lower layers. For
instance, an application component might adjust
the communication range on a sensor device by
modifying the tranmission power.

Context and Location Sensing ServiceNetworked
embedded systems are envisioned to operate unat-
tended and in a manner that is closely integrated with
the physical environment. In such scenarios, the
system needs to sense the surrounding conditions and
perform adaptation if needed. To this end, mecha-
nisms are needed for sensing the context in which the
system is operating and providing this information to
other components (e.g., the interaction and overlay
services as discussed above) so that they can suitably
adapt their behaviours. As other examples, a device
equipped with a GPS receiver can detect movement

Attribute

key : DataType

value : DataType

getValue() : DataType

Classifier Instance

LogicalMobilityUnit

getAttribute(k: DataType) : Attribute

instantiateHandler() : void

LogicalMobilityEntity

Class

Handler

DataType

MutableAttribute

setValue(value: DataType) : void

0..*
properties

0..1

handler

1..*
0..*

Fig. 10. The logical mobility unit.

158 Costa et al.

and inform components interested in this fact on the
new position. The goal of the context and location
sensing service is to provide a unified abstraction of
all such functionaly, so as to shield other components
from low-level implementation details.

Sensor Coordination Service Various kinds of
coordination are needed in sensor networks. For
instance, time synchronisation is necessary to precisely
relate sensed events, or to coordinate sleep periods
when sensor devices turn their radio off. However,
general coordination in large-scale distributed systems
composed of constrained devices is hard to achieve.
The goal of the sensor coordination service is to
provide efficient coordination mechanisms designed
for being integrated with the rest of the framework we
propose. In particular, it is designed in a way that
facilitates its integration with other components so
that coordination can be exploited at different levels,
from the operating system up to the application.

5. RELATED WORK

There is a substantial body of literature on
reconfigurable middleware systems. First, the
RUNES middleware builds on our earlier work
on the OpenCOM component model [11]. Com-
pared to this earlier work, there in an increased
emphasis in RUNES on a formal, model-driven,
approach; and on specialisation to the networked
embedded systems domain. Apart from this, Grav-
ity [12] is a component model built on top of the
Open Services Gateway Initiative (OSGi) Frame-
work [13] (OSGi is a commercial framework for the
Java platform which allows providers to deliver
services to consumer devices attached to a residen-
tial network and to manage those devices remo-
tely). P2PComp [14] is a lightweight service-oriented
component model for mobile devices, which is also
built using OSGi; it provides location independent
synchronous and asynchronous communication
between components. The Dynamically Programma-
ble and Reconfigurable Software (DPRS) architec-
ture [15] is a component-based design for
dynamically programmable and reconfigurable sys-
tems. PCOM [16] is a distributed component model
for pervasive computing. It allows for designing
applications as a collection of potentially distrib-
uted components, which make their dependencies
explicit. If those dependencies are invali-
dated, PCOM can attempt to automatically adapt
by detecting alternatives according to various

strategies. FarGo-DA [17] is a distributed compo-
nent model that uses logical mobility to allow
disconnected operation. The Software Dock [18] is
an agent-based software deployment network that
allows negotiation between software producers and
consumers. THINK [19] presents an approach for
building component-based operating system kernels.
And finally, one.world [20] is a system for pervasive
applications that supports dynamic service compo-
sition, migration of applications and discovery of
context.

Other component based systems from the
embedded systems community are Pebble [21],
PECOS [22], PBO [23], SaveCCM [24] and Koala
[25]. Most of these are build-time only technologies-
components are not visible at run-time and therefore
these systems do not support dynamic reconfigura-
tion. One area that some of these systems (i.e.,
PECOS and PECT) do support, however, that our
model does not natively support, is the specification
(at build-time) of real-time constraints such as cycle
time or worst case execution time. Such facilities are
clearly important in certain real-time critical areas.
Our approach to providing such facilities, where
needed, is to provide a suitable ‘real-time systems’ CF
rather than building-in real-time properties into the
programming model itself. A further observation is
that many of these embedded systems technologies
(e.g., PBO, SaveCCM, and Koala) are tightly coupled
to an specific underlying OS environment and/or are
programming language specific.

There are two main difference between the
approaches outlined above and our work. The first
difference relates to generality: RUNES is a generic
software fabric that is designed from the ground up
to be implementable on a wide range of devices, and
the primitives we provide are not limited to, for
example, disconnected operation or software deploy-
ment or real-time support, but can indeed be used to
build such services. The second difference relates to
our two-layer architecture in which systems are built
by selecting (and dynamically reconfiguring) appro-
priate CF-based middleware services on top of the
middleware kernel. This capability, which is lacking
in lacking in other work, results in significantly
greater flexibility than other systems offer.

6. CONCLUSIONS

In this paper we have described the RUNES
approach to the development of software for

159Reconfigurable Component-based Middleware

networked embedded systems. This employs a uni-
form ‘‘software component’’ abstraction which can
be variously realised in various types of devices.
Then, on top of the basic component model, we layer
the notion of component frameworks which realise
various areas of functionality that can be configured-
in or left out as required. We have shown in the paper
how these abstract notions can be instantiated as
useful and general functionality, both local and
distributed, in adaptive networked embedded envi-
ronments.

