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Abstract

Multiview face detection is a challenging problem due
to dramatic appearance changes under various pose, il-
lumination and expression conditions. In this paper, we
present a multi-task deep learning scheme to enhance the
detection performance. More specifically, we build a deep
convolutional neural network that can simultaneously learn
the face/nonface decision, the face pose estimation prob-
lem, and the facial landmark localization problem. We show
that such a multi-task learning scheme can further improve
the classifier’s accuracy. On the challenging FDDB data
set, our detector achieves over 3% improvement in detec-
tion rate at the same false positive rate compared with other
state-of-the-art methods.

1. Introduction

Face detection has been one of the fundamental tech-
nologies to enable natural human-computer interaction. In
recent years, significant progress has been made on this
topic [32][34]. While frontal face detection has been largely
considered a solved problem thanks to the seminal work by
Viola and Jones [29], multiview face detection remains a
challenging task due to dramatic appearance changes under
various pose, illumination and expression conditions. The
performance of modern face detection solutions on multi-
view face data set is still unsatisfactory, as shown on the
recently published FDDB benchmark [8].

The classic strategy for multiview face detection has
been “divide and conquer”. Namely, we divide face im-
ages into multiple categories, e.g., frontal, half profile, pro-
file, etc. Different classifiers can then be trained for dif-
ferent subcategories. Research publications along this di-
rection include[13][30][6][33], etc. The benefit of such a
scheme is that the detection can be performed at a relatively
fast speed, in particular when certain hierarchical structure
is adopted [6][33] during detection. On the other hand,
the performance of these detectors are not state-of-the-art,

mostly due to the simple Haar features that are almost uni-
versally adopted due to detection speed concerns.

One direction to improve the situation is to apply more
complex features in the detector, e.g., LBP features [12],
generic linear features [17], SURF features [16], etc. Since
these complex features are often slow to compute, a com-
mon practice is to construct post filters with these features.
For instance, Rong et al. [31] applied a support vector ma-
chine (SVM) post-filter with wavelet features, and demon-
strated improvement in the detector’s precision.

In this paper, we propose to apply deep convolutional
neural networks (DCNN) as the post filter, which is known
to be able to extract effective features automatically during
learning. Furthermore, we learn the post filter in a multi-
task learning (MTL) framework, where we jointly train the
face/non-face decision, the facial pose estimation, and the
facial landmark localization problem simultaneously. Our
experimental results show that MTL can improve the accu-
racy of the learned classifier, and the final DCNN classifier
can achieve state-of-the-art performance on the challenging
FDDB data set.

The rest of the paper is organized as follows. Related
works are discussed in Section 2. An overview of our detec-
tion system is presented in Section 3. The multi-task DCNN
is introduced in Section 4. Experimental results and conclu-
sions are given in Section 5 and 6, respectively.

2. Related Works

Our work is certainly not the first that adopts neural net-
works on the face detection problem. In fact, before the Vi-
ola and Jones [29] detector was published, neural network
had been a very popular approach [24][23][4] and achieved
state-of-the-art performance at that time. More recently, the
convolutional neural architecture was used for face detec-
tion in [5][19]. While no multi-task learning is involved,
Osadchy et al.’s scheme [19] trained a convolutional neural
network to map face images to points on a low dimensional
face manifold parameterized by facial pose, and non-face
images to points far away from the manifold. The detector



was fast and achieved satisfactory performance, on par with
the boosting based detectors such as [29].

In the past few years, deep neural networks (DNN) have
seen a surge in research interest, thanks to the ground-
breaking performance improvement on various applica-
tions such as speech recognition [22] and image classifi-
cation [14]. A few research works have been reported to
apply DNN on face related problems. For instance, Luo et
al. applied DNN on face parsing [21]; Huang et al. applied
convolutional deep belief networks on face verification [7];
Sun et al. applied deep convolutional cascade on facial land-
mark detection [28]; and Sermanet et al. applied DCNN on
pedestrian detection [25]. To the authors’s best knowledge,
the latest deep learning algorithms have not been applied to
face detection yet.

A few novel face detection algorithms have also been
presented recently. Notably, Zhu and Ramanan [35] pre-
sented a mixture of trees model with shared parts for face
detection, pose estimation, and landmark estimation. Both
shape and appearance parameters are learned discrimina-
tively using a structured prediction framework. Shen et
al. [26] presented a scheme to perform face detection and
alignment by image retrieval. Their method contains a vali-
dation step that uses a similar voting scheme for face val-
idation and landmark localization. These works indicate
that the face detection problem is highly related to other
facial tasks such as pose estimation and landmark detec-
tion. Therefore, in this paper, we adopt a multi-task learning
framework [1] with DCNN to examine whether additional
improvement on face detection could be achieved.

