
6. Conclusion 

I t  has been shown tha t  the existence o f  a a -co lo ra t ion  
o f  a pa r t i cu la r  g raph  is a necessary and  sufficient condi -  
t ion for  the  existence o f  a so lu t ion  to  the class- teacher  
t ime tab le  p r o b l e m  with unava i lab i l i ty  cons t ra in ts  and  
preass igned  meetings.  The  knowledge  of  this necessary 
and  sufficient condi t ion  does no t  p rov ide  an efficient 
a lgor i thm which can be app l ied  to an a rb i t r a ry  t ime- 
table  p r o b l e m  in order  to de te rmine  the existence o f  a 
solut ion.  The necessary and  sufficient cond i t ion  does,  
however ,  show tha t  existing graph  co lor ing  a lgor i thms  
[I, 6, 14, 15, 16] may  be appl ied  to t ime tab le  p r o b l e m s  
with unava i lab i l i ty  const ra in ts  and  preass igned meetings.  

A c k n o w l e d g m e n t .  The  au thors  would  l ike to  t h a n k  
the referees for  their  cons t ruc t ive  cr i t ic ism and  helpful  
suggest ions for  the improvemen t  of  this paper .  
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Introduction 

K n u t h  [1], deBrui jn  [2], and  Eisenberg  and  M c G u i r e  
[3] have given so lu t ions  to a concur ren t  p r o g r a m m i n g  
p r o b l e m  or ig inal ly  p r o p o s e d  and solved by Di jks t r a  [4]. 
A s impler  so lu t ion  using s emaphores  has also been im- 
p l emen ted  [5]. These  so lu t ions  have  one d r a w b a c k  for  
use in a t rue mu l t i compu te r  system (ra ther  than  a t ime-  
shared  mul t ip rocessor  sys tem):  the fai lure o f  a single 
uni t  will hal t  the ent ire  system. We present  a s imple  solu- 
t ion  which al lows the system'*t~b cont inue  to  opera te  
despi te  the  fai lure o f  any  ind iv idua l  componen t .  
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The Algorithm 

Consider N asynchronous computers communicat-  
ing with each other only via shared memory.  Each com- 
puter runs a cyclic program with two pa r t s - -a  critical 
section and a noncritical section. Dijkstra 's problem, as 
extended by Knuth,  is to write the programs so that the 
following conditions are satisfied: 
1. At any time, at most one computer  may be in its criti- 
cal section. 
2. Each computer  must eventually be able to enter its 
critical section (unless it halts). 
3. Any computer  may halt in its noncritical section. 
Moreover,  no assumptions can be made about  the run- 
ning speeds of the computers.  

The solutions of [1-4] had all N processors set and 
test the value of a single variable k. Failure of the mem- 
ory unit containing k would halt the system. The use of 
semaphores also implies reliance upon a single hardware 
component.  

Our solution assumes N processors, each containing 
its own memory  unit. A processor may read from any 
other processor 's  memory,  bu t  it need only write into its 
own memory.  The algorithm has the remarkable prop- 
erty that if a read and a write operation to a single mem- 
ory location occur simultaneously, then only the write 
operation must be performed correctly. The read may 
return any arbitrary value! 

A processor may fail at any time. We assume that 
when it fails, it immediately goes to its noncritical sec- 
tion and halts. There may then be a period when reading 
from its memory  gives arbitrary values. Eventually, any 
read from its memory  must give a value of zero. (In 
practice, a failed computer  might be detected by its 
failure to respond to a read request within a specified 
length of time.) 

Unlike the solutions of [1-4], ours is a first-come- 
first-served method in the following sense. When a 
processor wants to enter its critical section, it first exe- 
cutes a loop-free block of code--i .e,  one with a fixed 
number  of execution steps. It is then guaranteed to enter 
its critical section before any other processor which later 
requests service. 