The current status of our work is that we have
implemented the middleware kernel in two different
languages (Java and C) and have deployed it on
devices ranging from PCs to PDAs to tiny sensor
devices running the Contiki OS [26]. We have thus
verified that our approach is viable even in extremely
resource-constrained environments. We have also
implemented the four main middleware services
described in the paper and deployed these in a
demonstration scenario based on that outlined in
Section 2. This work has convinced us of the
generality and utility of our approach.

In our future work we are looking to further
explore the adaptivity and reconfigurability capabil-
ities of our middleware. This will especially involve
the dynamic deployment and adaptation of new PIPs
and overlays in the tunnel fire scenario.

ACKNOWLEDGMENTS

The authors would like to thank their partners in
the RUNES Project and to acknowledge the financial
support given to this research by the European
Commission.

REFERENCES

1. C. Szyperski, Component Software: Beyond Object-Oriented
Programming, Addison-Wesley, 1999.

2. Object Management Group, UML 2.0 OCL specification.
http://www.omg.org/docs/ptc/03-10-14.pdf.

3. Object Management Group, OMG IDL specification. http://
www.omg.org/technology/documents/idl2x_spec_catalog.htm.

4. S. Zachariadis, C. Mascolo, and W. Emmerich. SATIN: A
component model for mobile self-organisation. In International
Symposium on Distributed Objects and Applications (DOA),
Agia Napa, Cyprus, October, 2004. Springer.

5. J. Waldo, The Jini architecture for network-centric computing,
Communications of the ACM, Vol. 42, No. 7, pp. 76–82, 1999.

6. L. Capra, C. Mascolo, S. Zachariadis, and W. Emmerich,
Towards a mobile computing middleware: a synergy of

reflection and mobile code techniques. In Proc. of the 8th IEEE
Workshop on Future Trends of Distributed Computing Systems
(FTDCS’2001), pp. 148–154, Bologna, Italy, October, 2001.

7. A. Fuggetta, G. Picco, and G. Vigna, Understanding code
mobility, IEEE Transactions on Software Engineering, Vol. 24,
No. 5, pp. 342–361, 1998.

8. G.-C. Roman, A. L. Murphy, and G. P. Picco, A Software
Engineering Perspective on Mobility. In A. C. W. Finkelstein
(ed.), Future of Software Engineering, ACM Press, 2000.

9. G.P. Picco, lCODE: A Lightweight and Flexible Mobile Code
Toolkit. In K. Rothermel and F. Hohl (eds.), Proc. 2nd Int.
Workshop on Mobile Agents, LNCS 1477. Springer-Verlag,
1998.

10. I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, A
survey on sensor networks, IEEE Communication Magazine,
Vol. 40, No. 8, pp. 102–114, 2002.

11. G. Coulson, G. Blair, P. Grace, A. Joolia, K. Lee, and J.
Ueyam, A component model for building systems software. In
Proc. IASTED Software Engineering and Applications
(SEA’04), Nov, 2004.

12. H. Cervantes and R. Hall, Autonomous adaptation to dynamic
availability using a service-oriented component model. In
Proceedings of the 26th International Conference of Software
Engineering (ICSE 2004), pp. 614–623, Edinburgh, Scotland,
May, 2004, ACM Press.

13. The OSGi Alliance. The OSGi framework. http://www.
osgi.org, 1999.

14. A. Ferscha, M. Hechinger, R. Mayrhofer, and R. Oberhauser,
A light-weight component model for peer-to-peer applications.
In 2nd International Workshop on Mobile Distributed Comput-
ing. IEEE Computer Society Press, March, 2004.

15. M. Roman and N. Islam, Dynamically Programmable and
Reconfigurable Middleware Services. In Proceedings of Mid-
dleware ’04, Toronto, October, 2004.

16. C. Becker, M. Handte, G. Schiele, and K. Rothermel, PCOM –
A component system for pervasive computing. In Proceedings
of the 2nd International Conference on Pervasive Computing and
Communications, Orlando, Florida, March, 2004.

17. Y. Weinsberg and I. Ben-Shaul, A programming model and
system support for disconnected-aware applications on
resource-constrained devices. In Proceedings of the 24th Inter-
national Conference on Software Engineering, pp. 374–384,
May, 2002.

18. R. S. Hall, D. Heimbigner, and A. L. Wolf, A cooperative
approach to support software deployment using the software
dock. In Proceedings of the 1999 International Conference on
Software Engineering, pp. 174–183. IEEE Computer Society
Press/ACM Press, 1999.

19. J.-P. Fassino, J.-B. Stefani, J. Lawall, and G. Muller, THINK:
a software framework for component-based operating system
kernels. In 2002 USENIX Annual Technical Conference, pp.
73–86, Monterey, CA, June, 2002, USENIX.

20. R. Grimm, T. Anderson, B. Bershad, and D. Wetherall, A
system architecture for pervasive computing. In Proceedings of
the 9th workshop on ACM SIGOPS European workshop, pp.
177–182, ACM Press, 2000.

