A Common Machine Language for Grid-Based Architectures

William Thies, Michal Karczmarek, Michael Gordon, David Maze, Jeremy Wong,
Henry Hoffmann, Matthew Brown and Saman Amarasinghe

{thies, karczma, mgordon, dmaze, jnwong, hank, morris, saman }@lcs.mit.edu

Laboratory for Computer Science, Massachusetts Institute of Technology

1. INTRODUCTION

A common machine language is an essential abstraction
that allows programmers to express an algorithm in a way
that can be efficiently executed on a variety of architectures.
The key properties of a common machine language (CML)
are: 1) it abstracts away the idiosyncratic differences be-
tween one architecture and another so that a programmer
doesn’t have to worry about them, and 2) it encapsulates the
common properties of the architectures such that a compiler
for any given target can still produce an efficient executable.

For von-Neumann architectures, the canonical CML is C:
instructions consist of basic arithmetic operations, executed
sequentially, which operate on either local variables or values
drawn from a global block of memory. C has been imple-
mented efficiently on a wide range of architectures, and it
saves the programmer from having to adapt to each kind of
register layout, cache configuration, and instruction set.

However, recent years have seen the emergence of a class of
grid-based architectures [2, 3, 4] for which the von-Neumann
model no longer holds, and for which C is no longer an ade-
quate CML. The design of these processors is fundamentally
different in that they are conscious of wire delays—instead
of just arithmetic computations—as the barriers to perfor-
mance. Accordingly, grid-based architectures support fine-
grained, reconfigurable communication between replicated
processing units. Rather than a single instruction stream
with a monolithic memory, these machines contain multiple
instruction streams with distributed memory banks.

Though C can still be used to write efficient programs on
these machines, doing so either requires architecture-specific
directives or a very smart compiler that can extract the par-
allelism and communication from the C semantics. Both of
these options renders C obsolete as a CML, since it fails to
hide the architectural details from the programmer and it
imposes abstractions which are a mismatch for the domain.

To bridge this gap, we propose a new common machine
language for grid-based processors: StreamlIt. The Streamlt
language makes explicit the large-scale parallelism and reg-
ular communication patterns that these architectures were
designed to exploit. A program is represented not as a mono-
lithic memory and instruction stream, but rather as a com-
position of autonomous filters, each of which contains its
own memory and can only communicate with its immediate
neighbors via high-bandwidth data channels. In addition,
StreamIt provides a low-bandwidth messaging system that
filters can use for non-local communication. We believe that
Streamlt abstracts away the variations in grid-based proces-
sors while encapsulating their common properties, thereby
enabling compilers to efficiently map a single source program
to a variety of modern processors.

2. THE STREAMIT LANGUAGE

In this section we provide a brief overview of the StreamlIt
language; please see [5] for a more detailed description. The
current version of Streamlt is legal Java syntax to simplify
our presentation and implementation, and it is designed to
support only streams with static input and output rates.

2.1 TheStream Graph

The basic unit of computation in Streamlt is the Filter.
An example of a Filter is the Adder, a component of our soft-
ware radio (see Figure 2). Each Filter contains an init
function that is called at initialization time; in this case,
the Adder records N, the number of items it should add at
once. The work function describes the most fine grained
execution step of the filter in the steady state. Within
the work function, the filter can communicate with neigh-
boring blocks using the input and output channels, which
are typed FIFO queues declared within the init function.
These high-volume channels support the intuitive operations
of push(value), pop(), and peek(index), where peek re-
turns the value at position index without dequeuing an item.

The basic construct for composing filters into a commu-
nicating network is a Pipeline, such as the Radio in Figure
2. Like a Filter, a Pipeline has an init function that
is called upon its instantiation. However, there is no work
function, and all input and output channels are implicit; the
stream behaves as the sequential composition of filters that
are specified with successive calls to add from within init.

There are two other stream constructors besides Pipeline:
SplitJoin and FeedbackLoop. The former is used to specify
independent parallel streams that diverge from a common
splitter and merge into a common joiner (see the Equalizer
in Figure 2). There are two kinds of splitters: 1) Duplicate,
which replicates each data item and sends a copy to each par-
allel stream, and 2) RoundRobin(ws, ..., wy), which sends
the first wi items to the first stream, the next ws items to
the second stream, and so on. RoundRobin is the only joiner
type. The parallel streams are specified by successive calls
to add; the i’th call sets the ¢’th stream in the SplitJoin.

Streamlt differs from other languages in that it imposes a
well-defined structure on the streams: all stream graphs are
built out of a hierarchical composition of Pipelines, SplitJoins,
and FeedbackLoops. This structure enables the stream to
be mapped efficiently onto a grid target, since all of the com-
munication is between neighboring filters. Moreover, we are
developing fission and fusion algorithms that can, for exam-
ple, collapse a large Pipeline into a single filter for execu-
tion on a single processor, thereby allowing us to adjust the
granularity of the stream graph to match the granularity of
a given target.



