A Common Machine Language for Communication-Exposed Architectures

Bill Thies, Michal Karczmarek, Michael Gordon, David Maze and Saman Amarasinghe

MIT Laboratory for Computer Science

HPCA Work-in-Progress Session, February 2002

A Common Machine Language for Communisation-Exposed Architectures

Language Designers Have Been Ignoring Architects

Bill Thies, Michael Karczmarek, Michael Gordon, David Maze and Saman Amarasinghe

MIT Laboratory for Computer Science

HPCA Work-in-Progress Session, February 2002

Back in The Good Old Days...

- · Architecture: simple von-Neumann
- "Common Machine Language": C
 - Abstracts away idiosyncratic differences
 - Instruction set
 - · Cache configuration · Register layout
- Pipeline depth

 - Exposes common properties
 - Program counter

· Arithmetic instructions

- · Monolithic memory
- Efficient implementations on many machines
- -Portable: everyone uses it

Programming Language Evolution

Programming Language Evolution

Languages Have Not Kept Up

Modern architecture

Two choices:

- Develop cool architecture with complicated, ad-hoc language
- Bend over backwards to support old languages like C/C++

Evidence: Superscalars

- Huge effort into improving performance of sequential instruction stream
- · Complexity has grown unmanageable
- Even with 1 billion transistors on a chip, what more can be done?

Pipelining

Out-of-Order Execution

Renaming

Branch Prediction

Prefetching

Speculative Execution

Value Prediction

A New Era of Architectures

- · Facing new design parameters
 - Transistors are in excess
 - Wire delays will dominate
- · "Communication-exposed" architectures
 - Explicitly parallel hardware
 - Compiler-controlled communication
 - -e.g. RAW, Smart Memories, TRIPS, Imagine, the Grid Processor, Blue Gene

A New Common Machine Language

- Should expose shared properties:
 - Explicit parallelism (multiple program counters)
 - Regular communication patterns
 - Distributed memory banks
 - No global clock
- · Should hide small differences:
 - Granularity of computation elements
 - Topology of network interconnect
 - Interface to memory units
 - → C does not qualify!

The StreamIt Language

 A high-level language for communicationexposed architectures

 Computation is expressed as a hierarchical composition of independent filters

The StreamIt Language

 A high-level language for communicationexposed architectures

- Computation is expressed as a hierarchical composition of independent filters
- · Features:
 - High-bandwidth channels
 - Low-bandwidth messaging
 - Re-initialization

The StreamIt Compiler

- · We have a compiler for a uniprocessor
 - Performs comparably to C++ runtime system

The StreamIt Compiler

- · We have a compiler for a uniprocessor
 - -Performs comparably to C++ runtime system
- Working on a backend for RAW
 - Fission and fusion transformations

- Many optimizations in progress

The StreamIt Compiler

- · We have a compiler for a uniprocessor
 - Performs comparably to C++ runtime system
- Working on a backend for RAW
 - Fission and fusion transformations

- Many optimizations in progress
- · Goal: High-performance, portable language for communication-exposed architectures

For more information, see:

http://cag.lcs.mit.edu/streamit/

Thank you!