The algorithm is quite simple. It is based upon one 
commonly used in bakeries, in which a customer receives 
a number  upon entering the store. The holder of  the 
lowest number is the next one served. In our algorithm, 
each processor chooses its own number. The processors 
are named 1, . . . , N. If  two processors choose the same 
number,  then the one with the lowest name goes first. 

The common store consists of 

integer array chooshlg [1 :N], number [1 :N] 

Words choosing (i) and number [i] are in the memory  of 
processor i, and are initially zero. The range of values of 
number [i] is unbounded. This will be discussed below. 

The following is the program for processor i. Execu- 
tion must begin inside the noncritical section. The argu- 
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ments 
order. 
tegers 
and b 

of the maximum function can be read in any 
The relation "less than"  on ordered pairs of in- 
is defined by (a,b) < (c,d) if a < c, or if a = c 
< d .  

begin integer j; 
L1 : choosing [i] : = 1 ; 

number[i] :=  1 + maximum (number[l], . . . ,  number[N]); 
choosing[i] :=  0; 
forj = 1 step l until N do 

he~n 
L2: if choosing[j] ~ 0 then goto L2; 
L3: if number[j] ~ 0 and (number [j'], j) < (number[i], 

i) then goto L3; 
end; 

critical section; 
number[i] : =  O; 
noncritical section; 
goto L 1 ; 

end 

We allow processor i to fail at any time, and then to 
be restarted in its noncritical section (with choosing [i] = 
number [i] = 0). However,  if a processor keeps failing 
and restarting, then it can deadlock the system. 

Proof of Correctness 

To prove the correctness of the algorithm, we first 
make the following definitions. Processor i is said to be 
in the doorway while choosing [i] = 1. It  is said to be in 
the bakery from the time it resets choosing (i) to zero 
until it either fails or leaves its critical section. The cor- 
rectness of the algorithm is deduced from the following 
assertions. Note that the proofs make no assumptions 
about  the value read during an overlapping read and 
write to the same memory  location. 

Assertion 1. If  processors i and k are in the bakery 
and i entered the bakery before k entered the doorway, 
then number [i] < number [k]. 

Proof. By hypothesis, number [i] had its current 
value while k was choosing the current value of number 
[k]. Hence, k must have chosen number [k] >_ 1 + num- 
ber [/].IS] 

Assertion 2. If  processor i is in its critical section, 
processor k is in the bakery, and k ~ i, then (number 
[i], i) < (number [k], k). 

Proof. Since choosing [k] has essentially just two 
values--zero and nonzero- -we  can assume that  f rom 
processor i's point of view, reading or writing it is done 
instantaneously, and a simultaneous read and write does 
not occur. For example, if choosing [k] is being changed 
from zero to one while it is also being read by processor 
i, then the read is considered to happen first if it obtains 
a value of zero; otherwise the write is said to happen 
first. All times defined in the proof  are f rom processor 
i's viewpoint. 

Let tL2 be the time at which processor i read choosing 
[k] during its last execution of L2 f o r j  = k, and let tL3 be 
the time at which i began its last execution of L3 for 
j = k, so tn~ < tL3. When processor k was choosing its 
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current value of n u m b e r  [k], let t~ be the time at which it 
entered the doorway, tw the time at which it finished 
writing the value of n u m b e r  [k], and tc the time at which 
it left the doorway. Then t~ < tw < to. 

Since c h o o s i n g  [k] was equal to zero at time tl.2, we 
have either (a) tL2 < t, or (b) tc < tL~. In case (a), As- 
sertion 1 implies that n u m b e r  [i] < n u m b e r  [k], so the 
assertion holds. 

In c a s e ( b ) , w e h a v e t w  < tc < tn2 < tL3, SOtw < 
tz~. Hence, duringthe execution of statement L3 begun at 
time tz3, processor i read the current value of n u m b e r  [k]. 
Since i did not execute L3 again f o r j  = k, it must have 
found ( n u m b e r  [i], i) < ( n u m b e r  [k], k). Hence, the 
assertion holds in this case, too.U] 

A s s e r t i o n  3. Assume that only a bounded number of 
processor failures may occur. If  no processor is in its 
critical section and there is a processor in the bakery 
which does not fail, then some processor must eventually 
enter its critical section. 

