
1

Interactive Visualization of Three-Dimensional Segmented 
Images for Neurosurgery

  Technical Report - June, 1995

William T. Katz, Ph.D., M.D.
John W. Snell, Ph.D.
Ken Hinckley, M.S.

Department of Neurosurgery
University of Virginia

Charlottesville, VA

Please send correspondence to:

William T. Katz
www.billkatz.com 



2

  ABSTRACT

Visualization for neurosurgical applications requires speed, realism, and methods for 

unobtrusive and intuitive interactive exploration. The method presented here uses fast voxel 

projection to multiple compositing buffers together with a hybrid user interface which includes 

six degree-of-freedom props.



3

  Introduction

The recent and widespread availability of three-dimensional (3D) medical imagery, together 

with rapid advances in computer and communications technologies, has opened increasing roles 

for imaging in the planning and execution of invasive procedures. While 3D imagery is routinely 

available in clinically acceptable times, it is only with the emergence of capable software tools 

that the 3D nature of this data has become accessible to the physician. Segmentation, the 

determination of the anatomy represented by each image element, is a crucial prerequisite for 

most applications of 3D medical images although this task is not discussed within this paper. 

Once the 3D configuration of an object such as the skull or the brain is determined through 

segmetnation, a variety of methods can compute a photorealistic view or rendering of the data 

given a particular orientation of the objects. This paper describes our approach to obtaining the 

object orientation and performing the rendering for neurosurgical applications.

  Requirements for Neurological Surgery

In considering the environment of a practicing neurological surgeon, we have four 

requirements for any visualization system. First and foremost, the pictures must be as 

photorealistic as possible. Second, the pictures must be produced within a reasonable time frame. 

Health-care professionals are typically under extreme time constraints; therefore, the speed of the 

visualization process must be acceptable to the medical housestaff who from our experience 

require images to appear within ten seconds if not sooner. A third requirement is for interactive 

real-time exploration of the data. One method of spatial exploration allows interactive 

sectioning of objects with display of the original image intensities across the cutting plane (figure 

1). While much attention has been devoted to the requirement of photorealism, few mechanisms 

have been offered for interactive sectioning of medical image data which combines both 

photorealistic rendering of 3D objects together with original image intensities on cut surfaces. 

Finally, any approach to visualization must permit intuitive unobtrusive manipulation of 



4

rendered objects. Physicians as a group, and neurosurgeons in particular, are often disturbed by 

excessive keyboard and mouse manipulations and are also frequently interrupted by pages, 

phonecalls, etc. From this standpoint, there is a large penalty for obtrusive user interface devices 

such as helmets and gloves which require donning of equipment.

In order to meet these requirements, our approach uses two methods. The first is a fast 

rendering tool which employs voxel projection to multiple compositing buffers. In addition to 

producing realistic images of anatomy, the rendering tool is designed to maximize interactive 

response for slicing a 3D volume, manipulating superimposed objects such as head immobilizers, 

and altering properties such as the color or transparency of a given part of the anatomy. The 

second method consists of unobtrusive real-world manipulator props with embedded six degree-

of-freedom tracking devices that determine the orientation of the rendered 3D objects. These 

methods form the core technology of a stereotactic neurosurgical planning and display system.

  Approaches to Rendering

Rendering of 3D images can be divided along many lines including the method of object 

representation (polygonal vs. volumetric), the direction of image formation (ray casting vs. voxel 

projection), and the preprocessing required before visualization (isotropic reformatting, 

segmentation, etc). We have developed a software-based technique, Buffered Surface Rendering 

(BSR), which quickly generates realistic 3D renderings of segmented 3D medical imagery. The 

input data to BSR is provided by a semiautomatic segmentation system1 which separates each 

volume element or voxel in a 3D image into different labels such as “head” and “left cerebrum.” 

For the purposes of discussion, we will use the term substance to denote all voxels sharing a 

distinct label.

Direction of Rendering

Rendering is the process of producing a 2D view of 3D object data composed of the 

prelabelled voxels. The data, described in object space, is transformed into a 2D picture on a view 



5

screen in view space through the rendering process (figure 2). In order to render the data, we must 

first rotate the data from its initial description to reflect our given viewpoint. After rotation, the 

2D picture is constructed by moving in one of two directions. By projecting rays from each pixel 

in the 2D view screen through the 3D data, ray casting methods compute the contribution of the 

data to each pixel in the view screen. We can also move in the opposite direction, starting from 

each data point in object space and projecting it onto the 2D view screen. If the data is in voxel 

form, this technique is called voxel projection.