Multi-task learning is a machine learning approach that
learns a problem together with other related problems at the
same time using a shared representation. It often leads to a
better model for a single task than learning it independently,
because it allows the learner to use the commonality among
tasks. It is very natural to apply multi-task learning on a
neural network, since one can simply learn multiple targets
and make them share the common lower layers. Multi-task
learning with neural networks have been applied in natu-
ral language processing [2], traffic flow forecasting [11],
speech recognition [3], etc.

3. System Overview
We use multi-task DCNN to build a post filter for a

boosting based multiview face detector. The overall flow
for predicting whether a given image patch is a face or not
is shown in Fig. 1. The image patch first passes through
a cascade-based multiview face detector. If the decision is
true, we scale the patch to 32× 32 pixels, and perform pre-
processing for the patch. It is then sent to a DCNN for the
final decision. Since the first stage multiview face detec-
tor is cascade-based, it is fast and can reject most negative
patches. Consequently, the overall system can still run fast
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Figure 1. Algorithm flow for predicting whether an image patch is
a face or not.

Figure 2. Example landmark labels for different face poses.

despite the relatively more complex DCNN classifier.

3.1. The Training Data

We collected face data from various sources, including
images from the web, the Feret database [20], the BioID
database [10], the PIE database [27], etc. The faces are cat-
egorized into 5 poses, namely, frontal, left/right half profile,
left/right profile, each with 0 and ±30 degree in-plane rota-
tions (15 subcategories in total). The data set includes about
49,000 frontal faces, 43,000 half profile faces, and 25,000
profile faces. Some example images and their labeled land-
marks are shown in Fig. 2. For frontal and half profile faces,
the left/right eye center, the nose tip and the left/right mouth
corners are manually labeled. For profile faces, the visible
eye’s center, the nose tip, the visible mouth corner, ear top
and bottom are labeled. The cropping windows of the faces
are then computed from the labeled landmarks. The face
patches are scaled to 32× 32 pixels for training.

To increase the data variation, we apply numerous ran-
dom lighting and geometry variations to the face patches,
including flipping/shift/scale/rotation for the cropping re-
gion, shearing in horizontal and vertical directions, inten-
sity variance scaling, intensity gamma nonlinearity, etc. In
the end, the overall number of (artificially generated) face
examples used for training is about 2 million. The negative
image set is also collected from the web, which contains
about 30 thousand images, or 10 billion non-face patches of
size 32× 32 pixels.

3.2. The Boosting­Based Multiview Face Detector

We follow the algorithm in [33] to build the boosting-
based multiview face detector. It uses a winner-take-all ap-
proach to adaptively relabel the faces in order to achieve



Figure 3. Patch preprocessing before being sent to the DCNN. Top
row: before preprocessing; bottom row: after preprocessing.

better performance. Since practically any multiview face
detector can be applied before our DCNN post filter, we
skip the details of the boosting classifier in this paper.

It is important to set the final threshold of the boosting-
based multiview detector appropriately. Setting the thresh-
old too high may cause many positive examples be rejected
even before entering the DCNN post filter, and setting it too
low may lead to too many pass-through patches that needs
to be classified further by the DCNN, slowing down the
overall detection process. In this paper, we set the thresh-
old of the boosting-based detector to successfully detect
about 94% of the training face patches, which leads to about
0.057% false positive rate, or 10 to 100 positive patches for
a typical image. We pass all the training patches through the
detector, which leaves about 1.88 million positive patches
and 570 thousand negative patches to be used to learn the
post filter.

3.3. Patch Preprocessing

The image patches are preprocessed before sending to
the DCNN for classification. The preprocessing consists of
three steps: histogram equalization, linear lighting removal,
and intensity normalization. In the first step, we perform
standard histogram equalization to enhance the contrast of
the image patch. We then fit a linear plane onto the image
intensity, namely, let:

ax+ by + c = I, (1)

where (x, y) is the pixel location, and I is the corresponding
pixel intensity. We use least square fitting, which has a close
form solution in this case, to find the best fitting parameters
a, b and c, and keep the value I − ax− by − c as the pixel
value at (x, y). The last step is to normalize the pixel values
to unit variance. Fig. 3 shows the results of such a three-step
preprocessing, which is very effective in improving image
contrast and removing shadows.

