
6. Conclusion

I t has been shown tha t the existence o f a a -co lo ra t ion
o f a pa r t i cu la r g raph is a necessary and sufficient condi -
t ion for the existence o f a so lu t ion to the class- teacher
t ime tab le p r o b l e m with unava i lab i l i ty cons t ra in ts and
preass igned meetings. The knowledge of this necessary
and sufficient condi t ion does no t p rov ide an efficient
a lgor i thm which can be app l ied to an a rb i t r a ry t ime-
table p r o b l e m in order to de te rmine the existence o f a
solut ion. The necessary and sufficient cond i t ion does,
however , show tha t existing graph co lor ing a lgor i thms
[I, 6, 14, 15, 16] may be appl ied to t ime tab le p r o b l e m s
with unava i lab i l i ty const ra in ts and preass igned meetings.

A c k n o w l e d g m e n t . The au thors would l ike to t h a n k
the referees for their cons t ruc t ive cr i t ic ism and helpful
suggest ions for the improvemen t of this paper .

Received July 1973; revised February 1974

References
1. Corneil, D.G., and Graham, B. An algorithm for determining
the chromatic number of a graph. S l A M J. on Computing 2, 4
(Dec. 1973), 311-318.
2. Csima, J., and Gotlieb, C.C. A computer method for
constructing school time-tables. Presented at ACM 18th Ann. Conf.,
1963.
3. Dernpster, M.A.H. On the Gotlieb-Csima time-tabling
algorithm. Canadian J. Math. 20, 103-119.
4. Dempster, M.A.H. Two algorithms for the time-table problem.
In Combinatorial Mathematics and Its Applications (D.J.A. Welsh,
Ed.), Academic Press, London, 1969, pp. 63-85.
5. De Werra, D. Construction of school timetables by flow
methods, lnfor. 1, 1, 12-22.
6. Formby, J.A. Computer procedure for bounding the chromatic
number of a graph. In Combinatorial Mathematics and Its
Applications (D.J.A. Welsh, Ed.), Academic Press, London, 1969,
pp. 111-114.
7. Gotlieb, C.C. The construction of class-teacher time-tables.
Proc. IFIP Congress 62, Munich, North Holland Pub. Co.,
Amsterdam, 1963, pp. 73-77.
8. Lions, J. Matrix reduction using the Hungarian method for the
construction of school timetables. Comm. ACM. 9, 5 (May 1966),
349-354.
9. Lions, J. A counter-example for Gotlieb's method for the
construction of school timetables. Comm. A C M 9, 9 (Sept. 1966),
Letters to the Editor, 697-698.
10. Liofis, J. A generalization of a method for the construction
of class/teacher timetables. Inform. Proc. 68, Proc. IFIP Congress
1968, North Holland Pub. Co., Amsterdam, pp. 1377-1382.
11. Lions, J. The Ontario school scheduling program. Computer J.
10, (1967-68), 14-21.
12. Lions, J. Some results concerning the reduction of binary
matrices. J. A C M 18, 3 (July 1971), 424-430.
13. Neufeld, G.A., and Tartar, J. Generalized graph colorations.
S I A M J, of Applied Math (To appear).
14. Peck, J.E.L., and Williams, M,R. Algorithm 286, exam
scheduling. Comm. ACM. 9, 6 (June 1966), 433-434.
IS. Welsh, D.J.A., and Powell, M.B. An upper bound for the
chromatic number of a graph and its application to timetabling
problems. Computer J. 10, (1967-68) 85-86.
16. Williams, M.R. The coloring of very large graphs.
Combinatorial Structures and Their Applications, Proc. Calgary
Internat. Conf. on Combinatorial Structures and Their
Application. Gordon and Breach, Calgary, Canada, June 1969, pp.
477-478.

453

C o m p u t e r
Systems

G. Bell, D. Siewiorek,
and S.H. Ful ler , Ed i to r s

A New Solution of
Dijkstra's Concurrent
Programming Problem
Leslie Lamport
Massachusetts Computer Associates, Inc.

A simple solution to the mutual exclusion problem is
presented which allows the system to continue to operate
despite the failure of any individual component.

Key Words and Phrases: critical section, concurrent
programming, multiprocessing, semaphores

CR Categories: 4.32

Introduction

K n u t h [1], deBrui jn [2], and Eisenberg and M c G u i r e
[3] have given so lu t ions to a concur ren t p r o g r a m m i n g
p r o b l e m or ig inal ly p r o p o s e d and solved by Di jks t r a [4].
A s impler so lu t ion using s emaphores has also been im-
p l emen ted [5]. These so lu t ions have one d r a w b a c k for
use in a t rue mu l t i compu te r system (ra ther than a t ime-
shared mul t ip rocessor sys tem): the fai lure o f a single
uni t will hal t the ent ire system. We present a s imple solu-
t ion which al lows the system'*t~b cont inue to opera te
despi te the fai lure o f any ind iv idua l componen t .