Data Representation

In addition to the choice of rendering direction, the form of the data itself can vary. In early 

graphics systems, the data to be rendered were exclusively simple geometric primitives like 

polygons or parametric bicubic patches; complex structures were constructed from large numbers 

of these primitive shapes. Polygonal representations usually allow faster rendering since most 

computer graphics workstations have hardware support for efficient polygonal processing. But 

medical imaging modalities produce pixel or voxel-formatted data, so an additional step must be 

taken to transform the original images to an explicit surface-oriented geometric representation. 

The BSR method works directly from voxel-formatted data and does not require resampling of 

the volume to isotropic (i.e. cubically proportioned voxel) data.

  Methods

The BSR Pipeline

The renderer accepts as input the original image intensities I p( )  and the substance labels 

λ p( )  computed by the segmentation process, where the variable p  gives the location of a voxel. 

Essentially, the BSR approach is a two-step process. First, the surface voxels of each substance 

are independently rendered with the intermediate results stored in a buffer. This step is performed 

for any change in the viewing angle and currently requires approximately 3 seconds for a 3D head 

image partitioned into 6 substances. Once each substance has been rendered, the final image is 



6

formed by compositing the previously independent substance buffers together with any additional 

graphics like stereotactic frames or MRI intensities of a clipping surface into a final picture. This 

second step can be performed interactively and permits selective removal and exploration of the 

substances with a movable clipping polygon. Manipulation of substance viewing parameters such 

as transparency, coloring, reflectivity, and image intensity contrast can also be performed in the 

fast compositing step.

The rendering process consists of a pipeline (figure 3) with five stages: surface/normal/

neighbor determination, voxel projection & footprint calculation, splatting, shading, and 

compositing. The first stage, determination of the surfaces, normals, and neighborhoods of the 

voxels, is performed once when the image intensities and labels are loaded into the renderer. The 

next three stages (voxel projection & footprint calculation, splatting, and shading) are performed 

independently for each substance with the intermediate results for each substance stored in 

separate buffers. The final step, compositing, integrates geometrical structures like a stereotactic 

frame schematic or a pointing wand with the visible substances into a final picture of the data.

Pipelining allows minimal recomputation when altering the rendering parameters. For 

example, clip operations are performed within the compositing stage; therefore, all of the steps 

before compositing are not performed. A number of other functions are also performed within the 

compositing stage such as alterations of opacities and clipping plane permeabilities.

Surface Determination

Given the labels λ p( )  computed by the segmentation process, the first stage of the BSR 

pipeline determines the set of surface voxels VS p λ p( ) λ q( ) q N p( )∈∃,≠{ }=  where N p( )  

is the set of voxels in the 26-connected neighborhood of voxel p . Since labels are associated with 

each voxel in the image, the surfaces are simply those voxels having a neighbor with a different 

label. The set VS  is computed once when the renderer is initialized.

Aside from the surfaces arising from label transitions, there can also be user-defined 

surfaces created by clipping operations. For example, if we were to section the head along the 

mid-sagittal plane, there would be both object surfaces as well as the clipped volume surface. 



7

While the object surfaces are portrayed using standard shading techniques as described below, 

surfaces arising from clipping operations are best shown using the original image intensities I p( ) . 

The BSR algorithm varies the color of a projected voxel based on the type of surface to which it is 

associated and a center/window function.

Surface Normal Determination

In the real world, the perception of visible object parts is dependent on a number of factors 

which include the amount and method of illumination, the viewpoint, and the optical properties of 

the object itself. When modelling the optical properties of an object using a computer, the shading 

stage must determine the object shape local to each visible voxel. In computer graphics, the 

standard method for describing local shape uses the vector normal to a surface. For predetermined 

surfaces with explicit geometrical representations like polygonal surfaces, the surface normals 

can be directly computed from the geometry. However, with voxel-based representations, the 

discreteness of the samples and the partial volume effect complicate surface, and hence, normal 

determination (4).

A common and powerful method for computing voxel “normals” uses the image intensity 

gradient G p( )  at the voxel p . The larger the neighborhood used to compute the gradient, the more 

the gradient vectors are smoothed across an area. The currently implemented BSR program 

allows three types of gradient (normal) computation: central difference, 3x3x3 Zucker-Hummel 

(ZH), and 5x5x5 ZH. The first two are described in (5), a paper which also mentions the benefits 

of using different shading styles to emphasize objects’ differences. We have found that use of the 

larger 5x5x5 ZH on naturally smooth surfaces (like skin) gives good results. For most other 

surfaces including the brain, the 3x3x3 ZH operator is preferable to either the “rough” central 

difference or “smooth” 5x5x5 ZH.