ReadFromAtoD

N

|
” RFtolF Duplicate Splitter

SignalBooster

[BandPassﬂ ce . [BandPasle}
—_—

\
A heckH
CheckHop RoundRobin Joiner

Equali
Speaker v

setFreq message

Figure 1: Block diagram of a software radio.

class Adder extends Filter {
int N;

void init(int N) {
setInput(Float.TYPE); setOutput(Float.TYPE);
setPush(1); setPop(N);
this.N = N;

}

void work() {
float sum = 0;
for (int i=0; i<N; i++) {
sum += input.pop();
}
output.push(sum);

}

class Equalizer extends Pipeline {
void init(int BANDS) {
add(new SplitJoin() {
void init() {
int bottom = 2500;
int top = 5000;
setSplitter (Duplicate());
for (int i=0; i<BANDS; i++, bottom*=2, top*=2) {
add(new BandPassFilter(bottom, top));
¥
setJoiner (RoundRobin());
)
add (new Adder (BANDS));
}
}

class CheckHop extends Filter {
int DELAY;
RFtoIFPortal portal;

void init(RFtoIF rf2if, int DELAY) {
setInput (Float.TYPE); setOutput(Float.TYPE);
setPush(N); setPop(N);
this.portal = new RFtoIFPortal (rf2if);
this.DELAY = DELAY;

[

void work() {
boolean hopped = /* calculate if hopped */
float newFreq = /* detect new frequency */
if (hopped) {
portal.setFreq(newFreq, DELAY);

}
}

class Radio extends Stream {
void init() {

add(new ReadFromAtoD());
RFtolIF rf2if = add(new RFtoIF());
add (new SignalBooster());
add(new CheckHop(rf2if, 256));
add(new Equalizer(10));
add(new Speaker());

Figure 2: Streamlt code for a software radio.

2.2 Messages

Streamlt provides a dynamic messaging system for pass-
ing irregular, low-volume control information between non-
neighboring filters. Messages are sent from within the body
of a filter’'s work function, perhaps to change a parameter
in another filter. For example, in the CheckHop filter of our
software radio example (Figure 2), a message is sent up-
stream to change the frequency of the receiver if the down-
stream component detects that the transmitter is about to
change frequencies. The sender can continue to execute
while the message is en route, and the setFreq method will
be invoked in the receiver with argument newFreq when the
message arrives. Since message delivery is asynchronous,
there can be no return value; only void methods can be
message targets.

The central aspect of the messaging system is a sophisti-
cated timing mechanism that allows filters to specify when
a message will be received relative to the flow of informa-
tion between the sender and the receiver. This mechanism
enables a consistent definition of message delivery timing
across varying architectures that have no global clock. For
example, the CheckHop filter sends a message with a latency
of DELAY. This means that the target will receive the message
when it is processing the data item that the the CheckHop fil-
ter sees in DELAY executions of its own work function. That
is, the sender of a message specifies the delivery timing in
terms of its own local time; the translation to the receiver’s
time is done relative to data items in the stream. This tim-
ing mechanism is important not only for portability, as it is
independent of any architecture’s clock or topology, but also
for programmability, as it is often important to synchronize
events with wavefronts of data in the stream.

3. STATUSAND CONCLUSIONS

We have implemented a fully-functional prototype of the
Streamlt optimizing compiler that targets both uniproces-
sors and Raw [1]. The compiler exploits the structure of
the stream graph to perform load-balancing transformations
that can improve performance on Raw by over 300%.

We believe that Streamlt represents a viable common ma-
chine language for grid-based architectures. It abstracts
away the target’s granularity, memory layout, and network
interconnect, while capturing the notion of replicated pro-
cessors that communicate in regular patterns. With this
representation, we believe that the Streamlt compiler will
match the performance of C code that was hand-tailored for
a given grid-based machine.

4. REFERENCES

[1] Michael Gordon et al. A Stream Compiler for
Communication-Exposed Architectures. MIT Tech. Memo
TM-627, Cambridge, MA, March, 2002.

[2] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and
M. Horowitz. Smart memories: A modular recongurable
architecture. In ISCA 2000, Vancouver, BC, Canada.

[3] Elliot Waingold et al. Baring it all to software: The raw
machine. MIT Tech. Report TR-709, Cambridge, MA, 1997.

[4] K. Sankaralingam, R. Nagarajan, S.W. Keckler, and D.C.
Burger. A Technology-Scalable Architecture for Fast Clocks
and High ILP. UT Austin, Tech. Report TR-01-02, 2001.

[5] William Thies, Michal Karczmarek, and Saman
Amarasinghe. StreamlIt: A Language for Streaming
Applications. In Proc. of the Int. Conf. on Compiler
Construction, to appear, Grenoble, France, 2002.