4. Multi-Task DCNN
4.1. Network Architecture

We adopt a multi-task DCNN as shown in Fig. 4. Given
the input 32 × 32 grayscale image patch, the first layer is a
convolutional layer with 32 kernels of size 5 × 5 × 1, fol-
lowed by 2×2 max pooling. The second convolutional layer
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Figure 4. The multi-task DCNN network adopted in this paper.
Here “DO” indicates that the densely connected layer has dropout
enabled.

takes as input the output of the first layer, and filters it with
32 kernels of size 3× 3× 32. The third convolutional layer
has 24 kernels of size 3 × 3 × 32, which is again followed
by 2× 2 max pooling. The fourth layer is a fully connected
layer that has 512 neurons. Afterwards, the network is split
into three branches:

• The first branch learns the face/nonface decision, and it
contains 2 additional fully connected layers, with size
128 and 2, respectively. Dropout [14] is enabled at the
first dense layer. The output is fed to a 2-way softmax,
and we minimizes the cross-entropy loss:

L1 = −
2∑

i=1

ti log yi, (2)

where (t1, t2) = (1, 0) for face patches and (t1, t2) =
(0, 1) for nonface patches, and (y1, y2) is the softmax
output.

• The second branch learns the facial pose (frontal,
left/right half profile, left/right profile), which also
contains 2 additional fully connected layers of size 128
and 5. Again dropout is enabled at the first dense layer.
The output is fed to a 5-way softmax, and we again
minimizes the cross-entropy loss:

L2 = −
5∑

i=1

ti log yi, (3)

where t = (t1, · · · , t5) is a vector with the element
corresponding to the ground truth pose set to 1, and 0
otherwise.

• The third branch learns the locations of the facial land-
marks. There are 7 landmarks in total (Fig. 2), thus
there are 14 output units. The branch has 3 fully con-
nect layers, with size 256, 196 and 14, respectively.
The first two dense layers have dropout turned on. The
output directly predicts the landmark 2D coordinates,
and we minimize a weighted mean square error:

L3 =
1

2

∑
i wi(zi − yi)

2∑
i wi

, (4)



where zi is the ground truth coordinate value, and wi is
a weight defined on each output. Since during DCNN
training we do not distinguish the input face poses, for
frontal and half profile faces the ear top and ear bot-
tom coordinate ground truth will be missing; and for
profile faces one of the eyes and mouth corners will be
missing. We thus set the corresponding weights wi to
0 during training for the missing labels.

In all convolutional and fully connected layers the ReLU
non-linearity [14] is applied, except for the ones in the facial
landmark prediction branch, where the hyperbolic tangent
nonlinearity is used.

When multi-task learning is performed, we minimize the
following linear combination of losses:

L =
3∑

i=1

αiLi, (5)

where αi are linear weights, currently set as all equal to
1.0. Note if we set the second and third weights to zero, we
return to the traditional single task learning.

4.2. Implementation Details

We train our models using stochastic gradient decent
with a batch size of 128 examples, momentum of 0.0, and
weight decay of 0.0005. The learning rate is initialized as
0.01 and adapted during training. More specifically, we
monitor the overall loss function. If the loss is not reduced
for 5 epoches in a row, the learning rate is dropped by 50%.
We deem the network converged if the learning rate has
dropped below 0.0001.

For our face detection task, as mentioned earlier, the
overall number of training examples for the post filter is
about 1.88 million positive patches and 570 thousand nega-
tive patches. The data are randomly shuffled before sending
to the network for training. Each epoch of training takes
about 10 minutes on a Nvidia GTX Titan GPU with our in-
house implementation, and the network usually converges
in 80-100 epoches.

5. Experimental Results
We tested the detector on the publicly available FDDB

data set [8]. The data set contains 5171 faces in 2845 im-
ages. In the first experiment, we compare five different
approaches to demonstrate the benefit of deep convolution
neural networks, and multi-task learning:

• The first approach is directly using the boosting-based
multiview detector. No post filter is applied. This is
our baseline for this experiment.

• The second approach adopts an SVM based post fil-
ter. For each subcategory of the multiview detector,
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Figure 5. Comparison of five approaches for face detection on the
FDDB data set.

we collect all patches that successfully pass through
the detector. We then extract LBP features [18] for
the image patch, and train a linear SVM classifier for
face/nonface decision in each subcategory. This ap-
proach is similar to what was presented in Rong et
al. [31], except that LBP features are more robust to
lighting variations than wavelet features.