The gradient vector for each surface voxel is calculated and stored after loading the image 

intensities and labels. Coding of the vector is accomplished through the use of one byte for each 

of the two angles used in a spherical coordinate description.



8

Neighbor Determination

The number of voxels which are projected can be substantially reduced by considering 

simple line-of-sight constraints. For example, if a voxel is obscured by neighboring voxels 

consisting of the same substance in all but one direction, there is no need to project the given 

voxel unless our current viewpoint is in that one direction. Computationally, we can determine the 

visibility of each of the six faces of a voxel by its connectivity with neighbors classified as the 

same substance. If our current viewpoint rotates the voxel so a non-visible face is pointed towards 

the view screen, the voxel does not need to be projected.

Voxel Projection

For each new viewpoint, the renderer must reproject all surface voxels with visible faces. 

Rather than intially project all voxels onto the same plane, the BSR algorithm works on each 

substance independently, projecting all surface voxels for a given substance onto associated 

buffers. For each substance, three separate view screen buffers are used to record pointers to the 

original image voxel, depths of the projected voxels, and reflected light intensities. This buffering 

technique is simply an extension of the well-known z-buffer algorithms for hidden surface 

removal (6). Instead of just buffering the depth of the projected voxels, BSR maintains other 

important values used to speed rendering down the pipeline.

Transformation of a voxel into view space

Rotation, scaling, and translation of a point can all be performed by postmultiplication of 

the point with a transformation matrix (7). In addition to the image intensities I p( )  and the labels 

λ p( )  computed by the segmentation process, the BSR algorithm requires the specification of a 

viewpoint in the form of a 3x3 transformation matrix TV .

The coordinate systems for both object space and the view space are shown in Figure 3. The 

outline of the view screen is a 2D polygon orthogonal to the w-axis of view space. The picture 

generated by the renderer is a projection of object space onto the view screen. The viewing 

transform TV  dictates how object space should be rotated with respect to viewing space; different 



9

viewpoints correspond to different TV .

Given that each pixel in the view screen has a resolution of rV  millimeters and each image 

voxel has resolution rX , rY , and rZ  millimeters in the x, y, and z object space directions, the object 

to view space transformation matrix is:

TO V→

rX 0 0
0 rY 0
0 0 rZ

TV

1/rV 0 0
0 1/rV 0
0 0 1/rV

= . [1]

A voxel position p x y z
T

=  is a ℵ3  vector with the extents of the 3D image defined by 

0 x xmax≤ ≤ 0 y ymax≤ ≤ 0 z zmax≤ ≤, , . The center of the 3D image in object space is given by

cO
xmax

2---------
ymax

2---------
zmax

2---------
T

= . [2]

We define the target size of our rendered picture (the view screen) by 0 u umax≤ ≤  and 

0 v vmax≤ ≤  with the center of the view screen

cV
umax

2----------
vmax

2--------- 0
T

= . [3]

The function t p( )  transforming any voxel of the 3D image into view space is then defined as:

t p( ) p cO–( )TO V→[ ] cV+= . [4]

In words, the object to view space transformation proceeds by: (1) centering the image about the 

object space origin, (2) scaling it according to its real-world measurements, (3) rotating it about 

the origin using the viewing transform TV , (4) rescaling the points according to the resolution rV  

accorded each pixel on the view screen, and (5) positioning the center of the image at the view 

screen center.

The final required step is the transformation from 3D viewing space to the 2D view screen. 

In human vision, objects are seen in perspective; close objects seem larger than identically sized 

far objects. While polygon-oriented rendering can handle perspective projections with little if 

any time penalty, voxel-projection rendering often employs computational simplifications which 



10
disregard the perspective effect. Another method of projection, orthographic projection simply 

discards the depth (w-coordinate) of a point so the view screen coordinate q u v
T

= .