Copyright O 1974, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This research was supported by the Advanced Research Proj-
ects Agency of the Department of Defense and was monitored by
U.S. Army Research Office--Durham, under Contract No.
DAHC04-70-C-O023. Author's address: Massachusetts Computer
Associates, Inc., Lakeside Office Park, Wakefield, MA 01880.

Communications August 1974
of Volume 17
the ACM Number 8

The Algorithm

Consider N asynchronous computers communicat-
ing with each other only via shared memory. Each com-
puter runs a cyclic program with two pa r t s - -a critical
section and a noncritical section. Dijkstra 's problem, as
extended by Knuth, is to write the programs so that the
following conditions are satisfied:
1. At any time, at most one computer may be in its criti-
cal section.
2. Each computer must eventually be able to enter its
critical section (unless it halts).
3. Any computer may halt in its noncritical section.
Moreover, no assumptions can be made about the run-
ning speeds of the computers.

The solutions of [1-4] had all N processors set and
test the value of a single variable k. Failure of the mem-
ory unit containing k would halt the system. The use of
semaphores also implies reliance upon a single hardware
component.

Our solution assumes N processors, each containing
its own memory unit. A processor may read from any
other processor 's memory, bu t it need only write into its
own memory. The algorithm has the remarkable prop-
erty that if a read and a write operation to a single mem-
ory location occur simultaneously, then only the write
operation must be performed correctly. The read may
return any arbitrary value!

A processor may fail at any time. We assume that
when it fails, it immediately goes to its noncritical sec-
tion and halts. There may then be a period when reading
from its memory gives arbitrary values. Eventually, any
read from its memory must give a value of zero. (In
practice, a failed computer might be detected by its
failure to respond to a read request within a specified
length of time.)

Unlike the solutions of [1-4], ours is a first-come-
first-served method in the following sense. When a
processor wants to enter its critical section, it first exe-
cutes a loop-free block of code--i .e, one with a fixed
number of execution steps. It is then guaranteed to enter
its critical section before any other processor which later
requests service.

The algorithm is quite simple. It is based upon one
commonly used in bakeries, in which a customer receives
a number upon entering the store. The holder of the
lowest number is the next one served. In our algorithm,
each processor chooses its own number. The processors
are named 1, . . . , N. If two processors choose the same
number, then the one with the lowest name goes first.

The common store consists of

integer array chooshlg [1 :N], number [1 :N]

Words choosing (i) and number [i] are in the memory of
processor i, and are initially zero. The range of values of
number [i] is unbounded. This will be discussed below.

The following is the program for processor i. Execu-
tion must begin inside the noncritical section. The argu-

454

ments
order.
tegers
and b

of the maximum function can be read in any
The relation "less than" on ordered pairs of in-
is defined by (a,b) < (c,d) if a < c, or if a = c
< d .

begin integer j;
L1 : choosing [i] : = 1 ;

number[i] := 1 + maximum (number[l], . . . , number[N]);
choosing[i] := 0;
forj = 1 step l until N do

he~n
L2: if choosing[j] ~ 0 then goto L2;
L3: if number[j] ~ 0 and (number [j'], j) < (number[i],

i) then goto L3;
end;

critical section;
number[i] : = O;
noncritical section;
goto L 1 ;

end

We allow processor i to fail at any time, and then to
be restarted in its noncritical section (with choosing [i] =
number [i] = 0). However, if a processor keeps failing
and restarting, then it can deadlock the system.

Proof of Correctness

To prove the correctness of the algorithm, we first
make the following definitions. Processor i is said to be
in the doorway while choosing [i] = 1. It is said to be in
the bakery from the time it resets choosing (i) to zero
until it either fails or leaves its critical section. The cor-
rectness of the algorithm is deduced from the following
assertions. Note that the proofs make no assumptions
about the value read during an overlapping read and
write to the same memory location.

Assertion 1. If processors i and k are in the bakery
and i entered the bakery before k entered the doorway,
then number [i] < number [k].

Proof. By hypothesis, number [i] had its current
value while k was choosing the current value of number
[k]. Hence, k must have chosen number [k] >_ 1 + num-
ber [/].IS]

Assertion 2. If processor i is in its critical section,
processor k is in the bakery, and k ~ i, then (number
[i], i) < (number [k], k).

Proof. Since choosing [k] has essentially just two
values--zero and nonzero- -we can assume that f rom
processor i's point of view, reading or writing it is done
instantaneously, and a simultaneous read and write does
not occur. For example, if choosing [k] is being changed
from zero to one while it is also being read by processor
i, then the read is considered to happen first if it obtains
a value of zero; otherwise the write is said to happen
first. All times defined in the proof are f rom processor
i's viewpoint.

Let tL2 be the time at which processor i read choosing
[k] during its last execution of L2 f o r j = k, and let tL3 be
the time at which i began its last execution of L3 for
j = k, so tn~ < tL3. When processor k was choosing its

Communica t i ons A u g u s t 1974
of Volume 17
the A C M N u m b e r 8

current value of n u m b e r [k], let t~ be the time at which it
entered the doorway, tw the time at which it finished
writing the value of n u m b e r [k], and tc the time at which
it left the doorway. Then t~ < tw < to.