• The third approach trains a DCNN on the post filter
training data (1.88 million positive examples and 570
thousand negative patches) directly, without involving
multi-task learning. We basically set (α1, α2, α3) =
(1.0, 0.0, 0.0) in the loss function of Eq. (5), and train
a DCNN.

• The fourth approach trains a multi-task DCNN on
the same data. This time we set (α1, α2, α3) =
(1.0, 1.0, 1.0), although in the end we only verify the
face detector’s performance in this paper.

• The fifth approach takes the trained multi-task DCNN
from the previous approach, freezes all parameters in
the second and third branches, and retrain the detec-
tor based on the same training data. We hypothesize
that the benefit of multi-task DCNN comes from better
tuning of the lower layers (thanks to multi-task learn-
ing), thus the network is less likely to over-fit. On the
other hand, forcing the network to also perform pose
estimation and landmark detection may to some de-
gree impact the overall face/nonface decision accuracy.
We expect that the retraining will start from a good set
of initial network parameters, and thus will converge
quickly to a classifier that performs even better.

The results are shown in Fig. 5. We limit the plot to
300 false detections on the whole data set, as we believe
detectors with higher false positive rates are not practically
useful. It can be seen that in general the three DCNN post
filters outperform the baseline detector significantly: at the
same false positive rate, the detection rate improves by over
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Figure 6. Comparison of our face detector against existing state-
of-the-art approaches.

3%. Compared with the linear SVM based post filter, the
improvement is also significant: over 2% in detection rate
at the same false positive rate.

The three DCNN based post-filters are relatively close
to each other in performance. Multi-task learning provides
improvement over the vanilla DCNN by 0.2− 0.5%, while
retraining gains another 0.2%. The fully connected layers
in our network are mostly equipped with dropout, which
is known to be very robust to over-fitting. We think that
could be the reason that the improvement was less than what
we originally expected. However, a change of 0.5% in de-
tection rate still corresponds to 25 more correct detections,
which is good to have.

To give a perspective about how our detector performs
against some of the state-of-the-art approaches, we com-
pare our method with four recent publications, including
the VJGPR detector by Jain et al. in [9], the SURF cas-
cade detector by Li et al. [16], the XZJY detector by Shen
et al. [26] and the adaptation detector by Li et al. [15]. The
results are shown in Fig. 6. The baseline boosting detector
without DCNN and the DCNN post filter with multi-task
learning and retraining are also included. It can be seen that
our detectors’ performance is much better than the existing
methods.

One interesting issue we observe is that when we set
the DCNN’s final threshold to 0.999 (the maximum soft-
max output is 1), we achieve 77.32% detection rate, with
18 false positives. We were curious how these false positive
patches pass through the DCNN with such high confidence.
In Fig. 7 we show all the 18 “false” detections made by our
detector. At a glance, all of them appear to be legitimate
detections. We then compared these detection results with
the ground truth, and noted two major cases. For image 1,
3, 4, 8, 9, 11, 12, 15 and 16, these “false” detections are ba-
sically missed faces in the ground truth file. In other words,
these are indeed faces but were somehow not labeled in the
ground truth. For image 2, 5, 6, 7, 10, 13, 14, 17 and 18, the

problem appears to be caused by how a detected face is con-
sidered as a true detection in FDDB. As we mentioned, our
cropping windows are computed from landmark points dur-
ing training, and they are different from the FDDB labels.
This is particularly clear on profile faces, where our com-
puted cropping window tends to place the visible eye at the
horizontal center column. Another factor is that our detec-
tor output square windows, and this tends to be miss-judged
by FDDB if the ground truth face is an elongated ellipsoid.
If better agreement can be made on how the ground truth
faces are labeled, we expect our detector to perform even
better on the same data set.

6. Conclusions
In this paper, we applied multi-task deep convolutional

neural networks to build a post filter to improve the accu-
racy of multiview face detection. The idea is to learn the
face/nonface decision together with facial pose estimation
and facial landmark localization. We achieved state-of-the-
art performance on the challenging FDDB data set.

For future work, we would like to include more facial
attributes into our multi-task learning framework. These at-
tributes may include gender, age, facial expression, lighting,
etc. It would also be interesting to vary the weights among
different learning tasks, to examine which tasks are more
closely related, and thus are more effective when applying
multi-task learning.
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