Hidden surface removal

After calculating the appropriate location of each voxel on the view screen, the renderer 

must decide which voxels are behind front voxels, and thus occluded in the current view. The Z-

buffer algorithm has been a de facto standard for hardware implementation of this hidden surface 

removal task (8). The method begins by initializing a depth or Z-buffer to very large values. As 

each voxel is projected to view space, the w-coordinate of the projected voxel is compared to the 

current contents of the Z-buffer at the voxel’s (u,v) coordinate. If the w-coordinate of the projected 

voxel is smaller (i.e. closer to the view screen) than the current Z-buffer value, we replace the Z-

buffer value with the current voxel’s depth. In addition to depth, the voxel position in object space 

is also recorded for future shading calculations using the stored gradient vector for that voxel. 

These substance-specific view screen buffers for voxel positions and depths can be described as 

substance buffers.

In the case of a rectangular grid of points (as in our 3D image), hidden surface removal may 

be accomplished by simply traversing the voxel array in a manner which guarantees back-to-front 

(BTF) (9) or front-to-back (FTB) ordering (10). Since the depths of the voxels are known by the 

order in which they are visited, the depth comparisons are no longer needed. FTB projection 

schemes have the additional benefit of being able to use an opacity-based stopping criterion. This 

allows the projection procedure to ignore all voxels mapping to a pixel which has already been 

rendered with maximum opacity.

The BSR algorithm requires orthographic projection and assumes that only one surface per 

substance is ever required for any display pixel. Therefore, semitransparent curved sheets after 

rendering will not show more than one side of the curved sheet. With this assumption, the BSR 

can calculate shading and splatting using the substance buffers after voxel projection, thereby 

only rendering voxels which are visible. Rendering is separate from the voxel projection step and 

therefore achieves rates similar to an opacity-based stopping criteria used with FTB ordering. 



11
Footprint Determination

When projecting voxels onto the view screen, the rendering algorithm should not create 

holes or other artifacts related to sampling differences. Voxels, unlike points, have volume yet the 

projection approach described above treats voxels like points. Holes are created when the distance 

between two neighboring voxels in object space is greater than the distance between two 

neighboring pixels of the view screen. Many algorithms prevent holes by enforcing constraints on 

both object and view space. The lower the view space pixel resolution, the smaller the probability 

that two neighboring voxels in object space will be projected on non-neighboring view screen 

pixels.

If the greatest distance between two voxels is x millimeters, the view screen pixel resolution 

must be at least x mm for a head-on (i.e. object and view space axes are parallel) view, x 2 if the 

object is rotated about a single axis, and x 3 for arbitrary orientations. Anisotropy compounds 

the problem since certain faces of the anisotropic image voxels will be elongated with respect to 

the other faces; therefore, certain rotations can bring elongated faces into view. 

A common and simple approach to rendering uses interpolation to enforce isotropic voxels 

while scaling the display resolution to 3 the resolution of a voxel. If isotropic images are used 

and the view screen and object space have identical resolution, another approach is to project 

disks of diameter x 3. More precise projections can be achieved by rendering the three visible 

faces associated with each voxel as polygons (11).

“Splatting” is the very descriptive term for techniques which construct the discretely-

sampled silhouette of a voxel’s projection and then apply this footprint when projecting each 

image voxel. Westover first described splatting (12); volume rendering was achieved by 

convolving all image voxels with the footprint filter, summing the results in a buffer. Convolution 

of an image with a static filter is a standard image processing task which may be hardware 

supported. But when using perspective projection, voxel size decreases with distance from the 

viewpoint; therefore, footprints vary within the image and must be recomputed for each voxel. 

However, if the renderer uses orthographic or any parallel projection, all voxels give identical 



12
footprints.

Splatting has at least two advantages. First, anisotropic voxels can be used, avoiding 

preliminary interpolation which may produce much larger input images. As long as a footprint of 

the volume element’s projection can be constructed, any type of volume elements (e.g. spherical 

or other non-cuboid decompositions) can be used. Second, the resolution of the view screen does 

not have to be artificially reduced to prevent artifacts. When artificially reducing the views to low 

resolution, parts of voxels may be incorrectly obscured because of the coarse sampling rate of the 

view screen.

Shading using Image Gradients

With full color display devices, colors are described by values for three primary colors 

which are often red, green, and blue. The red, green, and blue values describe a RGB vector, and 

the BSR algorithm allows the user to color any substance by assigning a RGB vector. In addition 

to color, each substance has other user-definable properties (Table 1): opaqueness (or conversely 

transparency), visibility (an on/off form of opaqueness), surface smoothness, and a mapping 

function for translating I p( )  to the display device’s color gamut. The mapping function is 

implemented using the common center and window parameters.