21. K. Magoutis, J. Brustoloni, E. Gabber, W. Ng, and A.
Silberschatz, Building Appliances out of Reusable Compo-
nents using Pebble. In Proc. SIGOPS European Workshop,
pp. 211–216, Kolding, Denmark, September, 2000, ACM
Press.

22. M. Winter, T. Genbler, A. Christoph, O. Nierstrasz, S.
Ducasse, R Wuyts, G. Arevalo, P. Muller, C. Stich, and B.
Schonhage. Components for embedded software: the PECOS
approach. In Proc. International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASES
’02), pp. 19–26, Grenoble, France, 2002, ACM Press.

23. D. Stewart, R. Volpe, and P. Khosla, Design of Dynamically
Reconfigurable Real-Time Software using Port-Based Objects.

160 Costa et al.

Technical Report CMU-RI-TR-93-11, Robotics Institute,
Carnegie Mellon University, July, 1993.

24. H. Hansson, M. Akerholm, I. Crnkovic, and M. Torngren,
SaveCCM – a component model for safety-critical real-time
systems, September, 2004.

25. R. Ommering, F. Linden, J. Kramer, and J. Magee, The Koala
component model for consumer electronics software, IEEE
Computer, Vol. 33, No. 3, pp. 78–85, 2000.

26. A. Dunkels, B. Groenvall, and T. Voigt, Contiki – a light-
weight and flexible operating system for tiny networked sen-
sors. In Proceedings of the First IEEE Workshop on Embedded
Networked Sensors, Tampa, Florida, USA, November, 2004.

Paolo Costa received the Ph.D. degree in computer engi-

neering from the Politecnico di Milano, Italy, in 2006. He is

currently a Postdoctoral Researcher with the Department of

Computer Science, Vrije Universiteit, Amsterdam. His research

interests include large scale distributed systems, gossip-based

protocols and wireless sensor networks. Further details are

available at http://www.cs.vu.nl/�costa.

Geoff Coulson is a Professor of Distributed Computing at

Lancaster University, UK. His current research interests include

distributed systems, adaptive sensor networks, embedded systems,

middleware technologies, grids, and component-based software

development. Since receiving his PhD in 1992, Geoff has led many

successful projects in the distributed systems/ middleware area. He

also serves on numerous PCs in his research areas, has been

programme co-chair for the ACM/IFIP Middleware Conference

series, and has published over 40 journal and 100 conference

papers. Further information is available at: http://www.comp.lanc-

s.ac.uk/computing/users/geoff/.

Dr. Cecilia Mascolo is an EPSRC Advanced Research Fellow

and a Senior Lecturer in the Department of Computer Science. She

holds an MSc and a PhD in Computer Science from University of

Bologna (Italy). She has published extensively in the areas of

mobile middleware, delay tolerant routing, ad hoc networks,

mobility models, software architectures for ubiquitous systems and

code mobility. Dr. Mascolo is currently working on projects on

middleware for mobile and sensor networks, delay tolerant and

opportunistic networking, publish-subscribe systemss and sensor

networks. She is investigators on projects on mobile computing

middleware, pervasive middleware for health care, middleware for

emergency applications and mobility models. Dr. Mascolo has

served as a PC member in many middleware, mobile system, delay

tolerant network conferences and she has been co-Chair of a

number of workshops and conferences focusing on mobile systems.

She also delivered tutorials on mobile computing middleware.

More details of her profile are available at \id{www.cs.ucl.ac.uk/

staff/c.mascolo}.

Luca Mottola is a Ph.D student at Politecnico di Milano

(Italy). He received the Laurea degree in Computer Engineering

from Politecnico di Milano (Italy) in 2004, and the M.Sc. in

Computer Science from the University of Illinois at Chicago (USA)

in 2005. His research interests include programming abstractions

and distributed computing on sensor networks, and formal

verification of distributed software architectures. Contact him at

luca.mottola@polimi.it.

161Reconfigurable Component-based Middleware

Gian Pietro Picco is an Associate Professor at the Depart-

ment of Information and Communication Technology of Univer-

sity of Trento, Italy. Previously, he has been on the faculty of

Washington University in St. Louis, MO, USA (1998-1999) and

Politecnico di Milano (1999-2006). The goal of his current research

is to support the development of modern distributed systems, not

only through the investigation of appropriate programming

abstractions, but also through the design of communication

protocols that efficiently support them. Therefore, his work spans

the research fields of software engineering, middleware, routing

protocols, and is geared in particular towards wireless sensor

networks, mobile computing, and large-scale distributed sys-

tems.More information at http://www.dit.unitn.it/�/picco.

Stefanos Zachariadis holds a PhD in computer science from

University College London. During his time there, he published in

the area of data synchronisation, peer to peer systems, mobile

computing and midleware, mobile code and sensor systems. His

research has led him to participate in various research projects, and

his work has been used by various parties including the European

Space Agency and sensor network operating system developers.

His interests are in the areas of software architectures, testing and

mobile, distributed, and resource constrained systems. Stefanos

currently works as a SoftwareEngineer for the Zuhlke Technology

Group in London. More details ofhis profile are available at http://

www.zachariadis.net.

162 Costa et al.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