Since c h o o s i n g [k] was equal to zero at time tl.2, we
have either (a) tL2 < t, or (b) tc < tL~. In case (a), As-
sertion 1 implies that n u m b e r [i] < n u m b e r [k], so the
assertion holds.

In c a s e (b) , w e h a v e t w < tc < tn2 < tL3, SOtw <
tz~. Hence, duringthe execution of statement L3 begun at
time tz3, processor i read the current value of n u m b e r [k].
Since i did not execute L3 again f o r j = k, it must have
found (n u m b e r [i], i) < (n u m b e r [k], k). Hence, the
assertion holds in this case, too.U]

A s s e r t i o n 3. Assume that only a bounded number of
processor failures may occur. If no processor is in its
critical section and there is a processor in the bakery
which does not fail, then some processor must eventually
enter its critical section.

P r o o f . Assume that no processor ever enters its criti-
cal section. Then there will be some time after which no
more processors enter or leave the bakery. At this time,
assume that processor i has the minimum value of (n u m -

ber [i], i) among all processors in the bakery. Then pro-
cessor i must eventually complete the for loop and enter
its critical section. This is the required contradiction. []

Assertion 2 implies that at most one processor can
be in its critical section at any time. Assertions 1 and 2
p rove ' tha t processors enter their critical sections on a
first-come-first-served basis. Hence, an individual pro-
cessor cannot be blocked unless the entire system is dead-
locked. Assertion 3 implies that the system can only be
deadlocked by a processor halting in its critical section,
or by an unbounded sequence of processor failures and
re-entries. The latter can tie up the system as follows. If
processor j continually fails and restarts, then with bad
luck processor i could always find choos ing [j] = 1,
and loop forever at L2.

Further Remarks

I f there is always at least one processor in the bakery,
then the value of n u m b e r [i] can become arbitrarily large.
This problem cannot be solved by any simple scheme of
cycling through a finite set of integers. For example,
given any numbers r and s, if N :> 4, then it is possible
to have simultaneously n u m b e r (i) = r and n u m b e r

(j) = s for some i and j.
Fortunately, practical considerations will place an

upper bound on the value of n u m b e r [i] in any real ap-
plication. For example, if processors enter the doorway
at the rate of at most one per msec, then after a year of
operation we will have n u m b e r [i] < 235--assuming that
a read of n u m b e r [i] can never obtain a value larger than
one which has been written there.

The unboundedness of n u m b e r [i] does raise an inter-

1 We have recently found such an algorithm, but it is quite
complicated.

esting theoretical question : can one find an algorithm for
finite processors such that processors enter their critical
sections on a first-come-first-served basis, and no pro-
cessor may write into another processor 's memory? The
answer is not known. ~

The algorithm can be generalized in two ways: (i)
under certain circumstances, to allow two processors si-
multaneously to be in their critical sections; and (ii) to
modify the first-come-first-served property so that
higher priority processors are served first. This will be
described in a future paper.

Conclusion

Our algorithm provides a new, simple solution to the
mutual exclusion problem. Since it does not depend
upon any form of central control, it is less sensitive to
component failure than previous solutions.

Received September 1973; revised January 1974

References
1. Knuth, D.E. Additional comments on a problem in concurrent
programming control. Comm. Acre 9, 5 (May 1966), 321-322.
2. deBruijn, N.G. Additional comments on a problem in con-
current programming control Comm. A C M 10, 3 (Mar. 1967),
137-138.
3. Eisenberg, M.A., and McGuire, M.R. Further comments on
Dijkstra's concurrent programming control problem. Comm.
A C M 15, 11 (Nov. 1972), 999.
4. Dijkstra, E.W. Solution of a problem in concurrent program-
ming control. Comm. A C M 8, 9 (Sept. 1965), 569.
5. Dijkstra, E.W. The structure of THE multiprogramming system.
Comm. A C M 11, 5 (May 1968), 341-346.

Computer Systems

Erratum

In " A Note on Subexpression Ordering in the Evalu-
ation of Arithmetic Expressions" by Peter J. Denning
and G. Scott Graham, C o m m . A C M 16, 11 (Nov. 1973),
700-702, the following erratum has been submitted
by Denning.

The first two sentences in the first full paragraph on
p. 701 should read as follows:

Hu shows that an optimal list L0 for any m and any
tree (of equal-execution-time tasks) can be constructed
by taking a first appearance of each task in the se-
quence M i x , M 2 . , . , . . . , MKK. Ramamoor thy and
Gonzales order the tasks of each M,j according to de-
creasing execution time, then construct a list L by taking
the first appearance of each task in the sequence Mix,
• . . , M 1 K , M.,..,. , . . . , M.,_K , M33 , • • . , M3K , • • • , M K K ;

they claim that L is optimal for any tree and any m.

It should be noted that even for equal-execution-time
tasks, a list constructed from the latter sequence above
need not be consistent with the former sequence above
and, hence, need not be optimal for that reason alone.

We are grateful to Dr. Shimon Even for calling our
unfortunately incorrect wording to our attention.

455 Communications August 1974
of Volume 17
the ACM Number 8