One method of avoiding surface normal determination is to make the intensities of 

projected voxels only dependent on their distance from the light source(s). Unfortunately, such 

schemes result in very unrealistic images. The currently implemented shading method assumes 

one light source coincident with the view screen. Furthermore, the light source is similar to a flat 

panel with the generated light rays parallel to the orthographic voxel projections. These 

assumptions simplify the shading computations while still producing realistic shading effects.

Use of gradients to estimate surface normals may lead to artifacts in the normal direction 

depending on the substances’ image intensities. Since the gradient vector points in the direction of 

increasing intensities, low intensity objects with high intensity surroundings (e.g. the ventricular 

system in T1-weighted MR images) will have gradient vectors pointing away from the surface. 

On the other hand, high intensitiy objects with low intensity surroundings (e.g. white matter) will 



13
have gradient vectors pointing towards the object surface. These differences can be surmounted 

by conditionally reflecting the gradient vector so that the computed vector always points towards 

the light source. By requiring the gradient vector to face the view screen, “black body” effects in 

which objects with high image intensities reflect no light are avoided.

Mathematically, distance-only shading can be described as

i q( ) Ia
Ii

K q k⋅( )+
-------------------------+= [5]

where i q( )  is the intensity of a voxel position q t p( )=  in view space (Eq. [4]), Ia  is the ambient 

light intensity, Ii  is the incident light intensity, k 0 0 1= , and K is an arbitrary constant. 

Although physics dictates that the intensity of light decreases inversely as the square of the 

distance from the source, it is a widely-held belief among computer graphics practitioners that 

linear attenuation laws give more easily visualized results (13).

Once the voxel normal has been computed, it can be used with two models of reflectivity - 

diffuse and specular reflection. Lambert’s law describes the intensity of light reflected from a 

perfect diffuser as proportional to the cosine of the angle between the light and surface normal 

vectors. Specularly reflected light, unlike diffusely reflected light, does not penetrate the surface 

and therefore has a strong directional component which depends on the viewpoint. A commonly-

used simplified model of specular reflection gives the reflected light intensity as proportional to 

µcos( )n  where n gives the degree of substance reflectivity and µ is the angle between the line of 

sight and reflected light vectors. Putting together distance effects, diffuse reflectivity and specular 

reflectivity, we can describe the shading model as

i q( ) Ia
Ii

K q k⋅( )+
------------------------- kd θcos ks µcos( )n+( )+= [6]

where kd  and ks  are user-specified substance-specific coefficients of diffuse and specular 

reflectivity, respectively. Because of our simplifying assumptions on the light source, both cosines 

in Eq. [6] can be written as the dot product of the surface normal G  and the line-of-sight vector S . 

More specifucally, since θcos G S⋅=  and µ 2θ=  we can write



14
µcos 2θ( )cos 2 θcos( )2 1– 2 G S⋅( )
2 1–= = =

i q( ) Ia
Ii

K q k⋅( )+
------------------------- kd G S⋅( ) ks 2 G S⋅( )

2 1–( )
n

+( )+=

[7]

. [8]

Simple Compositing

Each substance has three associated buffers holding depth information, a pointer to the 

projected voxel position, and the reflected light intensity (from Eq. [6]). For each display pixel, 

the substances can be ordered using the depth buffers and then composited to produce the final 

picture (Figure 4). The compositing process combines substances’ intensities using their opacities 

in either FTB or BTF order. If the substances are arranged for a given view screen pixel in FTB 

order as s1 s2 … sn, , , the composited intensity is defined recursively by the equations

C si( ) C si 1–( ) f si( ) 1 O si 1–( )–( )c si( )+=

C s0( ) 0 0 0=

O si( ) O si 1–( ) α si( ) 1 O si 1–( )–( )+=

O s0( ) 0=

[9]

[10]

where C si( )  and O si( )  are the composited color and opacity after considering substance si and 

f si( ) , c si( )  and α si( )  are the intensity, RGB vector, and opacity of substance si respectively. The 

above composition process is identical to those used by ray casting methods, except in BSR we 

work across substance buffers instead of along a ray.

Since reflected light intensities are calculated independently for each substance before

compositing, changing the opacities α requires only a recompositing step rather than a 

recomputation of any of the preceding pipeline steps (Figure 5). Similarly, alterations in color are 

performed quickly through a recomposition.