P r o o f .  Assume that no processor ever enters its criti- 
cal section. Then there will be some time after which no 
more processors enter or leave the bakery. At this time, 
assume that processor i has the minimum value of ( n u m -  

ber  [i], i) among all processors in the bakery. Then pro- 
cessor i must eventually complete the for loop and enter 
its critical section. This is the required contradiction. [] 

Assertion 2 implies that at most one processor can 
be in its critical section at any time. Assertions 1 and 2 
p rove ' tha t  processors enter their critical sections on a 
first-come-first-served basis. Hence, an individual pro- 
cessor cannot be blocked unless the entire system is dead- 
locked. Assertion 3 implies that the system can only be 
deadlocked by a processor halting in its critical section, 
or by an unbounded sequence of processor failures and 
re-entries. The latter can tie up the system as follows. If 
processor j continually fails and restarts, then with bad 
luck processor i could always find choos ing  [j] = 1, 
and loop forever at L2. 

Further Remarks 

I f  there is always at least one processor in the bakery, 
then the value of n u m b e r  [i] can become arbitrarily large. 
This problem cannot be solved by any simple scheme of 
cycling through a finite set of integers. For example, 
given any numbers r and s, if N :> 4, then it is possible 
to have simultaneously n u m b e r  (i) = r and n u m b e r  

(j) = s for some i and j. 
Fortunately, practical considerations will place an 

upper bound on the value of n u m b e r  [i] in any real ap- 
plication. For  example, if processors enter the doorway 
at the rate of at most one per msec, then after a year of 
operation we will have n u m b e r  [i] < 235--assuming that 
a read of n u m b e r  [i] can never obtain a value larger than 
one which has been written there. 

The unboundedness of n u m b e r  [i] does raise an inter- 

1 We have recently found such an algorithm, but it is quite 
complicated. 

esting theoretical question : can one find an algorithm for 
finite processors such that processors enter their critical 
sections on a first-come-first-served basis, and no pro- 
cessor may write into another processor 's memory? The 
answer is not known. ~ 

The algorithm can be generalized in two ways: (i) 
under certain circumstances, to allow two processors si- 
multaneously to be in their critical sections; and (ii) to 
modify the first-come-first-served property so that  
higher priority processors are served first. This will be 
described in a future paper. 

Conclusion 

Our algorithm provides a new, simple solution to the 
mutual exclusion problem. Since it does not depend 
upon any form of central control, it is less sensitive to 
component  failure than previous solutions. 
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Erratum 

In " A  Note on Subexpression Ordering in the Evalu- 
ation of Arithmetic Expressions" by Peter J. Denning 
and G. Scott Graham,  C o m m .  A C M  16, 11 (Nov. 1973), 
700-702, the following erratum has been submitted 
by Denning. 

The first two sentences in the first full paragraph on 
p. 701 should read as follows: 

Hu shows that an optimal list L0 for any m and any 
tree (of equal-execution-time tasks) can be constructed 
by taking a first appearance of each task in the se- 
quence M i x ,  M 2 . , . , . . . ,  MKK. Ramamoor thy  and 
Gonzales order the tasks of each M,j  according to de- 
creasing execution time, then construct a list L by taking 
the first appearance of each task in the sequence Mix,  
• . . , M 1 K  , M.,..,. , . . . , M.,_K , M33 , • • . , M3K , • • • , M K K  ; 

they claim that L is optimal for any tree and any m. 

It  should be noted that even for equal-execution-time 
tasks, a list constructed from the latter sequence above 
need not be consistent with the former sequence above 
and, hence, need not be optimal for that reason alone. 

We are grateful to Dr. Shimon Even for calling our 
unfortunately incorrect wording to our attention. 
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