Interactive Clipping

Clipping is performed by removing all “permeable” voxels between a user-positioned clip 

plane and the viewpoint (Figure 6). Clipping operations can be quickly computed for a given 



15
viewpoint by using the substances’ depth and intensity buffers. For any clipping polygon in 3D 

object space, we can use Eq. [4] to transform the vertices into view space. Once in view space, the 

BSR algorithm uses orthographic projection to project the vertices onto the view screen and a 

scan-conversion algorithm (14) to determine the interior pixels of the clipping polygon. While 

scan-conversion proceeds, other numbers associated with the vertices can be interpolated. Thus, 

we can quickly interpolate original voxel positions in object space corresponding to the clipping 

polygon.

For each interior pixel of the clipping polygon we use two clipping buffers (in view space) 

to store: (1) the depth of the clip plane in view space and (2) the voxel in object space 

corresponding to the pixel. For each pixel in the view screen, the substances are traversed and 

composited in FTB order. When the clip plane is reached, two types of information may be 

depicted: (1) the image intensity I p( )  of an associated voxel is used if the the voxel corresponds to 

a substance or (2) a user-chosen clip plane intensity is composited. The former allows painting of 

image intensities onto clipped surfaces while the latter permits the highlighting of the clipping 

polygon.

  Results and Discussion

The BSR algorithm has been extensively tested with over three dozen segmented images 

based on MR as well as CT and user-constructed volumes. Execution times vary with the size of 

the dataset and the user-specified parameters. In this section, we give example timings using two 

test images (Figure 7).

The first test dataset uses a 3D MP-RAGE MR image of a cadaver head with five labelled 

objects: gray matter, white matter, ventricular system, ocular chambers (only for test purposes), 

and “head” which includes all foreground voxels not associated with the previous objects. The 

second test dataset uses a 3D MP-RAGE MR image of a volunteer with six labelled objects: right 

and left cerebrum, right and left cerebellum, brain stem, and “head.” The composition of each 

dataset is shown in Table 2. Sample times for each stage in the rendering process are shown in 



16
Table 3 using a HP 9000/735 workstation. 

While full traversal of the pipeline for a new view takes slightly more than three seconds, 

clipping plane movement occurs at a substantially higher rate depending on the size of the clip 

polygon on the view screen. Small polygons showing an image intensity window can be moved at 

over 15 frames per second.

The BSR approach assumes prior segmentation and the availability of labels λ p( ) . Multiple 

substances are handled using intermediate image buffers and a well-structured pipeline. 

Provisions are made for showing the I p( )  associated with clipped surfaces as described above; 

therefore, the BSR algorithm allows some degree of volume rendering. Given the large size of 3D 

medical images, BSR fortunately does not require interpolation to isotropic voxel size; a splatting 

stage is used after voxel projection.

The renderer has been designed with particular attention to the needs of the neurosurgeon. 

Different medical specialties have different requirements, and with neurosurgery, interactive 

exploration of objects’ 3D relationships is critical. BSR, through the use of multiple substance 

buffers, is optimized for the rapid display of 3D object surfaces together with interior image 

intensities. This caching of intermediate results with real-time compositing can be used with any 

front-end rendering method such as ray casting (15) or shell rendering (16).

  Acknowledgements

The authors would like to thank Jim Bertolina for his help in providing the images for this 

study. The work has been partially supported by the Medical Scientist Training Program, 

University of Virginia.



17
  References

1. Goble JC, Snell JW, Katz WT. Semiautomatic Model-Based Segmentation of the Brain from 
Magnetic Resonance Images. Proceedings of AAAI Spring Symposium on Applications of 
Computer Vision in Medical Image Processing, March 1994, pp. 211-214.

2 Fuchs H, Kedem ZM, Uselton SP. Optimal Surface Reconstruction from Planar Contours. 
Comm. ACM 20, 693-702 (1977).

3 Herman GT. The Tracking of Boundaries in Multidimensional Medical Images. Comput. 
Med. Imaging Graph. 15, 257-264 (1991).

4 Kaufman A (Ed.). Volume Visualization. Los Alamitos: IEEE Computer Society Press, 
1991.

5 Tiede U, Höhne KH, Bomans M, Pommert A, Riemer M, Wiebecke G. Investigation of 
Medical 3D-Rendering Algorithms. IEEE Comput. Graph. Appl. 10(2), 41-53 (1990).

6 Foley JD, van Dam A, Feiner SK, Hughes JF. “Computer Graphics: Principles and 
Practice.” Addison-Wesley, Reading, 1990.

7 Rogers DF, Adams JA. “Mathematical Elements for Computer Graphics.” McGraw-Hill, 
New York, 1976.

8 Watt A, Watt M. “Advanced Animation and Rendering Techniques.” ACM Press, New 
York, 1993.

9 Frieder G, Gordon D, Reynolds RA. Back-to-Front Display of Voxel-Based Objects. IEEE 
Comput. Graph. Appl. 5(1), 52-59 (1985).

10 Reynolds R, Gordon D, Chen L. A Dynamic Screen Technique for Shaded Graphics 
Display of Slice-Represented Objects. CVGIP. 38, 275-298 (1987).

11 Chen LS, Herman GT, Meyer CM, Reynolds RA, Udupa JK. 3D83 - An Easy-to-Use 
Software Package for Three-Dimensional Display from Computed Tomograms. Proc. of 
IEEE Comp Soc Int’l Symp. Med Img & Icons 1984; pp. 309-316.

12 Westover L. Footprint Evaluation for Volume Rendering. Comp Graph. 24, 367-376 (1990).

13 Rogers DF. “Procedural Elements for Computer Graphics.” McGraw-Hill, New York, 1985.

14 Heckbert PS. Generic Convex Polygon Scan Conversion and Clipping. In “Graphics Gems” 
(A.S. Glassner, Ed.), pp. 84-91. Academic Press, Boston, 1990.

15 Levoy M. Efficient Ray Tracing of Volume Data. ACM Trans. Graph. 9, 245-261 (1990).

16 Udupa JK, Odhner D. Shell Rendering. IEEE Comput. Graph. Appl. 13(6), 58-67 (1993).



18
Table 1: Properties of a substance used in rendering.

Parameter Range of values Meaning
Color [0,0,0] to [1,1,1] 3D vector with red, blue, and green 

intensity components.
Surface character Rough, normal, or smooth Selects different methods of computing a 

gradient vector.
Visibility On or off Flag for inclusion of substance.
Permeability On or off Flag for permeability of substance to the 

clipping plane.
Opaqueness, α 0.0 to 1.0 0.0 = transparent substance 

1.0 = fully opaque substance
Ambient lighting, Ia 0.0 to 1.0 Constant light intensity added to the light 

reflected off a substance surface.
Diffuse Reflectivity, kd 0.0 to 1.0 Degree that the substance is a perfect dif-

fuser of incident light.
Specular Reflectivity, ks 0.0 to 1.0 Degree that the substance is mirror-like.
Center 0.0 to 1.0 The image intensity mapped to the dis-

play device’s middle intensity.
Window 0.0 to 1.0 The width of image intensities mapped 

to the display device’s intensity gamut.

Table 2: Composition of test datasets.

Voxels

Image Object Surface Total
1. Cadaver Gray Matter 423,428 503,799

White Matter 312,516 384,032
Ventricular System 9,368 12,000
Ocular Chambers 2,944 3,139
Head 518,912 732,447
Total 1,267,168 1,635,417

2. Normal Subject Right Cerebrum 78,665 291,603
Left Cerebrum 81,168 288,395
Right Cerebellum 12,971 34,736
Left Cerebellum 14,594 35,219
Brain Stem 4,925 11,012
Head 536,773 939,094
Total 729,096 1,600,059



19
Table 3: Execution Times for the Rendering Pipelinea

Rendering Stage Time (seconds) for
 Image 1 (Figure 7a)

Time (seconds) for 
Image 2 (Figure 7b)

Surface determination 23.26 23.58
Voxel projections 1.30 1.84
Splatting of footprint 0.85 0.81
Shading & compositing (new view) 0.58 0.50
Total for a new view 2.73 3.14
Total for 1°  y-axis rotation of old view 2.21 2.79
Clip plane manipulationb

b. Execution time is dependent on the size of the clipping polygon projected onto the view screen. 
Time given is for one translation or rotation of the clipping polygon.

0.06 to 0.25 0.06 to 0.3
Compositing of old viewc

c. Compositing is the only stage executed when altering most substance properties. Execution 
time varies with the number of visible substances.

0.44 to 0.85 0.46 to 0.94

a. Timings are based on a HP 9000/735 workstation with 160 MB primary memory.



22



23
Project point onto
the display plane

Calculate voxel footprint
in display space

Splat projected voxel
using its footprint

Composite substance buffers

Rendered Image

Compute shading using
stored image gradients

Determine surface voxels,

Computed once for 

Computed once for 
each viewpoint

Computed

normals, and neighbors.

I p( ) λ p( )

TV VS

I p( )

each 3D image

interactively



24



25



26
(a) Head (b) Right cerebrum (c) Left cerebrum

(d) Right cerebellum (e) Left cerebellum (f) Brain stem

(g) Final composited view



27



28


	Interactive Visualization of Three-Dimensional Segmented Images for Neurosurgery
	Technical Report - June, 1995
	William T. Katz, Ph.D., M.D. John W. Snell, Ph.D. Ken Hinckley, M.S.
	Department of Neurosurgery University of Virginia Charlottesville, VA

	ABSTRACT
	Introduction
	Requirements for Neurological Surgery
	Approaches to Rendering
	Direction of Rendering
	Data Representation

	Methods
	The BSR Pipeline
	Surface Determination
	Surface Normal Determination
	Neighbor Determination
	Voxel Projection
	Transformation of a voxel into view space
	. [1]
	. [2]
	. [3]
	. [4]

	Hidden surface removal
	Footprint Determination
	Shading using Image Gradients
	[5]
	[6]
	[7]
	. [8]

	Simple Compositing
	[9]
	[10]

	Interactive Clipping

	Results and Discussion
	Acknowledgements

	References
	1. Goble JC, Snell JW, Katz WT. Semiautomatic Model-Based Segmentation of the Brain from Magnetic Resonance Images. Proceedings of AAAI Spring Symposium on Applications of Computer Vision in Medical Image Processing, March 1994, pp. 211-214.
	2 Fuchs H, Kedem ZM, Uselton SP. Optimal Surface Reconstruction from Planar Contours. Comm. ACM 20, 693-702 (1977).
	3 Herman GT. The Tracking of Boundaries in Multidimensional Medical Images. Comput. Med. Imaging Graph. 15, 257-264 (1991).
	4 Kaufman A (Ed.). Volume Visualization. Los Alamitos: IEEE Computer Society Press, 1991.
	5 Tiede U, Höhne KH, Bomans M, Pommert A, Riemer M, Wiebecke G. Investigation of Medical 3D-Rendering Algorithms. IEEE Comput. Graph. Appl. 10(2), 41-53 (1990).
	6 Foley JD, van Dam A, Feiner SK, Hughes JF. “Computer Graphics: Principles and Practice.” Addison-Wesley, Reading, 1990.
	7 Rogers DF, Adams JA. “Mathematical Elements for Computer Graphics.” McGraw-Hill, New York, 1976.
	8 Watt A, Watt M. “Advanced Animation and Rendering Techniques.” ACM Press, New York, 1993.
	9 Frieder G, Gordon D, Reynolds RA. Back-to-Front Display of Voxel-Based Objects. IEEE Comput. Graph. Appl. 5(1), 52-59 (1985).
	10 Reynolds R, Gordon D, Chen L. A Dynamic Screen Technique for Shaded Graphics Display of Slice-Represented Objects. CVGIP. 38, 275-298 (1987).
	11 Chen LS, Herman GT, Meyer CM, Reynolds RA, Udupa JK. 3D83 - An Easy-to-Use Software Package for Three-Dimensional Display from Computed Tomograms. Proc. of IEEE Comp Soc Int’l Symp. Med Img & Icons 1984; pp. 309-316.
	12 Westover L. Footprint Evaluation for Volume Rendering. Comp Graph. 24, 367-376 (1990).
	13 Rogers DF. “Procedural Elements for Computer Graphics.” McGraw-Hill, New York, 1985.
	14 Heckbert PS. Generic Convex Polygon Scan Conversion and Clipping. In “Graphics Gems” (A.S. Glassner, Ed.), pp. 84-91. Academic Press, Boston, 1990.
	15 Levoy M. Efficient Ray Tracing of Volume Data. ACM Trans. Graph. 9, 245-261 (1990).
	16 Udupa JK, Odhner D. Shell Rendering. IEEE Comput. Graph. Appl. 13(6), 58-67 (1993).
	Table 1: Properties of a substance used in rendering.
	Table 2: Composition of test datasets.
	Table 3: Execution Times for the Rendering Pipeline
	Figure Legends
	Figure 1. Ray casting versus voxel projection.
	Figure 2. The rendering pipeline of buffered surface rendering.
	Figure 3. Object and image space.
	Figure 4. Compositing of multiple substance buffers.
	Figure 5. Altering substance opacities.
	Figure 6. Clip plane operations.
	Figure 7. Test images for rendering.





